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DIVISOR FUNCTIONS OVER QUATERNION ALGEBRAS
AND A TYPE OF IDENTITIES

Yichao Zhang

Abstract: In order to prove a result on fourth moments of modular L-functions, Duke derived
an identity of the divisor function over the rational Hamiltonian quaternion algebra. Recently
Kim and the author generalized Duke’s divisor function, the identity and other related results
from level two to general prime level. In this note, we consider such identities in general.
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1. Introduction

In 1988, Duke [1] gave a sharp bound on average for the fourth moments of
L-functions attached to newforms of level 2 by extending Sarnak’s method [11]
on fourth moments of Grössencharakeren zeta functions. In 2009, Kim and the
author [4] were able to generalize Duke’s result to general prime level. In both of
their works, an identity involving zeta functions and divisor functions over some
maximal order of a quaternion algebra plays an important role, namely

∑
a

′
(d(a))2N(a)−s =

ζ4O(s)

ζO(2s)
.

This is analogous to the well-known identity for rational numbers

∞∑
n=1

(d(n))2n−s =
ζ4(s)

ζ(2s)
.

In this note, we will explore more on this type of identities for orders not
necessarily maximal in a rational quaternion algebra. In Section 2, we fix a definite
rational quaternion algebra which ramifies precisely at p and∞ and an order of any
fixed level; we calculate then the number of ideals with fixed norm. In Section 3,
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we further assume that the level of our order is square-free and explore the divisor
function for it. As a corollary, we may generalize our result in [4] to square-free
level. Our main theorem is

Theorem 1. Let A be the rational quaternion algebra which ramifies precisely at
p and ∞, O be any fixed order of level N = pM with N being square-free. Then∑

a

(d(a))2N(a)−s =
ζ4O(s)

ζO(2s)

∏
q|M

P (q, s),

where

P (q, s) =
(1 + q1−2s)

(1 + q−s)(1 + q1−s)4(1− q1−2s)
×

(1+q−s+4q1−s−2q1−2s+8q2−2s−2q1−3s−8q2−3s−2q3−3s−4q3−4s−q3−4s−q4−5s).

In the last section, we consider the identity above for the maximal orders O of
a quaternion algebra over any algebraic number field F and we get

Theorem 2. ∑
a

′
(d(a))2NF/Q(N(a))−s =

ζO(s)
4

ζO(2s)
,

where the sum is over all nonzero integral left O-ideals.

Please see the notations in corresponding sections.

Acknowledgements. We would like to thank my supervisor Kim for all the
support during the work of this note. We also thank the referee for carefully
reading this note and providing a few comments.

2. Number of integral ideals with fixed norm

Let N be any non-square positive integer and assume N = p2r+1M with p a prime,
(p,M) = 1 and r a non-negative integer. Note that any non-square positive integer
N has such a decomposition(not unique in general).

Let A = A(p) be the quaternion algebra over Q which ramifies precisely at p
and ∞. Recall that Ap = A⊗Q Qp and for a lattice L in A, Lp = L⊗Z Zp.

Let L/Qp be the unique unramified quadratic extension with R the ring of
integers. Denote by σ the generator of Gal(L/Qp) and denote by O(p)

2r+1 the order
in the algebra Ap given by{(

α prβ
pr+1βσ ασ

)
: α, β ∈ R

}
Recall that {all ideals with left order of level N}+{all orders of level N} form

a groupoid, with the latter set the set of identities. For definitions of orders, levels,
ideals and other concepts we might encounter later, see [2],[6] and [10].
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Throughout this section and the next, we fix p, N and A as above and we also
fix any order O of level N . Moreover, all ideals are assumed to be integral, unless
otherwise specified.

Now we may begin the calculation of the number of integral ideals with fixed
norm. Since the number of integral ideals with fixed norm, if considered as a func-
tion over positive integers, is multiplicative, it is enough to do the local case. For
a prime q, let us denote the number of integral ideals with norm qn by a(q, n).

First comes the case q = p, where we have

Ap ∼=
{(

α β
pβσ ασ

)
: α, β ∈ L

}
and Op ∼=

{(
α prβ

pr+1βσ ασ

)
: α, β ∈ R

}
Proposition 3.

a(p, n) =


1 if n = 2m and m > r

pn if n = 2m and 0 6 m < r

p2r if n = 2m+ 1 and m > r

0 if n = 2m+ 1 and 0 6 m < r.

Proof. We know that there exists a unique maximal order in Ap, namely,
Mp = O(p)

1 . We may assume Op = O(p)
2r+1, since a(p, n) is invariant under isomor-

phism. Then it is obvious that

M×
p =

{(
α β
pβσ ασ

)
: α ∈ R×, β ∈ R

}
and

O×
p
∼=
{(

α prβ
pr+1βσ ασ

)
: α ∈ R×, β ∈ R

}
.

We know that there exists a unique ideal in Mp for any fixed norm pn, namely,
the one generated by (α0)

n, where

α0 =

(
0 1
p 0

)
.

Hence the set of elements in Mp with norm pn is M×
p (α0)

n. Now it is obvious
that

a(p, n) = #((M×
p (α0)

n ∩ Op)/ ∼),

where α ∼ β if there exists γ ∈ O×
p such that α = γβ.

If n = 2m and m > r, then M×
p (α0)

n = pmM×
p ⊂ Op and (pmM×

p / ∼) =
{pm}, so a(p, n) = 1.

If n = 2m but 0 6 m < r, then

M×
p (α0)

n ∩ Op = pmM×
p ∩ Op =

{
pm
(

α β
pβσ ασ

)
: α ∈ R×, β ∈ pr−mR

}
,
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and

((M×
p (α0)

n ∩ Op)/ ∼) =
{
pm
(

1 pr−mβ
pr−m+1βσ 1

)
: β mod (pm)

}
,

where β mod (pm) means that β runs through a complete set of residue classes for
R/(pmR); hence a(p, n) = p2m = pn.

If n = 2m+ 1 and m > r, then (α0)
2m+1 = pα0 and

M×
p (α0)

2m+1 ∩ Op = pmM×
p α0 =

{
pm
(

pβ α
pασ pβσ

)
: α ∈ R×, β ∈ R

}
.

Hence

((M×
p (α0)

2m+1 ∩ Op)/ ∼) =
{
pm
(
pβ 1
p pβσ

)
: β mod (pr)

}
,

so a(p, n) = p2r.
If, finally, n = 2m + 1 and 0 6 m < r, then M×

p (α0)
2m+1 ∩ Op = ∅ and

a(p, n) = 0. Done. �

Corollary 4.

ζO,p =
1− p2r(1−s)

1− p2(1−s)
+
p−2rs(1 + p2r−s)

1− p−2s
.

Proof. By above result, this is trivial. �

Now assume q|M with vq(M) = f . We know that Aq =M(2,Qq) and we may
assume

Oq =
(

Zq Zq
qfZq Zq

)
.

Define

A =

{(
ql b
qfc qn−l

)
: b mod qn−l, c mod ql, 0 6 l 6 n

}
,

where b mod m denotes the set {0, 1, · · · ,m− 1}.

Proposition 5. If n < f , elements of A generate distinct integral ideals of norm
qn and they generate all of them, so a(q, n) = (n+ 1)qn.

Proof. It is trivial that all elements in A are of norm qn. Suppose

α1 =

(
ql1 b1
qfc1 qn−l1

)
and α2 =

(
ql2 b2
qfc2 qn−l2

)
∈ A

generate the same ideal, so there exists α ∈ O×
q such that αα1 = α2. It is obvious

that α is of the form (
a′ b′

qfc′ d′

)
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where a′, d′ ∈ Z×
q and b′, c′ ∈ Zq. Now we have

ql1a′ + qf b′c1 = ql2 (1)

a′b1 + qn−l1b′ = b2 (2)

qf+l1c′ + qfd′c1 = qfc2 (3)

qfc′b1 + qn−l1d′ = qn−l2 . (4)

From (1), by comparing the valuations, we have l1 = l2, since f > n > max{l1, l2},
so a′ = 1− qf−l1b′c1. Plugging this expression for a′ in (2), we get

b1 − b1qf−l1b′c1 + qn−l1b′ = b2,

which gives b1 ≡ b2 mod qn−l1 , hence b1 = b2. Similarly, from (3) we have
d′ = 1− qf+l1−nc′b1; plugging this into (4), we get

ql1c′ + c1 − c1qf+l1−nb1c′ = c2,

so c1 ≡ c2 mod ql1 , hence c1 = c2.
Now we are left to show that any integral ideal a of norm qn is one of those

generated by elements of A. Assume

a = Oqα = Oq
(

a b
qf d

)
,

where N(α) = qn. Since f > n, this implies vq(ad) = n. Denote l = vq(a), hence
vq(d) = n− l and assume a = qlϵ1, d = qn−lϵ2 with ϵ1,2 ∈ Z×

q . Let γ ∈ O×
q be of

the form (
a′ b′

qfc′ d′

)
, where a′, d′ ∈ Z×

q , b
′, c′ ∈ Zq.

Then

γα =

(
qlϵ1a

′ + qf b′ a′b+ qn−lϵ2b
′

qf+lϵ1c
′ + qfd′ qf bc′ + qn−lϵ2d

′

)
:=

(
a1 b1
qfc1 d1

)
.

Since f > n > l, vq(a1) = l and if we let a′ = ϵ−1
1 (1 − qf−lb′)(with b′ ∈ Zq to be

determined latter), then a′ ∈ Zq and a1 = ql. We have

b1 = ϵ−1
1 b+ qn−l(ϵ2 − qf−nϵ1b)b′.

Since f > n, the coefficient of b′ has valuation n− l, we can choose b′ to make b1
and integer between 0 and qn−l−1; indeed, we may consider the q-adic expression
of ϵ−1

1 b and choose b′ to get rid of the tail series starting from the power qn−l.
Similarly, we may first choose d′ to make d1 = qn−l and then choose c′ to make

c1 an integer between 0 and ql − 1. So γα ∈ A and we are done. �
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Now let us assume f 6 n. Denote

B1 =

{(
0 qn−f−t

qf+t d

)
: d mod qn−t, 0 6 t 6 n− f

}
,

B2 =

{(
ql b
0 qn−l

)
: b mod qn−l, 0 6 l 6 n

}
,

B3 =

{(
ql b
qf+t qn−ld

)
: b mod qn−l, d mod ql−t, q - d, 0 6 t < l 6 n < f + t

}
and

B4 =

{(
ql e+ qn−f−tb
qf+t qf+t−l(e+ qn−f−td)

)
: e mod qn−f−t,

b mod qf+t−l, d mod ql−t, q - (b, d), 0 6 t < l < f + t 6 n
}
,

Let B = ∪4i=1Bi.

Lemma 6. Elements of B generates distinct integral ideals of norm qn.

Proof. Let α ∈ O×
q and β, γ ∈ B. It is obvious that all elements in B have norm

qn, so it suffices to show that if αβ = γ for some α, then β = γ. Let α be the
following matrix (

a′ b′

qfc′ d′

)
with a′, d′ ∈ Z×

q , b
′, c′ ∈ Zq.

We will prove the cases that β, γ ∈ B3 or β, γ ∈ B4. All the other cases are similar
but easier.

Assume β, γ ∈ B3 and they have the forms

β =

(
ql1 b1
qf+t1 qn−l1d1

)
and γ =

(
ql2 b2
qf+t2 qn−l2d2

)
,

so αβ = γ implies

ql1a′ + qf+t1b′ = ql2 (5)

a′b1 + qn−l1b′d1 = b2 (6)

qf+l1c′ + qf+t1d′ = qf+t2 (7)

qfc′b1 + qn−l1d′d1 = qn−l2d2. (8)

Since l1 < f + t1 and a′ ∈ Z×
q , by comparing valuations in (5), we get l1 = l2

and a′ = 1 − b′qf+t1−l1 . Similarly, since l1 > t1, from (7), we know t1 = t2 and
d′ = 1− ql1−t1c′. Plug the expression of a′ into (6) and we get

b1 − qn−l1b′(qf+t1−nb1 − d1) = b2,

so b1 ≡ b2 mod qn−l1 , hence b1 = b2. Similarly d1 = d2.
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Assume β, γ ∈ B4 and they have the forms

β =

(
ql1 e1 + qn−f−t1b1
qf+t1 qf+t1−l1(e1 + qn−f−t1d1)

)
and

γ =

(
ql2 e2 + qn−f−t2b2
qf+t2 qf+t2−l2(e2 + qn−f−t2d2)

)
so αβ = γ implies

ql1a′ + qf+t1b′ = ql2 (9)

a′e1 + qn−f−t1a′b1 + qf+t1−l1e1b
′ + qn−l1b′d1 = e2 + qn−f−t2b2 (10)

qf+l1c′ + qf+t1d′ = qf+t2 (11)

qfe1c
′ + qn−t1c′b1 + e1q

f+t1−l1d′ + qn−l1d′d1 = qf+t2−l2e2 + qn−l2d2. (12)

Since l1 < f + t1 and a′ ∈ Z×
q , by comparing valuations in (9), we get l1 = l2

and a′ = 1 − b′qf+t1−l1 . Similarly, since l1 > t1, from (11), we know t1 = t2 and
d′ = 1− ql1−t1c′. Plug the expression of a′ into (10) and we get

e1 − qn−l1(b1 − d1)b′ + qn−f−t1b1 = e2 + qn−f−t1b2,

so e1 ≡ e2 mod qn−f−t1 and e1 = e2. Get rid of e1, e2, and we see that b1 ≡
b2 mod qf+t1−l1 , hence b1 = b2. Similarly d1 = d2. Done. �

Lemma 7. The ideals generated by elements of B give us all the integral ideals of
norm qn, where n > f .

Proof. For any β ∈ Oq with norm qn, we need to show that there exists α ∈ O×
q

such that αβ ∈ B.
Assume

β =

(
a b
qfc d

)
=

(
qlϵ1 b
qf+tϵ2 d

)
and α =

(
a′ b′

qfc′ d′

)
,

where vq(ad− qfbc) = n, vq(a) = l, vq(c) = t and a′, d′ ∈ Z×
q . Then

αβ =

(
qlϵ1a

′ + qf+tϵ2b
′ a′b+ b′d

qf+lϵ1c
′ + qf+tϵ2d

′ qfbc′ + dd′

)
:=

(
a1 b1
qfc1 d1

)
.

Let us consider several cases.
Case 1: l 6 t. It is easy to see that vq(a1) = l; choose a′ = ϵ−1

1 (1− qf+t−lϵ2b′)
to make a1 = ql. Substitute this expression of a′ to that of b1, and we have

b1 = ϵ−1
1 b− q−lϵ−1

1 (qf bc− ad)b′,

so the coefficient of b′ has valuation n− l. Hence we can choose b′ to make b1 an
integer between 0 and qn−l− 1. Since l 6 t, we may fix c′ = −ϵ−1

1 ϵ2q
l−td′ to make

c1 = 0; plugging this expression of c′ into d1, we have

d1 = ϵ−1
1 q−l(ad− qfbc)d′,

so we may choose d′ to make d1 = qn−l. With this choice of α, αβ ∈ B2.
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Case 2: l > f + t. First choose b′ = −ϵ−1
2 ϵ1q

l−f−ta′ to make a1 = 0. Then

b1 = q−(f+t)ϵ−1
2 (qf bc− ad)a′,

and we can fix a′ to make b1 = qn−f−t. Next choose d′ = ϵ−1
2 (1 − ql−tϵ1c′) to

make c1 = qf+t; then

d1 = ϵ−1
2 d+ ϵ−1

2 q−t(qf bc− ad)c′,

so we may choose c′ to make d1 an integer between 0 and qn−t−1. Hence αβ ∈ B1.
Case 3: t < l < f + t. Fix a′ = ϵ−1

1 (1− qf+t−lϵ1b′) to make a1 = ql; then

b1 = ϵ−1
1 b+ ϵ−1

1 q−l(ad− qf bc)b′,

so we may choose b′ to make b1 an integer between 0 and qn−l − 1. Let d′ =
ϵ−1
2 (1− ql−tϵ1c′) and then c1 = qf+t; so

d1 = dϵ−1
2 + ϵ−1

2 q−t(qf bc− ad)c′,

hence we may choose c′ to make d1 an integer between 0 and qn−t − 1.
Subcase 3.1: f + t > n. Since vq(a1d1− qfb1c1) = n, this implies vq(a1d1) = n,

hence vq(d1) = n − l. So d1 = qn−ld′1 where (q, d′1) = 1 and d′1 is an integer
between 0 and ql−t − 1. So αβ ∈ B4.

Subcase 3.2: f+t 6 n. Since vq(a1d1−qf b1c1) = n, we have vq(b1qf+t−l−d1) =
n − l, so d1 = qf+t−ld2 and d2 is an integer between 0 and qn+l−f−2t − 1. We
have vq(b1 − d2) = n − f − t. Let b1 = b′1 + qn−f−tb′′1 be any integer mod qn−l,
with b′1 mod qn−f−t and b′′1 mod f+t−l and d2 = d′2 + qn−f−td′′2 be any integer
mod qn−t with d′2 mod qn−f−t and d′′2 mod qf . Then we must have b′1 = d′2 and
q - (b′′1 , d′′2); hence αβ ∈ B3.

So we are done. �

Proposition 8. If n > f ,

a(q, n) =
(f + 1)qn+1 − (f − 1)qn−1

q − 1
+

(f − 1)qf−2 + f

q − 1
− qf (q + 1)− 2

(q − 1)2
.

The local factor of our zeta function is

ζO,q(s) =
1− 2q1−s + qf(1−s)

(1− q1−s)2
− fqf(1−s)

1− q1−s
+A1

qf(1−s)

1− q1−s
+A2

q−fs

1− q−s
,

where

A1 =
q2(f + 1)− (f − 1)

q(q − 1)
, A2 =

(f − 1)qf−2 + f

q − 1
− qf (q + 1)− 2

(q − 1)2
.
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Proof. From above two lemmas,

a(q, n) =

n−f∑
t=0

qn−t +
n∑
l=0

qn−l +
n∑

l=n−f+2

l−1∑
t=n−f+1

qn−l(ql−t − 1)

+

n−f∑
t=0

f+t−1∑
l=t+1

qn−f−t(qf − qf−2),

and the formula for a(q, n) follows by elementary calculations. With what we have
in Proposition 5, the local zeta factor at q also follows easily. Done. �

Theorem 9.
ζO(s) = ζ(s)ζ(s− 1)

∏
q|N

Qq(s),

where if q = p,

Qp(s) =
(1− p2r(1−s))(1− p−s)

1 + p1−s
+
p−2rs(1 + p2r−s)(1− p1−s)

1 + p−s
,

and if q|M with vq(M) = f ,

Qq(s) =
(1− q−s)(1− qf(1−s))

1− q1−s
− fqf(1−s)(1− q−s)

+A1(1− q−s)qf(1−s) +A2q
−fs(1− q1−s),

where A1, A2 are the two constants in Proposition 8.

Proof. We know that if q - N , ζO,q = (1 − q−s)−1(1 − q1−s)−1. We then just
put all local factors together. The calculations are easy and we skip them here.
Done. �

Corollary 10. If N is square free, that is r = 0 and vq(M) 6 1 for any prime q,
then Qp(s) = 1 − p1−s and for q | M , Qq(s) = 1 + q1−s. Consequently, ζO(s) is
holomorphic on the half plane re(s) > 1 except a simple at s = 1.

Proof. It follows trivially from Theorem 9 and properties of ζ(s). �

3. Divisor function

As in Section 2, we fix O as an order of level N = p2r+1M .

Lemma 11. Given any integral left O ideal a with N(a) =
∏k
i q

li
i where qi’s are

mutually distinct, there exists a unique (proper) factorization a = a1 · · · ak such
that N(ai) = qlii .
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Proof. For the existence, assume a = A ∩ ∩q<∞Oqµq. Since N(a) =
∏
q n(µq),

n(µqi) = qlii and µq = 1 if q ̸= qi. Define

a1 = A ∩ Oq1µq1 ∩ (∩q ̸=q1Oq),

and for 1 < i 6 k,

ai = A ∩ (∩i−1
t=1µ

−1
qt Oqtµqt) ∩ Oqiµqi ∩ (∩q ̸=q1,··· ,qiOq).

For 1 6 i 6 k, let

Oi = A ∩ (∩i−1
t=1µ

−1
qt Oqtµqt) ∩ (∩q ̸=q1,··· ,qi−1

Oq).

It is obvious that Oi’s have the same level as O, ai has left order Oi and right
order Oi+1, and N(ai) = n(µqi) = qlii . This gives us the existence.

For the uniqueness, suppose we have two decompositions a = b1c1 = b2c2
where

N(b1) = N(b2) = n, N(c1) = N(c2) = m and (n,m) = 1.

Then we have (m)b2b1 = (n)c1c2 where all factors are integral ideals. So
(m)(n−1)b2b1 is integral left O-ideal where O is the right order of b2.
Assume O = Z{v1, v2, v3, v4}, and for any w ∈ b2b1, assume w =

∑
i aivi. Since

(m)(n−1)b2b1 is integral, mai/n is integral for all i. That (m,n) = 1 implies ai/n
is integral, hence w/n ∈ O and d = (n−1)b2b1 is integral. But N(d) = 1 implies
that d = O and hence b2b1 = (n) and b1 = b2. Apply this to all prime power
factors and we know that ai’s are unique. Done. �

As in [4], we define the divisor function, for any integral ideal a, as follows

d(a) = #{(b, c) : a = bc, with b, c integral}.

Proposition 12. The divisor function is multiplicative; that is, if a = bc and
N(b), N(c) are relatively prime, then d(a) = d(b)d(c).

Proof. Note that the proof of Proposition 6 in [4] only relies on Lemma 4 there;
so the same proof goes through here. Done. �

From this proposition, we know that to completely understand the divisor
function it also suffices to work locally.

From now on, let us assume N is square-free, that is, a case of Eichler orders.
We have r = 0 and f = 1 for any q | M . The cases when q = p and q - N are

done in [4]. Let us focus on the case q |M .
Let us fix any q |M and assume Aq =M(2,Qq), the two-by-two matrix algebra

over Qq. We will reserve Oq to denote a general order of level q and let

Oq,0 =

(
Zq Zq
qZq Zq

)
.
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For convenience, let us denote

q1(n, t, d) =

(
0 qn−t−1

qt+1 d

)
and q2(n, l, b) =

(
ql b
0 qn−l

)
.

Lemma 13.

(1) All integral left Oq,0 ideals of fixed norm qn are

{Oq,0q1(n, t, d) : d mod qn−t, 0 6 t 6 n− 1}

and
{Oq,0q2(n, l, b) : b mod qn−l, 0 6 l 6 n};

(2) An integral ideal is maximal if and only if it has norm q;
(3) The unique double-sided maximal ideal is

p = Oq,0q1(1, 0, 0) = Oq,0
(

0 1
q 0

)
,

and p2 = (q) = qOq,0.

Proof. (1) This is a special case of Lemma 7.
(2) An ideal having norm q is necessarily maximal. Now assume n > 2 and

N(a) = qn. It is enough to show that a is left divisible by some integral ideal b
with 1 < N(b) < qn.

If a = Oq,0q1(n, t, d) and 0 6 t 6 n − 2, then direct calculations imply
Oq,0q1(t + 1, t, d1) left divides a, where d1 mod q = d mod q. If on the other
hand t = n− 1, then we have Oq,0q2(1, 1, 0) left divides a.

Similarly, if a = Oq,0q2(n, l, b) and l > 1, Oq,0q2(1, 1, 0) left divides a; while if
l = 0, then Oq,0q2(1, 0, b1) left divides a, where b1 mod q = b mod q.

(3) By (2), there are 2q + 1 maximal ideals. It is not hard to check that only
p gives a double-sided ideal. See also Eichler’s notes [3]. Done. �

Definition 14. For any integral left Oq,0-ideal a, we say that a is primitive if it
is not left divisible by p.

More generally, for any order Oq of level q, let q be the unique double-sided
maximal ideal. We say an integral left Oq-ideal a is primitive if it is not left
divisible by q.

Remark 15. If Oq is another order of level q, then Oq = γOq,0γ−1 for some
γ ∈ A×

q . Hence there is also a unique double-sided maximal ideal for Oq, namely
q = γpγ−1; actually, the normalizer of Oq,0 inside A×

q is (see Pizer’s paper, [7]
page 104)

NA×
q
(Oq,0) = O×

q,0Q
×
q ∪

(
0 1
q 0

)
O×
q,0Q

×
q ,

so different choice of γ give rise to the same q.
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Lemma 16. All the primitive integral left Oq,0 of fixed norm qn are generated by
quaternions in

{q1(n, t, d) : d mod qn−t, q - d, 0 6 t 6 n− 1} ∪ {q2(n, n, 0)}

and
{q2(n, 0, b) : b mod qn}.

Proof. We know that p |l Oq,0q1(n, t, d) if and only if(
0 qn−t−1

qt+1 d

)(
0 1
q 0

)−1

=

(
qn−t−1 0
d qt

)
∈ Oq,0,

hence if and only if q | d.
Similarly, p |l Oq,0q2(n, l, b) if and only if(

ql b
0 qn−l

)(
0 1
q 0

)−1

=

(
b ql−1

qn−l 0

)
∈ Oq,0,

hence if and only if 1 6 l 6 n− 1. Done. �

Let us denote P1 = {q1(1, 0, d) : d mod q, q - d} ∪ {q21, 1, 0}, P2 = {q2(1, 0, b) :
b mod q} and P = P1 ∪ P2 ∪ {α0 = q1(1, 0, 0)}. Hence Oq,0P are all maximal left
Oq,0-ideals, among which Oq,0(P1 ∪ P2) are the primitive ones.

Definition 17.
(1) Ideals in Oq,0P1 are called maximal ideals of class one and those in Oq,0P2

are called maximal ideals of class two. As before, p is called double-sided;
(2) Let α ∈ Oq,0 be of norm q. Then we say α is double-sided(of class one,

of class two, resp.), if Oq,0α equals p(belongs to Oq,0P1, belongs to Oq,0P2,
resp.);

(3) More generally, given any order Oq of level q, fix a conjugator for Oq,
namely γ ∈ A×

q such that Oq = γ−1Oq,0γ. For any maximal left Oq-ideal
a, there exists a unique α ∈ P such that a = γ−1Oq,0αγ. Then we say a is
double-sided(of class one, of class two, resp.), if α = α0(α ∈ P1, α ∈ P2,
resp.);

(4) Let a1a2 · · · ak be a proper product of maximal ideals. Fix any conjugator
γ for Ol(a1), and there exists a unique α1 ∈ P for a1 as in (3). Use α1γ
as the conjugator for Ol(a2), we get α2 for a2. Keep this way and we get
αi ∈ P for each ai. We say a1a2 · · · ak is a product of the same class if ai
is primitive for any 1 6 i 6 k and all of αi’s are of the same class.

Remark 18. This definition is well defined by the same reason in Remark 15.
But we caution here that it is not possible to fix a class for a primitive maximal
ideal without fixing a conjugator; for example,

a = Oq,0
(
q 0
0 1

)
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gives us class one, but

a = α−1
0 Oq,0

(
1 0
0 q

)
α0,

gives us class two. This is because the second part of the normalizer NA×
q
(Oq,0)

(see [7]) actually permutes the two classes; we will make this clear in the following
couple of lemmas.

Lemma 19. Let a = a1 · · · ak be a proper product of maximal ideals. Then a is
primitive if and only if a1 · · · ak is a product of the same class. If this is the case,
the factorization into maximal ideals is unique.

Proof. Fix a conjugator γ for Ol(a). Then we get αi ∈ P for ai as in Definition
19, hence a = γ−1Oq,0αk · · ·α1γ. Assume first that a is primitive and we denote

M = {Oq,0q1(n, t, d) : d mod qn−t, q - d, 0 6 t 6 n, n > 1}
∪ {Oq,0q2(n, n, 0) : n > 1}

and
N = {Oq,0q2(n, l, b) : b mod qn−l, 0 6 t 6 n, n > 1}.

Assume a′ = Oq,0αk · · ·α1 ∈M and equalsOq,0q1(k, t, d) ∈M for some dmod qk−t,
q - d and 0 6 t 6 k. If t = 0, then it is easy to verify that α1 has to be q1(1, 0, d1)
where d1 ≡ d mod q and Oq,0αk · · ·α2 ∈ M . If t > 1, α1 = q2(1, 1, 0) and also
Oq,0αk · · ·α2 ∈ M . If a′ = q2(k, k, 0), α1 = q2(1, 1, 0) and Oq,0αk · · ·α2 ∈ M . So
in any case, α1 is of class one and Oq,0αk · · ·α2 ∈M . By induction on k, we know
that all αi’s are of class one. Similarly, if a′ ∈ N , we can show that all αi’s are of
class two. At the same time, we proved that if a is primitive such a factorization
is unique.

Assume on the other hand that all αi’s are of the same class. It is easy to
verify that if two elements generate two ideals in M( N , resp.), their product also
generate an ideal in M( N , resp.), hence a primitive ideal. This is enough for our
purpose. We skip the calculations here. Done. �

(3) If aiai+1 is not of the same class for some i, then for some γ ∈ A×
q and some

α, β ∈ P , ai = γ−1Oq,0αγ and ai+1 = γ−1α−1Oq,0βαγ. By assumption, α, β are
not in the same class, hence aiai+1 = γ−1Oq,0βαγ is not primitive by part (1). It
follows that a is not primitive by shifting the resulting double-sided maximal ideal
to the front and we have a contradiction.

Assume aiai+1 is a product of the same class, for any 1 6 i 6 k − 1. Then we
can write the product down explicitly, say for some γ ∈ A×

q and αi ∈ P (1 6 i 6 k),

a1 = γ−1Oq,0α1γ, ai = γ−1α−1
1 · · ·α

−1
i−1Oq,0αiαi−1 · · ·α1γ.

By assumption, all αi’s belong to the same class and then a = γ−1Oq,0αk · · ·α1γ
is primitive by part (1). Done.
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Lemma 20.

(1) Assume α, β ∈ P1∪P2 and they are of different class. Then either Oq,0βα =
(q) or Oq,0βα = pOq,0γ and γ belongs to the same class as β;

(2) Conjugation by α0 switches the two class; more precisely, if α is of class
one(class two,resp.), then α−1

0 αα0 is of class two(class one,resp.);
(3) Let a = a1 · · · aipi+1ai+1 · · · ak be a proper product into maximal ideals,

where pj is the double-sided maximal ideal in Ol(aj). Fix a conjugator for
Ol(a). Then if we write a = p1a1 · · · aiai+1 · · · ak, we change the classes of
aj if 1 6 j 6 i and keep the classes of aj if i + 1 6 j 6 k, whenever aj is
primitive.

Proof. (1) This is done by easy verification. For example,

q1(1, 0, d)q2(1, 0, b)α
−1
0 ∼

{
q2(1, 1, 0) if q | (b+ d),

q1(1, 0, d1) if q - (b+ d),

where d1 ≡ (b+ d)−1 mod q. Other cases are similar.
(2) Since

α−1
0 q2(1, 1, 0)α0 ∼ q2(1, 0, 0),

α−1
0 q1(1, 0, d)α0 ∼ q2(1, 0, b), b ≡ d−1 mod q,

α−1
0 q2(1, 0, 0)α0 ∼ q2(1, 1, 0), and

α−1
0 q2(1, 0, b)α0 ∼ q1(1, 0, d), d ≡ b−1 mod q, if b ̸= 0,

this part follows trivially.
(3) Fix a conjugator for Ol(a) and assume αj ∈ P is the associated element for

aj . After shifting the double-sided maximal ideal to the front, we can see easily
that the associated element for aj is α−1

0 αiα0 if 1 6 j 6 i and αi if i+ 1 6 j 6 k.
Hence this part follows easily from part (2). Done. �

Lemma 21. Let b = bk · · · b1 and c = c1 · · · cl be the unique factorizations into
maximal ideals for two primitive ideals b and c, respectively. Assume a = bc is
proper and let p be the double-sided maximal ideal in the left order of a. Then

(1) p |l a if and only if b1c1 is not of the same class;
(2) (q) |l a if and only if b1 = c1.

Proof. (1) This is trivial by Lemma 19.
(2) One direction is trivial. For the other direction, one sees that b1c1 = p1d

where p1 is the double-sided maximal ideal in the left order of b1. If b1 ̸= c1, then
d is primitive. By Lemma 20 (1), b1 and d are in different class. In the process of
shifting p1 to the front and get p, we change the classes of bi’s by Lemma 20. As
a consequence, bk · · · b2dc2 · · · cl is product of the same class, hence primitive. We
get a contradiction. �
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Now we can start to explore the divisor function.

Definition 22. Given an integral left Oq-ideal a, we say a has signature (n,m)
if N(a) = qn+m and pn | a with n maximal, where p is the maximal double-sided
ideal in Oq. Hence a is primitive if and only if n = 0.

Definition 23. Let a be a integral ideal of signature (n,m), define d(n,m) = d(a)
and

c(n,m) = {(b, c) : a = bc, b, c are primitive }.

Later we will see that these quantities do not depend on the ideal and the notations
make sense.

Lemma 24. We fix an integral ideal a of signature (n,m). Then

c(n,m) =


m+ 1, n = 0,

m(q − 1), n = 1,

2q, n = 2.

Proof. We may assume Ol(a) = Oq,0.
The case when n = 0 is trivial because of Lemma 19.
Consider the case n = 1. First, c(1, 0) = 0 is obvious, since a = p is maximal.

Second, c(1, 1) = q − 1. Actually, this is done by direct computations; a can only
be Oq,0q1(2, 1, 0), Oq,0q1(2, 0, bq)(b mod q) or Oq,0q2(2, 1, d)(d mod q ̸= 0 mod q)
and in each case we have precisely (q−1) primitive decompositions. To finish this,
we only need to show that for m > 2,

c(1,m) = c(1,m− 1) + q − 1.

Assume a = pb and b is primitive, so we have a unique decomposition b = b1b2
with N(b2) = q. Let c = pb1 and hence a = cb2. Define

A1 = {(a1, a2) : a = a1a2, a1, a2 primitive, N(a2) > q2},
A2 = {(a1, a2) : a = a1a2, a1, a2 primitive, N(a2) = q},
C = {(c1, c2) : c = c1c2, c1, c2 primitive},

and a map ϕ : A1 → C by ϕ(a1, a2) = (a1, a2b
−1
2 ). Assume a1 = a1,k · · · a1,1 and

a2 = a2,1 · · · a2,l with l > 2 and ai,j maximal. Now Lemma 21 says a1,1a2,1 = pd
where d is maximal and p is the maximal double-sided ideal in the left order of
a1,1. So a1,k · · · a1,2da2,2 · · · a2,l is a primitive factorization of b; by uniqueness, this
gives us a2,l = b2, hence ϕ is well-defined. It is trivial that ϕ is injective. Moreover,
for any (c1, c2) ∈ C, c2b2 must be a product of the same class, because otherwise
we would get (q) | a. So (c1, c2b2) ∈ A1 and has image (c1, c2) under ϕ. So ϕ
is bijective and it suffices to show #A2 = q − 1. Actually, this is done similarly
by constructing a bijective map from A2 to the set of primitive decompositions of



250 Yichao Zhang

pb2 where p is the maximal double-sided ideal in the left order of b2. The map is
(a1, a2) → (a1,1, a2) and we skip the details here. So #A2 = c(1, 1) = q − 1 and
we get the second formula.

Finally, n = 2. First, c(2, 0) = 2q; indeed, any primitive maximal ideal a1
gives a decomposition (a1, a1) and those are all of them. Now it is enough to show
c(2,m) = c(2, 0) for any m > 1. Given any decomposition a = a1a2 with a1 =
a1,k · · · a1,1 and a2 = a2,1 · · · a2,l(into maximal ideals). Since (q) | a, a1,1a2,1 = (q)
by Lemma 21. But if k, l > 2, then a1,2a2,2 would be a product of different
class, hence p3 | a which is not possible. So we must have k = 1 or l = 1.
Assume a = qb. In each case, only half of the 2q primitive decompositions of
(q) = a1a1 give us primitive decompositions of a, namely precisely one of (a1, a1b)
and (ba1, a1), because we need to match the classes to give primitive ideals. So we
have c(2,m) = 2q. Done. �

Lemma 25. We fix any integral ideal a of signature (n,m). Then

(1) for n > 3, c(n,m) = qc(n− 2,m);
(2)

c(n,m) =


m+ 1, n = 0,

mqk(q − 1), n = 2k + 1, k > 0,

2qk, n = 2k, k > 0.

Proof. Part (2) follows easily from part (1), taking into account Lemma 24. So
it is enough to show part (1).

Assume a = qb and let

A = {(a1, a2) : a = a1a2, a1, a2 primitive},
B = {(b1, b2) : b = b1b2, b1, b2 primitive}.

Define a map ϕ : A → B by (a1, a2) 7→ (b1, b2), where if a1 = a1,k · · · a1,1 and
a2 = a2,1···a2,l

(into maximal ideals), b1 = a1,k · · · a1,2 and b2 = a2,2 · · · a2,l. By
Lemma 21, a1,1a2,1 = (q) and ϕ is well-defined. It is enough to show that any
element (b1, b2) in B has precisely q preimages in A. This is fairly easy to see,
since exactly half of the 2q primitive decompositions a1a1 of (q) give us primitive
decomposition of a, namely (b1a1, a1b2). Done. �

Proposition 26. We fix any integral ideal a of signature (n,m). Then

(1) if n = 2k + 1(k > 0),

d(2k + 1,m) = m(q − 1)(2k + 1) + (m+ 1)(2k + 2)

+ (mq −m+ 4)
qk+1 − q
q − 1

+ 2(mq −m+ 2)

(
qk+1 − q2

(q − 1)2
− (k − 1)q

q − 1

)
;
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(2) if n = 2k(k > 0),

d(2k,m) = (m+ 1)(2k + 1) + 2(mq −m+ q)
qk − 1

q − 1

+ 2(mq −m+ 2q)

(
qk − q
(q − 1)2

− (k − 1)

q − 1

)
.

Proof. Note that

d(a) =
n∑
l=0

(l + 1)c(n− l,m).

This is not hard to see since any decomposition of a = pna1 can be written uniquely
as a = (prb)(pt1c) with b and c primitive where p and p1 are the maximal double-
sided ideals for corresponding orders. So it is produced by primitively decomposing
pn−r−t1 a1, followed by assigning the r + t double-sided maximal ideal factors.

The formulas then follow easily from those for c(n,m). Done. �

Proposition 27. The number of integral ideals of fixed left order and fixed signa-
ture (n,m), denoted by a(q;n,m), is 1 if m = 0 and 2qm if m > 0.

Proof. Again let us fix the left order Oq,0. Note that there is a bijective map
from the set of integral ideals of signature (n,m) to the set of integral ideals of
signature (0,m), namely a 7→ p−na. So we only need to do the primitive case.

If m = 0, a(q; 0, 0) = 1, namely the trivial one. If m > 1, by Lemma 14, there
are 2qm of them, that is a(q; 0,m) = 2qm. Done. �

Proof of Theorem 1. Since both sides have Euler products, it suffices to work
locally. The cases that q = p and q - N are treated in [4]; let us assume q |M .∑

a

(d(a))2N(a)−s (a are over integral ideals with norm q-powers)

=
∞∑

n,m=0

d(n,m)2a(q;n,m)q−(n+m)s

=
∞∑
k=0

∞∑
m=1

d(2k + 1,m)22qmq−(2k+1+m)s +
∞∑
k=0

∞∑
m=1

d(2k,m)22qmq−(2k+m)s

+
∞∑
k=0

d(2k + 1, 0)2q−(2k+1)s +
∞∑
k=0

d(2k, 0)2q−2ks.

=
ζ4O,q(s)

ζO,q(2s)
P (q, s).

where the calculation in the last equality is done using Mathematica. �

Corollary 28. For any fixed order O of level N(square-free) and some positive A,∑
N(a)6x

(d(a))2 ∼ Ax2 log3(x).
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Proof. By the above proposition, taking into account the cases q = p and q - N
in [4], we have ∑

a

′
(d(a))2N(a)−s =

ζ4O(s)

ζO(2s)

∏
q|M

P (q, s).

It is obvious that P (q, s) is holomorphic on the half plane Re(s) > 1 and P (q, 2) ̸=
0; hence this is a holomorphic function on the half plane Re(s) > 1, except that
at s = 2, there is a pole of order 4. By Perron’s formula, the corollary is clear. �

Corollary 29. Let notations be the same as those in Theorem 1. Then as T →∞,

∑
2<k6T,k even

∑
f∈Sk

∫ T

−T

∣∣∣∣L(k2 + it, f

)∣∣∣∣4 dt≪ T 3 log4 T,

where
Sk =

∪
a|M

∪
d|Ma

Snew
k (pa)d.

Proof. Since the proof here is roughly the one in [4], we only sketch it; for details
please refer to that paper.

Let H be the class number of O and I1, ..., IH be a complete set of represen-
tatives of all distinct left O-ideal classes. Let Oj = Or(Ij), the right order of
Ij . Then I−1

j I1, ..., I
−1
j IH , is a complete set of representatives of all distinct left

Oj-ideal classes. Let ej be the number of units in Oj and uij = N(I−1
i Ij). Define

the Brandt matrices Bm(n), theta series Θm(τ) = (θmij (τ)) and shifted L-functions
Ψm(s) = (ψmij (s)) using Definition 25 in [4].

Let Φm(s) = (ϕmij (s)) = (N4 )
s(Ψm(s))2; as in Lemma 24 in [4], we can show

that
ϕij(s) := ϕ0ij(s) =

∑
β∈Λij

aij(β)|β|−2s,

where Λij is the lattice 2
√
uijN−1I−1

j Ii and aij(β) = e−1
j d(I−1

i Ijβ/(2
√
uijN−1)).

Moreover,
H∑
j=1

∑
β∈Λij ,|β|6x

aij(β)
2 ≍ x4 log3 x.

Let C be the same constant H2 × H2 matrix used in [4]. Since N is not
a prime in general, the matrix representation of the canonical involution Ef =
f |wN may not be given by Bm(N). However, according to Corollary 9.23 in [8],
Ẽ = −E where the matrix Ẽ = W̃p

∏
q|M W̃q. Now by Proposition 9.2 and 9.6

and Remark 9.25 in [8], we know that Ẽ commutes with all Brandt matrices
and Ẽ2 = I. Using this matrix and proceeding the same way as in the proof
of Proposition 27 in [4], we can prove that the system of the Dirichlet series
(ϕ11(s), · · · , ϕij(s), · · · , ϕHH(s)) is of signature ⟨Λ11, · · · ,Λij , · · · ,ΛHH , 4, 0, C⟩.
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(For reference on Maass Correspondence, please see Maass’ original treatment in
[5] and the generalization to a system of Dirichlet series in [4].)

Hence by Theorem 20 in [4], the corollary follows in the same way as we did
for Theorem 2 and Corollary 3 in [4]. There is only one thing that we need to
mention; namely, the Brandt matrices(including Bm(n) where p | n) might not
be simultaneously diagonalizable. But for the inequality in this corollary, we may
just get rid of the off-diagonal entries on the left to give the same upper bound.
Done. �

Remark 30. It might be possible to avoid this long calculation for the divisor
function by considering the quaternion algebra that ramifies exactly at all p | N
and ∞. In this case, the orders we need are still maximal, which makes the
divisor function much simpler; for example, Ponomarev considered in [9] weight
two forms using this type of quaternion algebras. However, we expect that the
above argument should work in the case of N = pM and then the above calculation
would be necessary.

4. Quaternion algebras over number fields

Throughout this section, let F/Q be a number field and A be a quaternion algebra
over F . We use R to denote the ring of integers in F , p a prime ideal in R, Fp the
completion of F at p and Rp the completion of R in Fp. By abuse of language, we
also use p to mean the maximal ideal in Rp, namely pRp.

Let O be any maximal order in A and a be any integral left O-ideal. All ideals
in this section will be integral ideals for some maximal orders and all products of
ideals will be proper.

As usual N(a) is the norm of a, that is, the ideal in R generated by all the
reduced norms {N(α) : α ∈ a}. Denote by NF/Q the norm of the field extension
F/Q and ap = a⊗R Rp. Define similarly

d(a) = #{(b, c) : a = bc}

and for any integral ideal n in R,

a(n) = #{a : N(a) = n}.

Lemma 31. Assume N(a) = nm with n,m relatively prime. Then there exists a
unique pair (b, c) of integral ideals such that a = bc, N(b) = n and N(c) = m.

Proof. The existence follows the same way as that of Lemma 11. For the unique-
ness, assume a = b1c1 = b2c2. Then it suffices to show it locally, that is, b1,p = b2,p
for all p. This is true, since for p | n both are equal to ap and for p - n both are
trivial. Done. �

Proposition 32. Both of the functions d and a are multiplicative; that is, if n,
m are relatively prime, then a(nm) = a(n)a(m), and if a = bc and N(b) = n,
N(c) = m, then d(a) = d(b)d(c).
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Proof. The statement for a is trivial by Lemma 31. For the divisor function, the
whole proof of Proposition 12 gets through here without change. Done. �

Again Proposition 32 tells us that it is enough to work locally. Let us fix a
prime ideal p of R and assume p | (p). Denote by e = ep the ramification degree
and f = fp the residue field extension degree.

If A ramifies at p, then Ap is the division algebra over Fp. Let K/Fp be the
unique unramified quadratic extension of Fp, π be a uniformizer of p and σ be the
generator of Gal(K/Fp). We have

Ap ≃
{(

a b
πbσ aσ

)
: a, b ∈ K

}
.

As usual, we shall assume the equality in the above isomorphism, so we have

Op =

{(
a b
πbσ aσ

)
: a, b ∈ RK

}
,

where RK is the ring of integers in K.

Lemma 33. For any n ∈ Z>0, a(pn) = 1, that is, there exists a unique integral
ideal of norm pn; namely

Op

(
0 1
π 0

)n
.

Proof. First, we see that

O×
p =

{(
a b
πbσ aσ

)
: a ∈ R×

K , b ∈ RK
}
;

indeed, such an element belongs to O×
p if and only if its norm belongs to R×

K and
the claim follows since π is also a uniformizer for K.

Now suppose a = Opα is an ideal of norm p. Assume

α =

(
a b
πbσ aσ

)
, a, b ∈ RK .

Since N(a) = p, vp(N(α)) = 1 and a ∈ πRK , b ∈ R×
K . Let b1 = −(πbσ)−1a ∈ RK

and
β =

(
1 b1
πbσ1 1

)
∈ O×

p .

Now βα has zeroes on the main diagonal, so we may assume that a = 0. Now

γ =

(
b−1 0
0 b−σ

)
∈ O×

p .

and
γα =

(
0 1
π 0

)
:= α0.

So a(p) = 1.
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Assume a = Opα is any ideal of norm pn for some n > 1. We can see that if

α =

(
a b
πbσ aσ

)
,

then a ∈ πRK . As we know, Opα0 left divides a if and only if α0 right divides α.
It is trivial to see that this is true. By induction, we see that a = Opα

n
0 . Hence

a(pn) = 1. Done. �

Proposition 34. If a has norm pn, then d(a) = n+ 1.

Proof. This follows trivially from Lemma 33. �

Suppose now A splits at p, so Ap ≃ M(2, Fp), the two-by-two matrix algebra
over Fp. We may assume they are equal, since the quantities here are invariant
under isomorphism. One of the maximal orders is M(2, Rp) and all others are
conjugate to this one via A×

p . Let S(p, n) denote a complete set of representatives
in Rp for Rp/p

n when n > 0. Moreover let S(p, n)× be the subset of invertible
elements, that is S(p, n)∩R×. Hence #S(p, n) = pfn. An ideal a is called primitive
if (π) -l a, where (π) should be considered as the ideal generated by π in the left
order of a.

Lemma 35. Let Op =M(2, Rp).
(1) All integral left Op-ideals of norm pn are{

Op

(
πl b
0 πn−l

)
: b ∈ S(p, n− l), 0 6 l 6 n

}
;

hence a(pn) = pf(n+1)−1
pf−1

;
(2) All primitive left Op-ideals of norm pn are{

Op

(
1 b
0 πn

)
: b ∈ S(p, n)

}∪{
Op

(
πn 0
0 1

)}
∪{

Op

(
πl b
0 πn−l

)
: b ∈ S(p, n)×, 1 6 l 6 n− 1

}
;

the total number of them are pf(n−1)(pf + 1).

Proof. The second part follows from the first part trivially. Let a = Opα be any
integral ideal of norm pn and assume

α =

(
a b
c d

)
, a, b, c, d ∈ Rp.

If vp(a) > vp(c), then let

β =

(
0 1
1 −c−1a

)
∈ O×

p
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and βα has zero left lower element. If on the other hand vp(a) < vp(c), then let

β =

(
1 0

−a−1c 1

)
∈ O×

p

and βα also has zero left lower element. So we may assume c = 0. Assume
vp(a) = l and hence vp(d) = n− l. Let

β =

(
a−1πl 0

0 d−1πn−l

)
∈ O×

p

and βα has diagonal elements πl and πn−l respectively. We can assume a = πl

and d = πn−l. There is a unique x ∈ S(p, n− l) such that b− x = −yπn−l ∈ pn−l

with y ∈ Rp. Let

β =

(
1 y
0 1

)
∈ O×

p and βα =

(
πl x
0 πn−l

)
.

Now it suffices to show that all ideals in part one are distinct. Suppose

β =

(
a1 b1
c1 d1

)
∈ O×

p and β

(
πl b
0 πn−l

)
=

(
πl

′
b′

0 πn−l
′

)
.

Comparing the left lower elements gives us c1 = 0, hence a1, d1 ∈ R×
p . Now

equalities of the diagonal elements imply that a1 = d1 = 1 and l = l′. Finally the
right upper elements equal and implies b ∼= b′ mod pn−l; so by the choices of b and
b′, they have to be the same. Done. �

Lemma 36. Any primitive ideal a has a unique decomposition into a proper prod-
uct of maximal ideals; consequently, d(a) = m+ 1 if N(a) = pm.

Proof. As usual, we may assume the left order of a is M(2, Rp). We see that a is
left divisible by a uniquely determined norm p ideal; indeed this is easy to verify
by using the explicit expression in Lemma 35 and passing to right divisibility of
corresponding elements. From this we know that the norm p ideals are precisely
the maximal ideals and the lemma follows. Done. �

We say an ideal is of signature (n,m) if N(a) = p2n+m and pn |l a with n
maximal. We define

c(a) = c(n,m) = #{(b, c) : a = bc with b, c primitive}.

Again we will see in the following lemma that this number only depends on the
signature, which justifies the notation we used here. Similarly we will use d(n,m) =
d(a).

Lemma 37. Let a be of signature (n,m).

c(n,m) =

{
pf(n−1)((m+ 1)(pf − 1) + 2), n > 1,

m+ 1, n = 0.
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Proof. The proof of this lemma is essentially the same as the proof of Lemma
11 in [4]; indeed Lemma 8 and Lemma 10 in [4] still hold here and this is nearly
the only things that we need in the proof. More specifically, we use the same
arguments to show first

c(1,m) = (m+ 1)(pf − 1) + 2

and then for n > 1
c(n+ 1,m) = pfc(n,m),

which completes the proof. See [4] for details. Done. �

Proposition 38. Let a be of signature (n,m).

d(a) =
pf(n+1) − 1

pf − 1
(m+ 1)− 2(n+ 1)

pf − 1
+

2(pf(n+1) − 1)

(pf − 1)2
.

Proof. This follows trivially from d(a) =
∑n
l=0(l + 1)c(n− l,m). Done. �

Let us denote by a(n,m) the number of left Op-ideals with signature (n,m).
Then

Proposition 39.

a(n,m) =

{
pf(m−1)(pf + 1), m > 1,

1, 0.

Proof. It is obvious that a(0,m) = a(n,m) which follows from the bijective map
a→ (π)na; the formula for a(0,m) is given by Lemma 35. Done. �

For convenience, let us group some series identities as a lemma:

Lemma 40.
(1)

∞∑
n=0

(n+ 1)2X−ns = (1−X−2s)(1−X−s)−4;

(2) If

an,m =

{
Xm−1(X + 1), m > 0,

1, m = 0.

and

dn,m =
Xn+1 − 1

X − 1
(m+ 1)− 2(n+ 1)

X − 1
+

2(Xn+1 − 1)

(X − 1)2
,

then
∞∑

m,n=0

an,md
2
n,mX

−(m+2n)s = (1+X−s)(1−X1−2s)(1−X−s)−3(1−X1−s)−4.
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Proof. These identities are the same as those in the proof of Theorem 1 in [4].
See the computations there for details. Done. �

Define the zeta function for the maximal order O as follows:

ζO(s) =
∑
a

′
NF/Q(N(a))−s,

where the sum is over all nontrivial integral left O-ideals. Since both the norms
are multiplicative and by Lemma 31, we can write the zeta function as an Euler
product

ζO(s) =
∏

p, prime

ζO,p(s),

where
ζO,p(s) =

∑
a

′
NF/Q(N(a))−s,

and the sum is taken over all non-zero integral left O-ideals of norm p-powers.

Lemma 41.

ζO(s) = ζF (s)ζF (s− 1)
∏

p,A ramifies at p

(1− pf(1−s)),

where ζF (s) is the Dedekind zeta function for F , p | p and f = f(p/p) is the
residue degree of Fp/Qp.

Proof. If p ramifies in A, by Lemma 33,

ζO,p(s) =
∞∑
n=0

p−fns = (1− p−fs)−1;

if p splits in A, by Lemma 35,

ζO,p(s) =
∞∑
n=0

pf(n+1) − 1

pf − 1
p−fns = (1− p−fs)−1(1− pf(1−s)).

Our lemma follows. Done. �

Theorem 42. ∑
a

′
(d(a))2NF/Q(N(a))−s =

ζO(s)
4

ζO(2s)
,

where the sum is over all nonzero integral left O-ideals.

Proof. To prove the identity, we only need to show the identity for local factors,
since the left side also has a Euler product because of the multiplicativity of the
divisor function.
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If p ramifies in A, by Lemma 33 and Proposition 34, we need to show

∞∑
n=0

(n+ 1)2p−fns = (1− p−2fs)(1− p−fs)4,

which follows from Lemma 40, by replacing X by pf .
If p splits in A, we need to show

∞∑
n,m=0

a(n,m)(d(n,m))2p−(2n+m)fs

= (1 + p−fs)(1− pf(1−2s))(1− p−fs)−3(1− pf(1−s))−4.

This follows directly from Propositions 38, 39 and Lemma 40. Done. �

Corollary 43. ∑
NF/Q(N(a))6x

(d(a))2 ∼ Ax2 log3(x),

for some positive A.

Proof. Let

f(s) =

∞∑
n=0

ann
−s :=

∑
a

′
(d(a))2NF/Q(N(a))−s.

Since ζF (s) only has a simple pole at s = 1 on the right half plane Re(s) > 1−1/N
where N = [F : Q], ζO(s) only has a simple pole at s = 2 on the right half plane
Re(s) > 2 − 1/N . Moreover ζF (2s) is regular and non-vanishing there, so by
Theorem 42, f(s) is regular on Re(s) > 2− 1/N except a unique pole at s = 2 of
order 4. Apply Perron’s formula to f(s), and the result is obvious. �
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