IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE POLYNOMIALS

Shanta Laishram, Tarlok N. Shorey

Abstract

For a rational $q=u+\frac{\alpha}{d}$ with $u, \alpha, d \in \mathbb{Z}$ with $u \geqslant 0,1 \leqslant \alpha<d, \operatorname{gcd}(\alpha, d)=1$, the generalized Hermite-Laguerre polynomials $G_{q}(x)$ are defined by $$
\begin{aligned} G_{q}(x)= & a_{n} x^{n}+a_{n-1}(\alpha+(n-1+u) d) x^{n-1}+\cdots \\ & +a_{1}\left(\prod_{i=1}^{n-1}(\alpha+(i+u) d)\right) x+a_{0}\left(\prod_{i=0}^{n-1}(\alpha+(i+u) d)\right) \end{aligned}
$$

where $a_{0}, a_{1}, \cdots, a_{n}$ are arbitrary integers. We prove some irreducibility results of $G_{q}(x)$ when $q \in\left\{\frac{1}{3}, \frac{2}{3}\right\}$ and extend some of the earlier irreducibility results when q of the form $u+\frac{1}{2}$. We also prove a new improved lower bound for greatest prime factor of product of consecutive terms of an arithmetic progression whose common difference is 2 and 3 .
Keywords: irreducibility, Hermite-Laguerre polynomials, arithmetic progressions, primes.

1. Introduction

Let n and $1 \leqslant \alpha<d$ be positive integers with $\operatorname{gcd}(\alpha, d)=1$. Any positive rational q is of the form $q=u+\frac{\alpha}{d}$ where u is a non-negative integer. For integers $a_{0}, a_{1}, \cdots, a_{n}$, let

$$
\begin{aligned}
G(x):=G_{q}(x)= & a_{n} x^{n}+a_{n-1}(\alpha+(n-1+u) d) x^{n-1}+\cdots \\
& +a_{1}\left(\prod_{i=1}^{n-1}(\alpha+(i+u) d)\right) x+a_{0}\left(\prod_{i=0}^{n-1}(\alpha+(i+u) d)\right) .
\end{aligned}
$$

This is an extension of Hermite polynomials and generalized Laguerre polynomials. Therefore we call $G(x)$ the generalized Hermite-Laguerre polynomial. For an integer $\nu>1$, we denote by $P(\nu)$ the the greatest prime factor of ν and we put $P(1)=1$. We prove

[^0]Theorem 1. Let $P\left(a_{0} a_{n}\right) \leqslant 3$ and suppose $2 \nmid a_{0} a_{n}$ if degree of $G_{\frac{2}{3}}(x)$ is 43 . Then $G_{\frac{1}{3}}$ and $G_{\frac{2}{3}}$ are irreducible except possibly when $1+3(n-1)$ and $2+3(n-1)$ is a power of 2, respectively where it can be a product of a linear factor times a polynomial of degree $n-1$.

Theorem 2. Let $1 \leqslant k<n, 0 \leqslant u \leqslant k$ and $a_{0} a_{n} \in\left\{ \pm 2^{t}: t \geqslant 0, t \in \mathbb{Z}\right\}$. Then $G_{u+\frac{1}{2}}$ does not have a factor of degree k except possibly when $k \in\{1, n-1\}, u \geqslant 1$.

Schur [Sch29] proved that $G_{\frac{1}{2}}\left(x^{2}\right)$ with $a_{n}= \pm 1$ and $a_{0}= \pm 1$ are irreducible and this implies the irreducibility of $H_{2 n}$ where H_{m} is the m-th Hermite polynomial. Schur [Sch73] also established that Hermite polynomials $H_{2 n+1}$ are x times an irreducible polynomial by showing that $G_{\frac{3}{2}}\left(x^{2}\right)$ with $a_{n}= \pm 1$ and $a_{0}= \pm 1$ is irreducible expect for some explicitly given finitely many values of n where it can have a quadratic factor. Further Allen and Filaseta [AlFi04] showed that $G_{\frac{1}{2}}\left(x^{2}\right)$ with $a_{1}= \pm 1$ and $0<\left|a_{n}\right|<2 n-1$ is irreducible. Finch and Saradha [FiSa10] showed that $G_{u+\frac{1}{2}}$ with $0 \leqslant u \leqslant 13$ have no factor of degree $k \in[2, n-2]$ except for an explicitly given finite set of values of u where it may have a factor of degree 2 .

From now onwards, we always assume $d \in\{2,3\}$. A new ingredient in the proofs of Theorems 1 and 2 is the following result which we shall prove in Section 3.
Theorem 3. Let $k \geqslant 2$ and $d=2,3$. Let m be a positive integer such that $d \nmid m$ and $m>d k$. Then

$$
P(m(m+d) \cdots(m+d(k-1)))> \begin{cases}3.5 k & \text { if } d=2 \text { and } m \leqslant 2.5 k \tag{1}\\ 4 k & \text { if } d=2 \text { and } m>2.5 k \\ 3 k & \text { if } d=3\end{cases}
$$

unless $(m, k) \in\{(5,2),(7,2),(25,2),(243,2),(9,4),(13,5),(17,6),(15,7),(21,8)$, $(19,9)\}$ when $d=2$ and $(m, k)=(125,2)$ when $d=3$.

If $d=2,3$ and $m>d k$, this is an improvement of [LaSh06a].
In Section 4, we shall combine Theorem 3 with the irreducibility criterion from [ShTi10](see Lemma 4.1) to derive Theorems 1 and 2. This criterion come from Newton polygons. If p is a prime and m is a nonzero integer, we define $\nu(m)=\nu_{p}(m)$ to be the nonnegative integer such that $p^{\nu(m)} \mid m$ and $p^{\nu(m)+1} \nmid m$. We define $\nu(0)=+\infty$. Consider $f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x]$ with $a_{0} a_{n} \neq 0$ and let p be a prime. Let S be the following set of points in the extended plane:

$$
S=\left\{\left(0, \nu\left(a_{n}\right)\right),\left(1, \nu\left(a_{n-1}\right)\right),\left(2, \nu\left(a_{n-2}\right)\right), \cdots,\left(n-1, \nu\left(a_{1}\right)\right),\left(n, \nu\left(a_{0}\right)\right)\right\}
$$

Consider the lower edges along the convex hull of these points. The left-most endpoint is $\left(0, \nu\left(a_{n}\right)\right)$ and the right-most endpoint is $\left(n, \nu\left(a_{0}\right)\right)$. The endpoints of each edge belong to S, and the slopes of the edges increase from left to right. When referring to the edges of a Newton polygon, we shall not allow two different edges to have the same slope. The polygonal path formed by these edges is called the Newton polygon of $f(x)$ with respect to the prime p. For the proof of Theorems 1 and 2, we use [ShTi10, Lemma 10.1] whose proof depends on Newton polygons.

A part of this work was done when the authors were visiting Max-Planck Institute for Mathematics in Bonn during August-October, 2008 and FebruaryApril, 2009, respectively. We would like to thank the MPIM for the invitation and the hospitality. We also thank Pieter Moree for his comments on a draft of this paper. The authors are indebted to the referee for his suggestions and remarks which improved the exposition of the paper.

2. Preliminaries for Theorem 3

Let m and k be positive integers with $m>k d$ and $\operatorname{gcd}(m, d)=1$. We write

$$
\Delta(m, d, k)=m(m+d) \cdots(m+(k-1) d) .
$$

For positive integers ν, μ and $1 \leqslant l<\mu$ with $\operatorname{gcd}(l, \mu)=1$, we write

$$
\begin{aligned}
& \pi(\nu, \mu, l)=\sum_{\substack{p \leqslant \nu \\
p \equiv l(\bmod \mu)}} 1, \pi(\nu)=\pi(\nu, 1,1) \\
& \theta(\nu, \mu, l)=\sum_{\substack{p \leqslant \nu \\
p \equiv l(\bmod \mu)}} \log p
\end{aligned}
$$

Let $p_{i, \mu, l}$ denote the i th prime congruent to l modulo μ. Let $\delta_{\mu}(i, l)=p_{i+1, \mu, l}-$ $p_{i, \mu, l}$ and $W_{\mu}(i, l)=\left(p_{i, \mu, l}, p_{i+1, \mu, l}\right)$. Let $M_{0}=1.92367 \times 10^{10}$.

We recall some well-known estimates on prime number theory.
Lemma 2.1. We have
(i) $\pi(\nu) \leqslant \frac{\nu}{\log \nu}\left(1+\frac{1.2762}{\log \nu}\right)$ for $\nu>1$
(ii) $\nu\left(1-\frac{3.965}{\log ^{2} \nu}\right) \leqslant \theta(\nu)<1.00008 \nu$ for $\nu>1$
(iii) $\sqrt{2 \pi k} e^{-k} k^{k} e^{\frac{1}{12 k+1}}<k!<\sqrt{2 \pi k} e^{-k} k^{k} e^{\frac{1}{12 k}}$ for $k>1$
(iv) $\operatorname{ord}_{p}(k!) \geqslant \frac{k-p}{p-1}-\frac{\log (k-1)}{\log p}$ for $k>1$ and $p<k$.

The estimates (i), (ii) are due to Dusart [Dus98, p.14], [Dus99]. The estimate (iii) is [Rob55, Theorem 6]. For a proof of (iv), see [LaSh04b, Lemma 2(i)].

The following lemma is due to Ramaré and Rumely [RaRu96, Theorems 1, 2].
Lemma 2.2. Let $l \in\{1,2\}$. For $\nu_{0} \leqslant 10^{10}$, we have

$$
\theta(\nu, 3, l) \geqslant \begin{cases}\frac{\nu}{2}(1-0.002238) & \text { for } \nu \geqslant 10^{10} \tag{2}\\ \frac{\nu}{2}\left(1-\frac{2 \times 1.798158}{\sqrt{\nu_{0}}}\right) & \text { for } 10^{10}>\nu \geqslant \nu_{0}\end{cases}
$$

and

$$
\theta(\nu, 3, l) \leqslant \begin{cases}\frac{\nu}{2}(1+0.002238) & \text { for } \nu \geqslant 10^{10} \tag{3}\\ \frac{\nu}{2}\left(1+\frac{2 \times 1.798) 58}{\sqrt{\nu_{0}}}\right) & \text { for } 10^{10}>\nu \geqslant \nu_{0}\end{cases}
$$

We derive from Lemmas 2.1 and 2.2 the following result.
Corollary 2.3. Let $M_{0}<m \leqslant 131 \times 2 k$ if $d=2$ and $6450 \leqslant m \leqslant 10.6 \times 3 k$ if $d=3$. Then $P(\Delta(m, d, k)) \geqslant m$.

Proof. Let $M_{0}<m \leqslant 131 \times 2 k$ if $d=2$ and $6450 \leqslant m \leqslant 10.6 \times 3 k$ if $d=3$. Then $k \geqslant k_{1}$ where $k_{1}=7.34 \times 10^{7}, 203$ when $d=2,3$, respectively. Let $1 \leqslant l<d$ and assume $m \equiv l(\bmod d)$. We observe that $P(\Delta(m, d, k) \geqslant m$ holds if

$$
\theta(m+d(k-1), d, l)-\theta(m-1, d, l)=\sum_{\substack{m \leqslant p \leqslant m+(k-1) d \\ p \equiv l(d)}} \log p>0 .
$$

Now from Lemmas 2.1 and 2.2, we have

$$
\frac{\theta(m-1, d, l)}{\frac{m-1}{\phi(d)}}<\theta_{1}:= \begin{cases}1.00008 & \text { if } d=2 \\ 1+\frac{2 \times 1.798158}{\sqrt{6450}} & \text { if } d=3\end{cases}
$$

and

$$
\frac{\theta(m+(k-1) d, d, l)}{\frac{m+(k-1) d}{\phi(d)}}>\theta_{2}:= \begin{cases}1-\frac{3.965}{\log ^{2}\left(11^{10}\right)} & \text { if } d=2 \\ 1-\frac{2 \times 1.79158}{\sqrt{6450}} & \text { if } d=3\end{cases}
$$

Thus $P(\Delta(m, d, k) \geqslant m$ holds if

$$
\theta_{2}(m+d(k-1))>\theta_{1} m
$$

i.e., if

$$
\frac{d(k-1)}{m}>\frac{\theta_{1}}{\theta_{2}}-1
$$

This is true since for $k \geqslant k_{1}$, we have

$$
\frac{d k\left(1-\frac{1}{k}\right)}{\frac{\theta_{1}}{\theta_{2}}-1} \geqslant \frac{d k\left(1-\frac{1}{k_{1}}\right)}{\frac{\theta_{1}}{\theta_{2}}-1}>(d k) \begin{cases}131.3 & \text { if } d=2 \\ 10.6 & \text { if } d=3\end{cases}
$$

and m is less than the last expression. Hence the assertion.
Now we give some results for $d=2$. The next result follows from Lemma 2.1 (ii).
Corollary 2.4. Let $d=2, k>1$ and $2 k<m<4 k$. Then

$$
P(\Delta(m, d, k))> \begin{cases}3.5 k & \text { if } m \leqslant 2.5 k \tag{4}\\ 4 k & \text { if } m>2.5 k\end{cases}
$$

unless $(m, k) \in\{(5,2),(7,2),(9,4),(13,5),(17,6),(15,7),(21,8),(19,9)\}$.

Proof. We observe that the set $\{m, m+2, \ldots, m+2(k-1)\}$ contains all primes between $3.5 k$ and $4 k$ if $m \leqslant 2.5 k$ and all primes between $4 k$ and $4.5 k$ if $2.5 k<$ $m<4 k$. Therefore (4) holds if

$$
\theta(4 k)>\theta(3.5 k) \text { and } \theta(4.5 k)>\theta(4 k) .
$$

Let $(r, s)=(3.5,4)$ or $(4,4.5)$. Then from Lemma 2.1, we see that $\theta(s k)>\theta(r k)$ if

$$
s k\left(1-\frac{3.965}{\log ^{2}(s k)}\right)>1.00008 \times r k
$$

or

$$
\frac{s-1.00008 r}{1.00008 r}>\frac{s}{1.00008 r} \frac{3.965}{\log ^{2}(s k)}
$$

or

$$
k>\frac{1}{s} \exp \left(\sqrt{\frac{3.965 s}{s-1.00008 r}}\right) .
$$

This is true for $k \geqslant 88$. Thus $k \leqslant 87$. For $10 \leqslant k \leqslant 87$, we check that there is always a prime in the intervals $(3.5 k, 4 k)$ and $(4 k, 4.5 k)$ and hence (4) follows in this case. For $2 \leqslant k \leqslant 9$, the assertion follows by computing $P(\Delta(m, 2, k))$ for each $2 k<m<4 k$.

The following result concerns Grimm's Conjecture, [LaSh06b, Theorem 1].
Lemma 2.5. Let $m \leqslant M_{0}$ and l be such that $m+1, m+2, \cdots, m+l$ are all composite numbers. Then there are distinct primes P_{i} such that $P_{i} \mid(m+i)$ for each $1 \leqslant i \leqslant l$.

As a consequence, we have
Corollary 2.6. Let $4 k<m \leqslant M_{0}$. Then either $P(\Delta(m, 2, k))>4 k$ or $P(\Delta(m, 2, k)) \geqslant p_{k+1}$.

Proof. If $m+2 i$ is prime for some i with $0 \leqslant i<k$, then the assertion holds clearly since $P(\Delta(m, 2, k)) \geqslant m+2 i>4 k$. Thus we suppose that $m+2 i$ is composite for all $0 \leqslant i<k$. Since m is odd, we obtain that $m+2 i+1$ with $0 \leqslant i<k$ are all even and hence composite. Therefore $m, m+1, m+2, \cdots, m+2 k-1$ are all composite and hence, by Lemma 2.5, there are distinct primes P_{j} with $P_{j} \mid(m-1+j)$ for each $1 \leqslant j \leqslant 2 k$. Therefore $\omega(\Delta(m, 2, k)) \geqslant k$ implying $P(\Delta(m, 2, k)) \geqslant p_{k+1}$.

Corollary 2.7. Let $d=2$ and $4 k<m \leqslant M_{0}$. Then $P(\Delta(m, 2, k))>4 k$ for $k \geqslant 30$.

Proof. By Corollary 2.6, we may assume that $P(\Delta(m, 2, k)) \geqslant p_{k+1}$. By Lemma 2.1, we get $p_{k+1} \geqslant k \log k$ which is $>4 k$ for $k \geqslant 60$. For $30 \leqslant k<60$, we check that $p_{k+1}>4 k$. Hence the assertion follows.

The following result follows from [Leh64, Tables IIA, IIIA].
Lemma 2.8. Let $d=2, m>4 k$ and $2 \leqslant k \leqslant 37, k \neq 35$. Then $P(\Delta(m, 2, k))>$ $4 k$.

Proof. The case $k=2$ is immediate from [Leh64, Table IIA]. Let $k \geqslant 3$ and $m \geqslant 4 k$. For m and $1 \leqslant i<k$ such that $m+2 i=N$ with N given in [Leh64, Tables IIA, IIIA], we check that $P(\Delta(m, 2, k))>4 k$. Hence assume that $m+2 i$ with $1 \leqslant i<k$ is different from those N given in [Leh64, Tables IIA, IIIA].

For every prime $31<p \leqslant 4 k$, we delete a term in $\{m, m+2, \cdots, m+2(k-1)\}$ divisible by p. Let $i_{1}<i_{2}<\ldots<i_{l}$ be such that $m+2 i_{j}$ is in the remaining set where $l \geqslant k-(\pi(4 k)-\pi(31))$. From [Leh64, Tables IIA, IIIA], we observe that $i_{j+1}-i_{j} \geqslant 3$ implying $k-1 \geqslant i_{l}-i_{1} \geqslant 3(l-1) \geqslant 3(k-\pi(4 k)+10)$. However we find that the inequality $k-1 \geqslant 3(k-\pi(4 k)+10)$ is not valid except when $k=28,29$. Hence the assertion of the Lemma is valid except possibly for $k=28,29$.

Therefore we may assume that $k=28,29$. Further we suppose that $l=$ $k-(\pi(4 k)-\pi(31))=10$ otherwise $3(l-1) \geqslant 30>k-1$, a contradiction. Thus we have either $i_{10}-i_{1}=27$ implying $i_{1}=0, i_{j+1}=i_{j}+3=3 j$ for $1 \leqslant j \leqslant 9$ or $i_{1}=1, i_{j+1}=i_{j}+3=3 j+1$ for $1 \leqslant j \leqslant 9$ or $i_{10}-i_{1}=28$ implying

$$
i_{1}=0, \quad i_{j+1}=\left\{\begin{array}{ll}
3 j & \text { if } 1 \leqslant j \leqslant r \\
3 j+1 & \text { if } r<j \leqslant 9
\end{array} \quad \text { for some } r \geqslant 1\right.
$$

Let $X=m+2 i_{1}-6$. Note that X is odd since m is odd. Also $X \geqslant 4 k+1-6 \geqslant 107$. We have either

$$
\begin{equation*}
P((X+6) \cdots(X+54)(X+60)) \leqslant 31 \tag{5}
\end{equation*}
$$

or there is some $r \geqslant 1$ for which

$$
\begin{equation*}
P((X+6) \cdots(X+6 r)(X+6(r+1)+2) \cdots(X+60+2)) \leqslant 31 \tag{6}
\end{equation*}
$$

Note that (5) is the only possibility when $k=28$. Now we consider (5). Suppose $3 \mid X$. Then putting $Y=\frac{X}{3}$, we get $P((Y+2) \cdots(Y+18)(Y+20)) \leqslant 31$ which implies $Y+2<20$ by Corollary 2.4 and Lemma 2.8 with $k=10$. Since $X+6 \geqslant m \geqslant 113$, we get a contradiction. Hence we may assume that $3 \nmid X$. Then $3 \nmid(X+6) \cdots(X+54)(X+60)$. After deleting terms $X+6 i$ divisible by primes $11 \leqslant p \leqslant 31$, we are left with three terms divisible by primes 5 and 7 and hence $m \leqslant X+6 \leqslant 35$ which is again a contradiction. Therefore (5) is not possible.

Now we consider (6) which is possible only when $k=29$. Since $X+6=m>$ $4 k=116$, we have $X>110$. Suppose $r=1,9$. Then we have $P((X+12+$ 2) $\cdots(X+54+2)(X+60+2)) \leqslant 31$ if $r=1$ and $P((X+6) \cdots(X+54)) \leqslant 31$ if $r=9$. Putting $Y=X+8$ in the first case and $Y=X$ in the latter, we get $P((Y+6) \cdots(Y+54)) \leqslant 31$. Suppose $3 \mid Y$. Then putting $Z=\frac{Y}{3}$, we get $P((Z+2) \cdots(Z+18)) \leqslant 31$ which implies $Z+2 \leqslant 18$ by Corollary 2.4 and Lemma 2.8 with $k=9$. Since $Z+2 \geqslant \frac{X}{3}>\frac{110}{3}$, we get a contradiction. Hence we may assume that $3 \nmid Y$. Then $3 \nmid(Y+6) \cdots(Y+54)$. After deleting terms
$Y+6 i$ divisible by primes $11 \leqslant p \leqslant 31$, we are left with two terms divisible by primes 5 and 7 only. Let $Y+6 i=5^{a_{1}} 7^{b_{1}}$ and $Y+6 j=5^{a_{2}} 7^{b_{2}}$ where $b_{1} \leqslant 1<b_{2}$ and $a_{2} \leqslant 1<a_{1}$. Since $|i-j| \leqslant 8$, the equality $6(i-j)=5^{a_{1}} 7^{b_{1}}-5^{a_{2}} 7^{b_{2}}$ implies $5^{a}-7^{b}= \pm 6, \pm 12, \pm 18, \pm 24, \pm 36, \pm 48$. By taking modulo 6 , we get $(-1)^{a} \equiv 1$ modulo 6 implying a is even. Taking modulo 8 again, we get either

$$
b \text { is even, } \quad 5^{a}-7^{b}=\left(5^{\frac{a}{2}}-7^{\frac{b}{2}}\right)\left(5^{\frac{a}{2}}+7^{\frac{b}{2}}\right)= \pm 24, \pm 48
$$

giving

$$
\begin{equation*}
5^{a}=25,7^{b}=49 \tag{7}
\end{equation*}
$$

or

$$
b \text { is odd, } \quad 5^{a}-7^{b}=-6,18
$$

Let $5^{a}-7^{b}=-6$. Considering modulo 5 , we get $2^{b} \equiv 1$ implying $4 \mid b$, a contradiction. Let $5^{a}-7^{b}=18$. By considering modulo 7 and modulo 9 and since a is even, we get $3 \mid(a-2)$ and $3 \mid(b-1)$ implying $\left(5^{\frac{a+1}{3}}\right)^{3}+35\left(-7^{\frac{b-1}{3}}\right)^{3}=90$. Solving the Thue equation $x^{3}+35 y^{3}=90$ gives $x=5, y=-1$ or $25-7=18$ is the only solution. Hence $6 \cdot 3=25-7=X+6 i-(X+6 j)$. Also the solution (7) implies $-6 \cdot 4=25-49=X+6 i-(X+6 j)$. Thus $X \leqslant 25$ which is not possible.

Assume now that $2 \leqslant r \leqslant 8$. Then $P((X+6)(X+12)(X+56)(X+62)) \leqslant 31$. Suppose $3 \mid X(X+2)$. Putting $Y=\frac{X+6}{3}$ if $3 \mid X$ and $Y=\frac{X+56}{3}$ if $3 \mid(X+2)$, we get either $P(Y(Y+2)(3 Y+50)(6 Y+56)) \leqslant 31$ or $P(Y(Y+2)(3 Y-50)(3 Y-44)) \leqslant 31$. In particular $P(Y(Y+2)) \leqslant 31$. For $Y=N-2$ given by [Leh64, Table IIA] such that $P(Y(Y+2)) \leqslant 31$, we check that $P((3 Y+50)(3 Y+56))>31$ and $P((3 Y-50)(3 Y-44))>31$ except when $Y \in\{55,145,297,1573\}$. This gives $m=$ $X+6=3 Y-50$ and then we further check that $P(\Delta(m, 2, k))>116$. Hence we suppose $3 \nmid X(X+2)$. Then $3 \nmid(X+6) \cdots(X+6 r)(X+6(r+1)+2) \cdots(X+60+2)$. If a prime power p^{a} divides two terms of the product, then $p^{a}\left|(X+6 j), p^{a}\right|(X+6 i)$ or $p^{a}\left|(X+6 j+2), p^{a}\right|(X+6 i+2)$ or $p^{a}\left|(X+6 j), p^{a}\right|(X+6 i+2)$ for some i, j. Hence $p^{a} \mid 6(i-j)$ or $p^{a} \mid 6(i-j)+2$. Since $1 \leqslant j<i \leqslant 10$, we get $p^{a} \in\{5,7,11,13,19,25\}$. After deleting terms divisible by primes $5 \leqslant p \leqslant 31$ to their highest powers, we are left with two terms such that their product divides $25 \cdot 7 \cdot 11 \cdot 13 \cdot 19$ and hence $X+6 \leqslant \sqrt{25 \cdot 7 \cdot 11 \cdot 13 \cdot 19}$ or $X+6 \leqslant 689$. We check that $P((X+6)(X+12)(X+$ $56)(X+62))>31$ for $110 \leqslant X \leqslant 683$ except when $X \in\{113,379\}$. Further we check that $P(\Delta(m, 2, k))>116$ for $m=X+6$. Hence the result.

The remaining results in this section deal with the case $d=3$. The first one is a computational result.

Lemma 2.9. Let $l \in\{1,2\}$. If $p_{i, 3, l} \leqslant 6450$, then $\delta_{3}(i, l) \leqslant 60$.
As a consequence, we obtain
Corollary 2.10. Let $d=3$ and $3 k<m \leqslant 6450$ with $\operatorname{gcd}(m, 3)=1$. Then (1) holds unless $(m, k)=(125,2)$.

Proof. For $k \leqslant 20$, it follows by direct computation. For $k>20$, (1) follows as $3(k-1) \geqslant 60$ and, by Lemma 2.9, the set $\{m+3 i: 0 \leqslant i<k\}$ contains a prime.

We shall also need the following result of Nagell [Nag58](see [Cao99]) on diophantine equations.

Lemma 2.11. Let $a, b, c \in\{2,3,5\}$ and $a<b$. Then the solutions of

$$
a^{x}+b^{y}=c^{z} \quad \text { in integers } \quad x>0, y>0, z>0
$$

are given by

$$
\begin{aligned}
\left(a^{x}, b^{y}, c^{z}\right) \in\{ & (2,3,5),\left(2^{4}, 3^{2}, 5^{2}\right),\left(2,5^{2}, 3^{3}\right) \\
& \left.\left(2^{2}, 5,3^{2}\right),\left(3,5,2^{3}\right),\left(3^{3}, 5,2^{5}\right),\left(3,5^{3}, 2^{7}\right)\right\} .
\end{aligned}
$$

As a corollary, we have
Corollary 2.12. Let $X>80,3 \nmid X$ and $1 \leqslant i \leqslant 7$. Then the solutions of

$$
P(X(X+3 i))=5 \quad \text { and } \quad 2 \mid X(X+3 i)
$$

are given by

$$
(i, X) \in\{(1,125),(2,250),(4,500),(5,625)\}
$$

Proof. Let $1 \leqslant i \leqslant 7$. We observe that $2|X, 2|(X+3 i)$ only if X and i are both even and $5|X, 5|(X+3 i)$ only if $i=5$. Let the positive integers r, s and $\delta=\operatorname{ord}_{2}(i) \in\{0,1,2\}$ be given by

$$
\begin{equation*}
X=2^{r+\delta}, \quad X+3 i=2^{\delta} 5^{s} \quad \text { or } \quad X=2^{\delta} 5^{s}, \quad X+3 i=2^{r+\delta} \quad \text { if } i \neq 5 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
X=5^{s+1}, \quad X+3 i=5 \times 2^{r} \quad \text { or } \quad X=5 \times 2^{r}, \quad X+3 i=5^{s+1} \quad \text { if } i=5, \tag{9}
\end{equation*}
$$

where $r+2 \geqslant r+\delta \geqslant 7$ and $s \geqslant 2$ since $X>80$. Hence we have

$$
\begin{equation*}
2^{r}-5^{s}= \pm\left(\frac{X+3 i}{2^{\operatorname{ord}_{2}(i)} \cdot 5^{\operatorname{ord}_{5}(i)}}-\frac{X}{2^{\operatorname{ord}_{2}(i)} \cdot 5^{\operatorname{ord}_{5}(i)}}\right)= \pm 3 \times \frac{i}{2^{\operatorname{ord}_{5}(i)} \cdot 5^{\operatorname{ord}_{5}(i)}} . \tag{10}
\end{equation*}
$$

Let $i \in\{1,2,4,5\}$. Then $2^{r}-5^{s}= \pm 3$. By Lemma 2.11, we have $2^{r}=2^{7}$, $5^{s}=5^{3}$ and $2^{7}-5^{3}=3$ implying $X=2^{\operatorname{ord}_{2}(i)} \cdot 5^{3+\operatorname{ord}_{5}(i)}$ and $X+3 i=2^{7+\delta} \cdot 5^{\operatorname{ord}_{5}(i)}$. These give the solutions stated in the Corollary.

Let $i \in\{3,6\}$. Then $2^{r}-5^{s}= \pm 9= \pm 3^{2}$. Since $\min \left(2^{r}, 5^{s}\right)>16$, we observe from Lemma 2.11 that there is no solution.

Let $i=7$. Then $2^{r}-5^{s}= \pm 21$. Let s be even. Since $2^{r}>16$, taking modulo 8 , we find that $-1 \equiv \pm 21$ (modulo 8) which is not possible. Hence s is odd. Then $2^{r}-5^{s} \equiv 2^{r}+2^{s} \equiv 0$ modulo 7 . Since $2^{r}, 2^{s} \equiv 1,2,4$ modulo 7 , we get a contradiction.

3. Proof of Theorem 3

Let $D=4,3$ according as $d=2,3$, respectively. Let $v=\frac{m}{d k}$. Assume that

$$
\begin{equation*}
P(\Delta(m, d, k))=P(m(m+d) \cdots(m+(k-1) d)<D k \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\omega(\Delta(m, d, k)) \leqslant \pi(D k)-1 . \tag{12}
\end{equation*}
$$

For every prime $p \leqslant D k$ dividing Δ, we delete a term $m+i_{p} d$ such that $\operatorname{ord}_{p}(m+$ $\left.i_{p} d\right)$ is maximal. Note that $p \mid(m+i d)$ for at most one i if $p \geqslant k$. Then we are left with a set T with $1+t:=|T| \geqslant k-\pi(D k)+1:=1+t_{0}$. Let $t_{0} \geqslant 0$ which we assume in this section to ensure that T is non-empty. We arrange the elements of T as $m+i_{0}^{\prime} d<m+i_{1}^{\prime} d<\cdots<m+i_{t_{0}}^{\prime} d<. .<m+i_{t}^{\prime} d$. Let

$$
\begin{equation*}
\mathfrak{P}:=\prod_{\nu=0}^{t_{0}}\left(m+i_{\nu}^{\prime} d\right) \geqslant d^{k-\pi(D k)+1} \prod_{i=0}^{k-\pi(D k)}(v k+i) \tag{13}
\end{equation*}
$$

We now apply [LaSh04b, Lemma 2.1, (14)] to get

$$
\mathfrak{P} \leqslant(k-1)!d^{-\operatorname{ord}_{d}(k-1)!}
$$

Comparing the upper and lower bounds of \mathfrak{P}, we have

$$
d^{\pi(D k)} \geqslant \frac{d^{k+1} \prod_{i=0}^{k-\pi(D k)}(v k+i)}{(k-1)!d^{- \text {ord }_{d}(k-1)!}}
$$

which imply

$$
\begin{equation*}
d^{\pi(D k)} \geqslant \frac{d^{k+1} d^{\operatorname{ord}_{d}(k-1)!}(v k)^{k+1-\pi(D k)}}{(k-1)!} \tag{14}
\end{equation*}
$$

By using the estimates for $\operatorname{ord}_{d}((k-1)!)$ and $(k-1)$! given in Lemma 2.1, we obtain

$$
\begin{aligned}
(v d k)^{\pi(D k)} & >\frac{(v d k)^{k+1} d^{(k-d) /(d-1)}(k-1)^{-1}}{\sqrt{2(k-1) \pi}\left(\frac{k-1}{e}\right)^{k-1} \exp \left(\frac{1}{12(k-1)}\right)} \\
& =\left(e v d^{\frac{d}{d-1}} \frac{k}{k-1}\right)^{k} \frac{v \sqrt{k}}{e d^{1 /(d-1)} \sqrt{2 \pi}} \sqrt{\frac{k}{k-1}} \exp \left(-\frac{1}{12(k-1)}\right)
\end{aligned}
$$

implying

$$
\begin{equation*}
\pi(D k)>\frac{k \log \left(e v d^{\frac{d}{d-1}}\right)+\left(k+\frac{1}{2}\right) \log \left(\frac{k}{k-1}\right)-\frac{1}{12(k-1)}+\frac{1}{2} \log \frac{v^{2} k}{2 \pi e^{2} d^{2-1}}}{\log (v d k)} . \tag{15}
\end{equation*}
$$

Again by using the estimates for $\pi(\nu)$ given in Lemma 2.1 and $\frac{\log (v d k)}{\log (D k)}=1+\frac{\log \frac{v d}{D}}{\log (D k)}$, we derive

$$
\begin{align*}
0> & \frac{1}{2} \log \frac{v^{2} k}{2 \pi e^{2} d^{\frac{2}{d-1}}}-\frac{1}{12(k-1)} \\
& +k\left(\log \left(e v d^{\frac{d}{d-1}}\right)-D\left(1+\frac{\log \frac{v d}{D}}{\log (D k)}\right)\left(1+\frac{1.2762}{\log (D k)}\right)\right) . \tag{16}
\end{align*}
$$

Let v be fixed with $v d \geqslant D$. Then expression

$$
F(k, v):=\log \left(e v d^{\frac{d}{d-1}}\right)-D\left(1+\frac{\log \frac{v d}{D}}{\log (D k)}\right)\left(1+\frac{1.2762}{\log (D k)}\right)
$$

is an increasing function of k. Let $k_{1}:=k_{1}(v)$ be such that $F(k, v)>0$ for all $k \geqslant k_{1}$. Then we observe that the right hand side of (16) is an increasing function for $k \geqslant k_{1}$. Let $k_{0}:=k_{0}(v) \geqslant k_{1}$ be such that the right hand side of (16) is positive. Then (16) is not valid for all $k \geqslant k_{0}$ implying (15) and hence (14) are not valid for all $k \geqslant k_{0}$.

Also for a fixed k, if (16) is not valid at some $v=v_{0}$, then (14) is also not valid at $v=v_{0}$. Observe that for a fixed k, if (14) is not valid at some $v=v_{0}$, then (14) is also not valid when $v \geqslant v_{0}$.

Therefore for a given $v=v_{0}$ with $v_{0} d \geqslant D$, the inequality (14) is not valid for all $k \geqslant k_{0}\left(v_{0}\right)$ and $v \geqslant v_{0}$.

3(a). Proof of Theorem 3 for the case $d=3$

Let $d=3$ and let the assumptions of Theorem 3 be satisfied. Let $2 \leqslant k \leqslant 11$ and $m>3 k$. Observe that $k-\pi(3 k)+1=0$ for $k \leqslant 8$ and $k-\pi(3 k)+1=1$ for $9 \leqslant k \leqslant 11$. If $T \neq \phi$, then $m \leqslant 2^{3} \times 5 \times 7=280$.

By Corollary 2.10, we may assume that $2 \leqslant k \leqslant 8, m \geqslant 6450$ and $T=\phi$. Further i_{p} exists for each prime $p \leqslant 3 k, p \neq 3$ and $i_{p} \neq i_{q}$ for $p \neq q$ otherwise $|T| \geqslant k-\pi(3 k)+1+1>0$. Also $p q \nmid(m+i d)$ for any i whenever $p, q \geqslant k$ otherwise $T \neq \phi$. Thus $P\left(\left(m+3 i_{2}\right)\left(m+3 i_{5}\right)\right)=5$ if $k<8$. For $k=8$, we get $P\left(\left(m+3 i_{2}\right)\left(m+3 i_{5}\right)\right) \leqslant 7$ with $P\left(\left(m+3 i_{2}\right)\left(m+3 i_{5}\right)\right)=7$ only if $7 \mid m$ and $\left\{i_{2}, i_{5}\right\} \cap\{0,7\} \neq \phi$.

Let $k \leqslant 7$ or $k=8$ with $P\left(\left(m+3 i_{2}\right)\left(m+3 i_{5}\right)\right)=5$. Let $j_{0}=\min \left(i_{2}, i_{5}\right), X=$ $m+3 j_{0}$ and $i=\left|i_{2}-i_{5}\right|$. Then $X \geqslant 6450$ and this is excluded by Corollary 2.12 .

Let $k=8$ and $P\left(\left(m+3 i_{2}\right)\left(m+3 i_{5}\right)\right)=7$. Then $7 \mid m$ and $\left\{i_{2}, i_{5}\right\} \cap\{0,7\} \neq$ ϕ. Hence $i_{7}=0$ or 7 and $7 \in\left\{i_{2}, i_{5}\right\}$ if $i_{7}=0$ and $0 \in\left\{i_{2}, i_{5}\right\}$ if $i_{7}=7$. If $5 \nmid m(m+21)$, then $\left\{i_{2}, i_{7}\right\}=\{0,7\}$ and either

$$
m=7 \times 2^{r}, \quad m+21=7^{1+s} \quad \text { or } \quad m=7^{1+s}, \quad m+21=7 \times 2^{r}
$$

implying $2^{r}-7^{s}= \pm 3$. Since $2^{r} \geqslant \frac{m}{7}>40$, we get by taking modulo 8 that $(-1)^{s+1} \equiv \pm 3$ which is a contradiction. Thus $5 \mid m(m+21)$ implying $2 \times 5 \times$
$7 \mid m(m+21)$. By taking the prime factorization, we obtain

$$
m=2^{a_{0}} 5^{b_{0}} 7^{c_{0}}, \quad m+21=2^{a_{1}} 5^{b_{1}} 7^{c_{1}}
$$

with $\min \left(a_{0}, a_{1}\right)=\min \left(b_{0}, b_{1}\right)=0, \min \left(c_{0}, c_{1}\right)=1$ and further $b_{0}+b_{1}=1$ if $i_{2} \in\{0,7\}$ and $a_{0}+a_{1} \leqslant 2$ if $i_{5} \in\{0,7\}$. From the identity $\frac{m+21}{7}-\frac{m}{7}=3$, we obtain one of
(i) $2^{a}-5 \cdot 7^{c}= \pm 3$ or
(ii) $5 \cdot 2^{a}-7^{c}= \pm 3$ or
(iii) $5^{b}-2^{\delta} \cdot 7^{c}= \pm 3$ or
(iv) $2^{\delta} \cdot 5^{b}-7^{c}= \pm 3$
with $\delta \in\{1,2\}$. Further from $m \geqslant 6450$, we obtain $c \geqslant 3$ and

$$
\begin{equation*}
a \geqslant 9, \quad a \geqslant 7, \quad b \geqslant 4, \quad b \geqslant 3 \tag{17}
\end{equation*}
$$

according as (i), (ii), (iii), (iv) hold, respectively. These equations give rise to a Thue equation

$$
\begin{equation*}
X^{3}+A Y^{3}=B \tag{18}
\end{equation*}
$$

with integers $X, Y, A>0, B>0$ given by

	c $(\bmod 3)$	Equation	A	B	X	Y
(i)	0,1	$2^{a}-5 \cdot 7^{c}= \pm 3$	$5 \cdot 2^{a^{\prime}} \cdot 7^{c^{\prime}}$	$3 \cdot 2^{a^{\prime}}$	$\pm 2^{\frac{a+a^{\prime}}{3}}$	$\pm 7^{\frac{c-c^{\prime}}{3}}$
(ii)	0,1	$5 \cdot 2^{a}-7^{c}= \pm 3$	$25 \cdot 2^{a^{\prime}} \cdot 7^{c^{\prime}}$	$75 \cdot 2^{a^{\prime}}$	$\pm 5 \cdot 2^{\frac{a+a^{\prime}}{3}}$	$\pm 7^{\frac{c-c^{\prime}}{3}}$
(iii)	0,1	$5^{b}-2^{\delta} \cdot 7^{c}= \pm 3$	$2^{\delta} \cdot 5^{b^{\prime}} \cdot 7^{c^{\prime}}$	$3 \cdot 5^{b^{\prime}}$	$\pm 5^{\frac{b+b^{\prime}}{3}}$	$\pm 7^{\frac{c-c^{\prime}}{3}}$
(iv)	0,1	$2^{\delta} \cdot 5^{b}-7^{c}= \pm 3$	$2^{3-\delta} \cdot 5^{b^{\prime}} \cdot 7^{c^{\prime}}$	$2^{3-\delta} \cdot 5^{b^{\prime}} \cdot 3$	$\pm 2 \cdot 5^{\frac{b+b^{\prime}}{3}}$	$\pm 7^{\frac{c-c^{\prime}}{3}}$
(v)	2	$2^{a}-5 \cdot 7^{c}= \pm 3$	$175 \cdot 2^{a^{\prime}}$	525	$\pm 5 \cdot 7^{\frac{c+1}{3}}$	$\pm 2^{\frac{a-a^{\prime}}{3}}$
$($ vi)	2	$5 \cdot 2^{a}-7^{c}= \pm 3$	$35 \cdot 2^{a^{\prime}}$	21	$\pm 7^{\frac{c+1}{3}}$	$\pm 2^{\frac{a-a^{\prime}}{3}}$
(vii)	2	$5^{b}-2^{\delta} \cdot 7^{c}= \pm 3$	$2^{3-\delta} \cdot 5^{b^{\prime}} \cdot 7$	$21 \cdot 2^{3-\delta}$	$\pm 2^{\frac{c+1}{3}}$	$\pm 5^{\frac{b-b^{\prime}}{3}}$
$($ viii)	2	$2^{\delta} \cdot 5^{b}-7^{c}= \pm 3$	$2^{\delta} \cdot 5^{b^{\prime}} \cdot 7$	21	$\pm 7^{\frac{c+1}{3}}$	$\pm 5^{\frac{b-b^{\prime}}{3}}$

where $0 \leqslant a^{\prime}, b^{\prime}<3$ are such that X, Y are integers and $c^{\prime}=0,1$ according as $c(\bmod 3)=0,1$, respectively. For example, $2^{a}-5 \cdot 7^{c}= \pm 3$ with $c \equiv 0,1(\bmod 3)$ implies $\left(\pm 2^{\frac{a+a^{\prime}}{3}}\right)^{3}+5 \cdot 2^{a^{\prime}} 7^{c^{\prime}}\left(\pm 7^{\frac{c-c^{\prime}}{3}}\right)^{3}=3 \cdot 2^{a^{\prime}}$ where a^{\prime} is such that $3 \mid\left(a+a^{\prime}\right)$. This give a Thue equation (18) with $A=5 \cdot 2^{a^{\prime}} 7^{c^{\prime}}$ and $B=3 \cdot 2^{a^{\prime}}$.

By using (17), we see that at least two of

$$
\begin{equation*}
\operatorname{ord}_{2}(X Y) \geqslant 2 \quad \text { or } \quad \operatorname{ord}_{5}(X Y) \geqslant 1 \quad \text { or } \quad \operatorname{ord}_{7}(X Y) \geqslant 1 \tag{19}
\end{equation*}
$$

hold except for $(v i)$ and $(v i i i)$ where $\operatorname{ord}_{2}(X Y) \geqslant 1, \operatorname{ord}_{7}(X Y) \geqslant 1$ in case of $(v i)$ and $\operatorname{ord}_{2}(X Y)=0, \operatorname{ord}_{7}(X Y) \geqslant 1$ in case of (viii). Using the command

$$
\mathrm{T}:=\operatorname{Thue}\left(X^{3}+A\right) ; \text { Solutions }(T, B) ;
$$

in Kash, we compute all the solutions in integers X, Y of the above Thue equations. We find that none of solutions of Thue equations satisfy (19).

Hence we have $k \geqslant 12$. For the proof of Theorem 3, we may suppose from Corollaries 2.10 and 2.3 that

$$
\begin{equation*}
m \geqslant \max (6450,10.6 \times 3 k) . \tag{20}
\end{equation*}
$$

Let $12 \leqslant k \leqslant 19$. Since $t_{0} \geqslant 1,2$ for $12 \leqslant k \leqslant 16$ and $17 \leqslant k \leqslant 19$, respectively, we have

$$
\begin{array}{ll}
m \leqslant \sqrt{\mathfrak{P}} \leqslant \sqrt{4 \times 8 \times 5^{2} \times 7^{2} \times 11 \times 13}<6450 & \text { if } 12 \leqslant k \leqslant 16 \\
m \leqslant \sqrt[3]{\mathfrak{P}} \leqslant \sqrt[3]{4 \times 8 \times 16 \times 5^{3} \times 7^{2} \times 11 \times 13 \times 17}<6450 & \text { if } 17 \leqslant k \leqslant 19
\end{array}
$$

This is not possible by (20).
Thus $k \geqslant 20$. Then $m \geqslant 6450$ and $v \geqslant 10.6$ by (20) satisfying $v_{0} d \geqslant D=d=3$. Now we check that $k_{0} \leqslant 180$ for $v=10.6$. Therefore (14) is not valid for $k \geqslant 180$ and $v \geqslant 10.6$. Thus $k<180$. Further we check that (15) is not valid for $20 \leqslant k<$ 180 at $v=\frac{6450}{3 k}$ except when $k \in\{21,25,28,37,38\}$. Hence (14) is not valid for $20 \leqslant k<180$ when $v \geqslant \frac{6450}{3 k}$ except when $k \in\{21,25,28,37,38\}$. Thus it suffices to consider $k \in\{21,25,28,37\}$ where we check that (14) is not valid at $v=\frac{6450}{3 k}$ and hence it is not valid for all $v \geqslant \frac{6450}{3 k}$. Finally we consider $k=38$ where we find that (14) is not valid at $v=\frac{8000}{3 k}$. Thus $m<8000$. For $l \in\{1,2\}$ and $p_{i, 3, l} \leqslant 8000$, we find that $\delta_{3}(i, 3, l)<90$ implying the set $\{m, m+3, \ldots, m+3(38-1)\}$ contains a prime. Hence the assertion follows since $m>3 k$.

3(b). Proof of Theorem 3 for $d=2$

Let $d=2$ and let the assumptions of Theorem 3 be satisfied. The assertion for Theorem 3 with $k \geqslant 2$ and $m \leqslant 4 k$ follows from Corollary 2.4. Thus $m>4 k$. For $2 \leqslant k \leqslant 37, k \neq 35$, Lemma 2.8 gives the result. Hence for the proof of Theorem 3 , we may suppose that $k=35$ or $k \geqslant 38$. Further from Corollaries 2.3 and 2.7, we may assume that

$$
\begin{equation*}
m \geqslant \max \left(M_{0}, 131 \times 2 k\right) . \tag{21}
\end{equation*}
$$

Let $k=35,38$. Then $t_{0}=1,2$ for $k=35,38$, respectively and we have

$$
\begin{aligned}
m \leqslant \sqrt{\mathfrak{P}} & \leqslant \sqrt{27 \cdot 9 \cdot 25 \cdot 5 \cdot 7^{2} \cdot 11^{2} \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31} \\
& <10^{10} \quad \text { if } k=35 \\
m \leqslant \sqrt[3]{\mathfrak{P}} & \leqslant \sqrt[3]{27 \cdot 9^{2} \cdot 25 \cdot 5^{2} \cdot 7^{3} \cdot 11^{3} \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37} \\
& <10^{10} \quad \text { if } k=38 .
\end{aligned}
$$

This is not possible by (21).
Thus we assume that $k \geqslant 39$. Let $v \geqslant 131$ and we check that $k_{0} \leqslant 500$ for $v=131$. Therefore (14) is not valid for $k \geqslant 500$ and $v \geqslant 131$. Hence from (21),
we get $k<500$. Further $v \geqslant \frac{M_{0}}{2 \times 500} \geqslant 10^{7}$. We check that $k_{0} \leqslant 70$ at $v=10^{7}$ implying (14) is not valid for $k \geqslant 70$ and $v \geqslant 10^{7}$. Thus $k<70$. For each $39 \leqslant k<70$, we find that (14) is not valid at $v=\frac{M_{0}}{2 k}$ and hence for all $v \geqslant \frac{M_{0}}{2 k}$. This is a contradiction.

4. Proof of Theorems 1 and 2

Recall that $q=u+\frac{\alpha}{d}$ with $1 \leqslant \alpha<d$. We observe that if $G(x)$ has a factor of degree k, then it has a cofactor of degree $n-k$. Hence we may assume from now on that if $G(x)$ has a factor of degree k, then $k \leqslant \frac{n}{2}$. The following result is [ShTi10, Lemma 10.1].
Lemma 4.1. Let $1 \leqslant k \leqslant \frac{n}{2}$ and

$$
d \leqslant 2 \alpha+2 \quad \text { if } \quad(k, u)=(1,0) .
$$

If there is a prime p with

$$
p \mid(\alpha+(n+u-k) d) \cdots(\alpha+(n+u-1) d), \quad p \nmid a_{0} a_{n} .
$$

such that

$$
p \geqslant \begin{cases}(k+u-1) d+\alpha+1 & \text { if } u>0 \\ (k+u-1) d+\alpha+2 & \text { if } u=0\end{cases}
$$

Then $G(x)$ has no factor of degree k.
Let $d=3$. By putting $m=\alpha+3(n-k)$ and taking $p=P(\Delta(m, 3, k))$, we find from Lemma 4.1 and Theorem 3 that $G_{\frac{1}{3}}$ and $G_{\frac{2}{3}}$ does not have a factor of degree $k \geqslant 2$ except possibly when $k=2, \alpha=2, m=2+3(n-2)=125$. This gives $n=43$ and we use [ShTi10, Lemma 2.13] with $p=2, r=2$ to show that $G_{\frac{2}{3}}$ do not have a factor of degree 2. Further except possibly when $m=\alpha+3(n-1)=2^{l}$ for positive integers $l, G_{\frac{1}{3}}$ and $G_{\frac{2}{3}}$ do not have a linear factor. This proves Theorem 1.

Let $d=2$. Let $k=1, u=0$. We have $P(1+2(n-1)) \geqslant 3$ and hence taking $p=P(1+2(n-1))$ in Lemma 4.1, we find that $G_{\frac{1}{2}}$ does not have a factor of degree 1. Hence from now on, we may suppose that $k \geqslant 2$ and $0 \leqslant u \leqslant k$. For $(m, k) \in\{((5,2),(7,2),(9,4),(13,5),(17,6),(15,7),(21,8),(19,9)\}$, we check that $P(\Delta(m, 2, k)) \geqslant m$. For $0 \leqslant u \leqslant k$, by putting $m=1+2(n+u-k)$, we find from $n \geqslant 2 k$ and Theorem 3 that

$$
P(\Delta(m, 2, k))>2(k+u)= \begin{cases}\min (2(k+u), 3.5 k) & \text { if } u \leqslant 0.5 k \\ \min (2(k+u), 4 k) & \text { if } 0.5 k<u \leqslant k\end{cases}
$$

except when $k=2,(u, m) \in\{(1,25),(2,25),(2,243)\}$. Observe that if $p>2(k+u)$, then $p \geqslant 2(k+u)+1$. Now we take $p=P(\Delta(m, 2, k))$ in Lemma 4.1 to obtain that $G_{u+\frac{1}{2}}$ do not have a factor of degree k with $k \geqslant 2$ except possibly when $k=2, u=1, n=13$ or $k=2, u=2, n \in\{12,121\}$. We use [ShTi10, Lemma 2.13] with $(p, r)=(3,1),(7,1)$ to show that $G_{u+\frac{1}{2}}$ do not have a factor of degree 2 when $(u, n)=(1,13),(2,12)$ and $(u, n)=(2,121)$, respectively.

References

[AlFi04] M. Allen and M. Filaseta, A generalization of a third irreducibility theorem of I. Schur, Acta Arith. 114 (2004), 183-197.
[Cao99] Z. Cao, A note on the Diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arith. 91 (1999), 85-93.
[Dus98] Pierre Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D thesis, Université de Limoges, 1998.
[Dus99] P. Dusart, Inégalitiés explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Rep. Acad. Sci. Canada 21(1)(1999), 53-59, 55.
[FiSa10] C. Finch and N. Saradha, On the irreducibility of a certain polynomials with coefficients that are products of terms in an arithmetic progression, Acta Arith. 143 (2010), 211-226.
[LaSh04b] S. Laishram and T.N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression, Indag. Math. 15(4) (2004), 505521.
[LaSh06a] S. Laishram and T.N. Shorey, The greatest prime divisor of a product of terms in an arithmetic progression, Indag. Math. 17(3) (2006), 425436.
[LaSh06b] S. Laishram and T.N. Shorey, Grimm's Conjecture on consecutive integers, Int. Jour. Number Theory 2 (2006), 207-211.
[Leh64] D.H. Lehmer, On a problem of Störmer, Illinois J. of Math. 8 (1964), 57-79.
[Nag58] T. Nagell, Sur une classe d'équations exponentielles, Ark. Mat. 3 (1958), 569-582.
[RaRu96] O. Ramaré and R. Rumely, Primes in Arithmetic Progression, Math. Comp. 65 (1996), 397-425.
[Rob55] H. Robbins, A remark on stirling's formula, Amer. Math. Monthly 62 (1955). 26-29.
[ShTi10] T.N. Shorey and R. Tijdeman, Generalizations of some irreducibility results by Schur, Acta Arith. 145 (2010), 341-371.
[Sch29] I. Shur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, II, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl. 14 (1929), 370-391.
[Sch73] I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermitschen Polynome, J. Reine Angew. Math. 165 (1931), 52-58.

Addresses: Shanta Laishram: Stat-Math Unit, Indian Statistical Institute, 7 S.J.S. Sansanwal Marg, New Delhi, 110016, India;
Tarlok N. Shorey: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
E-mail: shanta@isid.ac.in, shorey@math.iitb.ac.in
Received: 1 May 2011; revised: 26 May 2011

[^0]: 2010 Mathematics Subject Classification: primary: 11A41, 11B25, 11N05, 11N13, 11C08, 11Z05

