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A PNT EQUIVALENCE FOR BEURLING NUMBERS

Harold G. Diamond, Wen-Bin Zhang

Abstract: In classical prime number theory, several relations are considered to be equivalent
to the Prime Number Theorem. For Beurling generalized numbers, some auxiliary conditions
may be needed to deduce one relation from another one. We show conditions under which the
Beurling analog of the sharp version of Mertens’ sum formula does or does not hold.
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1. Introduction

Several asymptotic formulas of classical prime number theory are considered to
be “equivalent” to the Prime Number Theorem (PNT) in the sense that they are
deducible from one another by quite simple real variable arguments ([2], §5.2; [5],
§8.1). We use this phrase as a convenient grouping of results, recognizing that
after the discovery of elementary proofs of the PNT, it does not have a logical
basis. We are going to examine one of these relations in the context of Beurling
generalized (g-) numbers.

A Beurling g-prime system P is an unbounded real sequence p1 6 p2 6 . . .
with p1 > 1. The multiplicative semigroup N generated by P and 1 is called the
associated sequence of g-integers. We do not assume N ⊂ Z or that unique prime
factorization holds. If a g-integer occurs in more than one way, we count it with
appropriate multiplicity.

As in the classical case, we have counting functions

N(x) = NP(x) = #{N ∩ [1, x]}

π(x) = πP(x) = #{P ∩ [1, x]}

Π(x) = ΠP(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . .
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and
ψ(x) = ψP(x) =

∫ x

1

log u dΠ(u).

Our goal is to show conditions under which the analog of the “sharp Mertens
relation” ∫ x

1

dψ(t)

t
=
∑
n6x

Λ(n)

n
= log x− γ + o(1)

(γ = Euler’s constant) does or does not hold for Beurling g-numbers.

2. Necessary conditions for sharp Mertens

The g-number formula we are investigating is

ψ1(x) :=

∫ x

1

dψ(t)

t
= log x+ c1 + o(1). (2.1)

In general, c1 ̸= −γ, as we can see by making a g-number system containing all
the classical primes along with one additional g-prime. In such a system, (2.1)
holds with c1 > −γ.

One relation between (2.1) and the PNT is true unconditionally:

Proposition 2.1. If (2.1) holds for a g-number system, then so does the PNT.

Proof. We verify the PNT in the form ψ(x) ∼ x by integration by parts:

ψ(x) =

∫ x

1

t dψ1(t) = xψ1(x)−
∫ x

1

ψ1(t) dt

= x log x+ c1x+ o(x)−
∫ x

1

{log t+ c1 + o(1)} dt

= x+ o(x). �

Next we show that in fact (2.1) implies somewhat more than the PNT.

Proposition 2.2. Suppose that a sharp Mertens-type relation holds for a g-number
system. Then f(x) := ψ(x)− x = o(x) and moreover∫ x

1

f(t)t−2 dt

converges to a finite limit as x→∞.

Proof. By Proposition 2.1, the PNT holds and thus f(x) = o(x).
Again apply integration by parts, this time to

∫
dψ(t)/t, to get

ψ1(x) =
ψ(x)

x
+

∫ x

1

ψ(t)

t2
dt

= 1 + o(1) + log x+

∫ x

1

f(t)t−2 dt.

Since ψ1(x)− log x has a limit as x→∞, so does the integral. �
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The last proposition shows that proof of (2.1) requires more than the PNT
alone. Note for later use that divergence of

∫∞
1
f(t)t−2 dt could occur for f too

large, for example f(x)≫ x/ log x, or for certain oscillatory functions.

3. Sufficient conditions for sharp Mertens

Theorem 3.1. Suppose that the PNT holds and that for some c > 0

|N(x)− cx| 6 xD(x), x > 1, (3.1)

where D is right continous, monotone decreasing, and satisfies∫ ∞

1

x−1D(x) dx <∞. (3.2)

Then (2.1) holds as well.

Here are two interesting special cases of the theorem.

Corollary 3.1. Suppose that the hypotheses of the theorem are satisfied with

D(x) := max
y>x
|N(y)− cy|

y
.

Then (2.1) holds.

Corollary 3.2. Suppose that the hypotheses of the theorem are satisfied with
D(x) := C log−γ(x+ 1) with C > 0 and γ > 1. Then (2.1) holds.

The theorem is proved using the following variant of Axer’s Theorem ([1],
Lemma 5.7; [5], Theorem 8.1). A sequences formulation of this result appears as
Exercise 7 in §8.1.1 of [5].

Lemma 3.1. Let A and B be right continuous functions supported on [1, ∞)
that are locally of bounded variation. Suppose that |A(t)| 6 tD(t) where D↓ and∫∞
1
t−1D(t) dt < ∞. Also, assume that B(x) = o(x) and its variation function

satisfies Bv(x) = O(x). Then, with ∗ denoting multiplicative convolution,
∫ x
1− dA∗

dB = o(x).

Sketch of a proof of the lemma. We first deduce D(x) = o(log−1 x) from the
integrability of t−1D(t).

Then we use the elementary approach to Dirichlet’s divisor problem to write∫ x

1−
dA ∗ dB =

∫ x/M

1−
A
(x
t

)
dB(t) +

∫ M

1−
B
(x
t

)
dA(t)−A(M)B

( x
M

)
= J1 + J2 − J3, say.
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To estimate |J1|, we note that

|J1| 6
∫ x/M

1−

x

t
D
(x
t

)
dBv(t)

6 Bv

( x
M

)
MD(M) + x

∫ x/M

1−
Bv(t)t

−2D
(x
t

)
dt

since D(x/t) is an increasing function of t. Hence |J1| is an arbitrarily small
multiple of x, provided that M is taken sufficiently large.

With M fixed, the o-condition for B insures that |B(x/t)| is an arbitrarily
small multiple of x/t for t 6 M , provided that x is sufficiently large. Also, the
integration extends over a fixed interval. We find

|J2| 6
∫ M

1−

∣∣∣B(x
t

)∣∣∣dAv(t) = o(x).

Finally, the bounds found for |A| and |B| guarantee that |J3| also is o(x).
Together, the three estimates yield

∫ x
1− dA ∗ dB = o(x). �

Proof of the theorem. We start with the Chebyshev identity ([4], Theorem 2.6)∫ x

1

log t dN(t) =

∫ x

1

dN ∗ dψ

for g-numbers. The left side, integrated by parts, becomes

N(x) log x−
∫ x

1

N(y)

y
dy = cx log x− cx+ o(x), (3.3)

since ∫ x

1

y−1N(y) dy = c(x− 1) + θ

∫ x

1

D(y) dy,

where |θ| 6 1 and the last integral is o(x/ log x).

For dA a measure on [1, ∞) and δ1 Dirac point mass at 1, we have∫ x

1−
(δ1 + du) ∗ dA =

∫ ∫
st6x

(δ1 + ds) dA(t)

=

∫ x

1−

∫ x/t

1−
(δ1 + ds)dA(t) =

∫ x

1−

x

t
dA(t).

Thus, upon adding and subtracting c(δ1 + dt) on the right side of the Chebyshev
formula, it becomes∫ x

1

cx

t
dψ(t) +

∫ x

1

(dN − c δ1 − c dt) ∗ dψ. (3.4)
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Now we show that

I :=

∫ x

1

(dN − c δ1 − c dt) ∗ dψ = c′x+ o(x)

for some constant c′. We rewrite I as I1 + I2, with

I1 =

∫ x

1−
(dN − c δ1 − c dt) ∗ (δ1 + dt)

and

I2 =

∫ x

1−
(dN − c δ1 − c dt) ∗ (dψ − δ1 − dt).

We have

I1 =

∫ x

1−

x

t
(dN(t)− c δ1 − c dt)

= N(x)− cx+ x

∫ x

1

N(t)− ct
t2

dt

= θxD(x) + x(c′ + o(1)) = c′x+ o(x),

where

c′ =

∫ ∞

1

N(t)− ct
t2

dt.

The integral is convergent, since it is dominated by
∫∞
1
t−1D(t) dt.

Next, we claim that I2 = o(x). For x > 1, take

A(x) := N(x)− cx, B(x) := ψ(x)− x.

We have
|A(x)| 6 xD(x),

with D satisfying the conditions of the lemma. Also, B(x) = o(x) by the PNT
and Bv(x) = ψ(x) + x≪ x. It follows from the lemma that I2 = o(x).

Combining (3.3) and (3.4) with the approximation of I, we get

cx log x− cx+ o(x) = cxψ1(x) + c′x+ o(x),

which is equivalent to (2.1). �

4. Some technology

In the next section we construct a continuous g-number example, as Beurling did
[3] to show the optimality of his PNT result for g-primes. In place of a weighted
prime counting measure, we use a positive mass distribution, again called dΠ,



230 Harold G. Diamond, Wen-Bin Zhang

having support in [1, ∞) and no point mass at 1. The g-integer counting measure
dN is connected to dΠ by the relation

dN = δ1 + dΠ+
1

2!
dΠ ∗ dΠ+

1

3!
dΠ ∗ dΠ ∗ dΠ+ · · · =: exp∗ dΠ .

The exp∗ operator is a map from the additive group of measures on [1, ∞) to
the (convolution) multiplicative group of measures on the same space. Convergence
is in the sense of uniform convergence on compact sets. This operator is discussed
in some detail in [4] and in Chapters 2 and 3 of [2], but we set out a few facts
about it here.

For dA and dB measures on [1, ∞), we have

exp∗{dA+ dB} = {exp∗ dA} ∗ {exp∗ dB}.

Also, if T c is the operator on measures defined by {T c dA}(t) := tc dA(t), then, as
an easy consequence of the definition of convolution,

T−1{dA ∗ dB} = {T−1dA} ∗ {T−1dB},

and by applying T−1 to each term in the series for exp∗, we get

T−1 exp∗{dA} = exp∗{T−1dA}.

Our construction depends on the following two connected relations.

Lemma 4.1. Let

dλ(u) :=
1− u−1

log u
du, u > 1.

We have ∫ ∞

1

u−s dλ(u) = log
s

s− 1
, ℜs > 1, (4.1)

and
δ1 + du = exp∗{dλ(u)}. (4.2)

Proof. Let F (s) denote the integral on the left side of (4.1). Then

F ′(s) = −
∫ ∞

1

u−s (1− u−1) du = − 1

s− 1
+

1

s
=
{
log

s

s− 1

}′
.

Thus F agrees with log s/(s− 1) to within a constant. The constant is 0 since

lim
s→+∞

F (s) = 0 = lim
s→+∞

log
s

s− 1
.
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For (4.2), we have for ℜs > 1∫ ∞

1−
u−s exp∗{dλ(u)} =

∫ ∞

1−
u−s {δ1 + dλ(u) +

1

2!
dλ ∗ dλ(u) + . . . }

= 1 +

∫ ∞

1

u−s dλ(u) +
1

2!

{∫ ∞

1

u−s dλ(u)
}2

+ . . .

= 1 + log
s

s− 1
+

1

2!

{
log

s

s− 1

}2

+ . . .

= exp log
s

s− 1
=

s

s− 1
=

∫ ∞

1−
u−s{δ1 + du} .

By the identity theorem for Mellin transforms, the measures in the first and last
integrals must be the same. �

5. Example

We observed in Proposition 2.1 that the PNT was needed in order to establish the
sharp Mertens formula (2.1). Proposition 2.2 showed that the PNT by itself was
not sufficient for this purpose. The theorem and its corollaries provided conditions
that give (2.1). Are those conditions excessive? In particular, could we perhaps
prove the theorem under the weaker hypothesis N(x) = cx + O(x/ log x)? The
following example shows that the answer to the last question is No.

Example 5.1. PNT and N(x) = cx+O(x/log x) ̸⇒ (2.1). Take

dΠ(u) :=
1− u−1

log u
du+

(1− u−1

log u

)2
du. (5.1)

A. This prime density satisfies the PNT, since for x > e,

Π(x) = c+

∫ x

e

{ du

log u
+O

( 1

log2 u

)}
du =

x

log x
+O

( x

log2 x

)
.

B. To see the failure of a sharp Mertens relation, consider

ψ(x) =

∫ x

1

LdΠ(u) =

∫ x

1

(1− u−1) du+

∫ x

1

(1− u−1)2

log u
du = x+ f(x)

with

f(x) :=

∫ x

1

(1− u−1)2

log u
du− log x − 1 ∼ x/ log x.

By the contrapositive form of Proposition 2.2, (2.1) does not hold for this g-number
system.
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C. It remains to show that N(x) = cx+O(x/ log x). We have

N(x) =

∫ x

1−
exp∗

{1− u−1

log u
du+

(1− u−1

log u

)2
du
}

=

∫ x

1−
(δ1 + du) ∗ exp∗

{(1− u−1

log u

)2
du
}

=

∫ x

1−

x

u
exp∗

{(1− u−1

log u

)2
du
}
= x

∫ x

1−
exp∗

{(1− u−1

log u

)2 du
u

}
.

We approximate the last integral by Mellin inversion. We have

ζ(s) :=

∫ ∞

1−
u−s exp∗

{(1− u−1

log u

)2 du
u

}
= exp

∫ ∞

1

u−s
(1− u−1

log u

)2 du
u
,

by the argument used in proving (4.2). To analyze the integral, differentiate

log ζ(s) =

∫ ∞

1

u−s−1
(1− u−1

log u

)2
du .

Using Lemma 4.1, we get

−ζ ′

ζ
(s) =

∫ ∞

1

u−s−1 1− 2u−1 + u−2

log u
du

=

∫ ∞

1

u−s−1 1− u−1

log u
du−

∫ ∞

1

u−s−2 1− u−1

log u
du

= log
s+ 1

s
− log

s+ 2

s+ 1
= 2 log(s+ 1)− log s− log(s+ 2).

Integration yields

log ζ(s) = s log s+ (s+ 2) log(s+ 2)− 2(s+ 1) log(s+ 1) + c.

We have c = 0, since the rest of the preceding expression tends to 0 as s → +∞.
We thus obtain the explicit representation

ζ(s) =
ss(s+ 2)s+2

(s+ 1)2s+2
.

Now we apply the Mellin inversion formula. For any a > 0,

N(x)

x
=

1

2πi

∫ a+i∞

a−i∞
ζ(s)xs

ds

s
.

The zeta function is analytic on the cut complex plane with the negative axis and
the origin removed. We shift the integration contour to consist of two half-lines,
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two line segments and a small circle:

C1 : − 1/2− i∞ to − 1/2 + 0i−,
C2 : − 1/2 + 0i− to − ϵ+ 0i−,
C3 : ϵeiθ, −π < θ < π,

C4 : − ϵ+ 0i+ to − 1/2 + 0i+,

C5 : − 1/2 + 0i+ to − 1/2 + i∞,

and write
N(x)/x = I1 + I2(ϵ) + I3(ϵ) + I4(ϵ) + I5,

with Ij denoting the Mellin integral taken over Cj .
The main contribution to N(x)/x comes from C3. For s = ϵeiθ with ϵ→ 0,

ss = exp{(ϵ cos θ + iϵ sin θ)(log ϵ+ iθ)} = exp{O(ϵ| log ϵ|)} → 1.

Thus ζ(s)xs → 4 uniformly on C3 as ϵ→ 0, and

lim
ϵ→0

I3(ϵ) =
1

2πi

∫ π

−π
4i dθ = 4.

The next contribution comes from C2 and C4. C2 is traversed in the positive
direction with arg s = −π, while C4 is traversed in the opposite direction and has
arg s = π. For 0 < t < 1/2, we have

ζ(te±πi) = 4 exp{−t(log t± πi)}(1 +O(t)) = 4{1 +O(t| log t|)} exp{∓πit},

and thus

lim
ϵ→0
{I2(ϵ) + I4(ϵ)} =

−4
2πi

∫ 1/2

0

{1 +O(t| log t|)}
(
eπit − e−πit

)
x−t

dt

t

= −4
∫ 1/2

0

{1 +O(t| log t|)} sin(πt)
πt

e−t log x dt

= −4
∫ 1/2

0

{1 +O(t| log t|)}e−t log x dt.

Now, with u := t log x,∫ ∞

0

t| log t| e−t log x dt 6 1

log2 x

∫ ∞

0

u(| log u|+ log log x) e−u du

≪ (log log x)/(log2 x),

and thus
lim
ϵ→0
{I2(ϵ) + I4(ϵ)} =

−4
log x

+O
( log log x

log2 x

)
.
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Finally, on C1 ∪ C5 we have s = −1/2 + it with t ̸= 0, and here, by a small
calculation, ζ(s) = 1 +O(1/{|t|+ 1}). Thus

I1 + I5 =
x−1/2

2πi

∫ ∞

−∞

{
1 +O

( 1

|t|+ 1

)} xit dt

−1/2 + it
.

We have ∫ ∞

−∞
O
( 1

|t|+ 1

) dt

| − 1/2 + it|
= O(1)

and ∫ ∞

−∞

xit dt

−1/2 + it
= O(1) +

∫
|t|>1

xit

it

{
1 +O

(
|t|−1

)}
dt

= O(1) +

∫ ∞

1

2 sin(t log x)
dt

t
= O(1).

We find that I1 + I5 ≪ x−1/2.
Together, the five integrals give

N(x) = 4x− 4x

log x
+O

(x log log x
log2 x

)
,

that is, |N(x)− cx| ≪ x/ log x holds for this g-number system.
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