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HOW SLOWLY CAN A BOUNDED SEQUENCE CLUSTER?

John Bentin

Abstract: We propose a simple measure of how slowly a bounded real sequence clusters. This
measure, called separation, is the infimum, over all finite segments of the sequence with at least
two terms, of the ratio of the least distance between the terms in the segment to the general
supremum of such a distance for a segment of that length. An example of a highly separated
sequence is given. To create a more separated sequence, we modify van der Corput’s construction,
replacing the powers of a base by the even-numbered terms of the Fibonacci sequence. The result
coincides initially with the sequence built stepwise by maximizing separation for each extra term.
We conjecture that these sequences are the same and of maximal separation.
Keywords: bounded real sequence, clustering, separation.

1. Introduction

The Bolzano–Weierstrass theorem tells us that a bounded real infinite sequence
has a cluster point. Clustering is unavoidable in a bounded infinite sequence, but
some sequences cluster more slowly than others. We try to capture this idea in
the concept of separation. Roughly speaking, a highly separated sequence is one
where consecutive points and, to a gently diminishing extent, sequentially more
distant points are widely spaced. Separation (which will be defined in the next
section) and the established concept of dispersion [1] have some common features,
but generally the two measures are quite different in their properties.

2. A highly separated sequence

Let x0, x1, . . . be the distinct terms of a bounded real sequence with infimum a and
supremum b. Consider any run of consecutive terms—say n+1 of them. The least
distance between any two of the terms in this run can then be at most (b−a)/n. If
xi and xj are such a closest pair of terms, then |xi−xj | 6 (b−a)/n 6 (b−a)/|i−j|.
It follows that the quantity

|i− j||xi − xj | (i, j = 0, 1, . . . ; i ̸= j)
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is bounded above by b − a whenever xi and xj are a closest pair in a run. This
bound is attained or asymptotic in some cases and so cannot generally be reduced.
To create a “most separated” sequence, we try to construct the sequence so that
|i − j||xi − xj | is bounded below—for any such pair and hence for any unequal i
and j whatsoever—by a constant c that is as large as possible in relation to the
span of the sequence, b − a. Thus c/(b− a) is our measure of separation that we
want to maximize.

To standardize, we could take b − a = 1 and maximize c. For the present, it
is convenient to set c = 1 and try to minimize b− a. So our target is to solve the
following problem with a sequence that has the smallest possible span.

Problem 1. Find a bounded infinite sequence of real numbers x0, x1, . . . such
that

|i− j||xi − xj | > 1 for all unequal i, j ∈ N.

This problem has a solution xn = αn defined by

αn ≡ n (mod α) with 0 6 αn < α for n ∈ N,

where α2 − 3α+ 1 = 0 with α > 2. We will need to recall that the roots α and ᾱ
of x2 − 3x+ 1 = 0 are irrational.

Theorem 1. |i− j| |αi − αj | > 1 for all distinct i,j ∈ N.

Proof. Without loss of generality, take n = i− j > 0. Let k ∈ N with k 6 n+ 1.
Then n − kᾱ > 0 since ᾱ < 1

2 . Also n − kα ̸= 0 since α is irrational. So the
product (n − kᾱ)(n − kα), which equals the integer n2 − 3nk + k2, is nonzero.
Hence 1 6 (n− kᾱ)|n− kα| and therefore

1 6 n|n− kα|. (1)

Let αn = n − bnα, where bn ∈ N is uniquely determined, for each n = 1, 2, . . . ,
by 0 6 n − bnα < α. Note that bn 6 n. We consider the two cases αi > αj and
αi < αj separately.

If αi > αj , then |αi − αj | = αi − αj = i − j − (bi − bj)α = αi−j , since
0 6 αi − αj < α. Now choose k = bn. Then k 6 n + 1, and inequality (1) yields
1 6 n|n− kα| = n|n− bnα| = n|αn| = |i− j||αi − αj |.

In the case when αi < αj , we have α − (αj − αi) = i − j − (bi − bj − 1)α,
which is in [0 ,α) and so is equal to αi−j . In this case, choose k = bn + 1. Then
inequality (1) gives 1 6 n|n − kα| = n|n − (bn + 1)α| = n|α − (n − bnα)| =
n|α− αn| = (i− j)|α− αi−j | = |i− j||αi − αj |. �

3. A more separated sequence

Suppose that a real bounded sequence x = (xn : n ∈ N ) is nonconstant, and let
a = inf{xn : n ∈ N } and b = sup{xn : n ∈ N }. Our measure of separation may
be stated as

sepx =
1

b− a
inf
{
|i− j||xi − xj | : i,j ∈ N with i ̸= j

}
. (2)
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For completeness, define the separation of a constant sequence to be zero. Clearly,
separation is invariant under shifting and scaling of the sequence by constants.

Our solution sequence of integers modulo α, which has infimum 0 and supre-
mum α, has separation 1/α = ᾱ = 0.381966 . . . . However, there is a sequence, also
a solution to Problem 1, with higher separation: approximately 0.3944196702. To
define this sequence, we start with the sequence of integers a1, a2, . . . , which begins
1, 3, 8, 21, 55, 144, 377, . . . , defined by the recurrence relation ai−1− 3ai+ai+1 =
0 (i = 1, 2, . . .) with a0 = 0 and a1 = 1. Every nonnegative integer can be ex-
pressed as a sum of these ai using the largest of them possible. For example,
100 = 3+21+21+55 and 2012 = 1+8+8+21+987+987. We can thus code 100
as 01021; and 2012 codes as 10210002 in this way (the 0s correspond to missing
sequence terms). This code can be constructed, in reverse order, in a systematic
way similar to that of changing the base of expression for an integer—say from
base 10 to base 3. To code a positive integer n, divide it by the largest sequence
term ar not exceeding n, and record the result cr ∈ {1, 2}; thus n = cr ar + dr,
where 0 6 dr < ar. Then divide the remainder dr by the next-largest sequence
term ar−1 and record that result cr−1 ∈ {0, 1, 2}; so dr = cr−1 ar−1 + dr−1, where
0 6 dr−1 < ar−1; and so on until all the digits c1, . . . , cr have been found. The
code looks similar to ternary (or base 3) notation although, for convenience, we
write our code in the natural (ascending) order of the ai. Zero, corresponding to
an empty sum, codes as an empty string (not the string 0, which is of length 1).
The code-based solution to Problem 1 is:

xn =
r∑
i=1

ci
ai

when n is coded as c1 . . . cr.

Thus the solution sequence begins x0 = 0 and continues 1, 2, 1
3 , 11

3 , 21
3 , 2

3 , 1 2
3 ,

1
8 , . . . . The above examples yield x100 = 1

3 +
2
21 +

1
55 and x2012 = 1+ 2

8 +
1
21 +

2
987 .

We remark here that this way of building a sequence is structurally similar to van
der Corput’s [1], but using alternate terms of the Fibonacci sequence instead of
powers of a base integer, with some entailed restrictions.

To show that this claimed solution really works needs a more formal approach
and some labour, beginning with a definition. We define a tern as a finite—possibly
empty—string of digits, each 0, 1, or 2, such that any two occurrences of 2 have
a zero between them; the latter condition will be referred to as “the rule of 2s”.
The positions, or places, of the digits are enumerated 1, 2, . . . from the left. A tern
is considered to end at its last nonzero digit. However, it is convenient to assign
the digit 0 to virtual places beyond that position if the need arises. We mark terns
with a prefix: Tc1 . . . cr denotes a tern of length r. In notating strings, 0k means
a string of k 0s, while 1k is k 1s (k is allowed to be zero); and cm . . . cn is a string
of length n−m+ 1 (if n = m− 1, then the string is empty).

For any tern, there is a corresponding integer:

Tc1 . . . cr 7−→
r∑
i=1

ciai.
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We will establish that this map is one-to-one from the set T of terns onto N.
A lemma is needed first.

Lemma 1. aj +
k∑
i=j

ai + ak = aj−1 + ak+1 (j = 1, 2, . . . ; k = j, j + 1, . . .).

Proof. The result for k = j is the recurrence relation for the ai. Suppose that
the result has been established for k = j + l:

aj +

j+l∑
i=j

ai + aj+l = aj−1 + aj+l+1.

Adding 2aj+l+1 − aj+l to each side gives

aj +

j+l+1∑
i=j

ai + aj+l+1 = aj−1 + 3aj+l+1 − aj+l = aj−1 + aj+l+2,

which is the result for k = j + l + 1. By induction, the result holds for all
k = j, j + 1, . . . . �

By setting j = 1 in Lemma 1, we can easily get the following result.

Corollary 1. (ai : i = 1, 2, . . .) is a strictly increasing sequence of positive terms
satisfying ai+1 > 2ai (i = 1, 2, . . .).

From the recurrence relation for the ai and their nonnegativity, it follows that
ai+1 6 3ai (i = 1, 2, . . .). Therefore, in forming the code string (in reverse) for
a positive integer through division by the largest ai that does not exceed it, and
successively for each resulting remainder, only the digits 0, 1, and 2 can appear.
Moreover, a block of the form 22, 212, . . . , 21n2, . . . cannot arise. To see this,
suppose contrarily that there were such a block, spanning (say) the jth to the kth
digits, where j < k. From Lemma 1, we have 2aj +

∑k−1
i=j+1 ai + 2ak > ak+1. But

the left-hand side here is at most the remainder when the division is by ak+1, and
this must be less than ak+1: a contradiction. It follows that the coding function
we described takes its values in T , the set of terns:

t : N −→ T : n 7−→ tn = Tc1 . . . cr, n =
r∑
i=1

ciai,

where the largest possible ai and corresponding smallest possible ci ∈ {0, 1, 2} are
chosen. We will also write

n : T −→ N : Tc1 . . . cr 7−→ nc1 . . . cr =

r∑
i=1

ciai. (3)

It is clear that t and n are bijective and inverse to each other. We will use this fact
implicitly from now on. The proposed solution to Problem 1 can now be stated
formally.
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Theorem 2. The sequence ( fn : n ∈ N ), defined by

fn =

r∑
i=1

ci
ai

iff n = nc1 . . . cr,

satisfies the condition |p− q||fp − fq| > 1 for all unequal p, q ∈ N.

The proof of Theorem 2 will be deferred until we have gathered some useful
techniques and results. The first step is to extend the set T of terns by allowing
negative digits. For convenience, we write 1̄ for −1 and 2̄ for −2. A subtern
Se1 . . . et is a string of digits from {2̄, 1̄, 0, 1, 2} such that ei = ci−di for i = 1, . . . , t,
where Tc1 . . . cr and Td1 . . . ds are terns and t = max{ i : ci−di ̸= 0 }; here we extend
a tern by appending 0s as far as necessary to allow the placewise subtraction.

A block of the form 21k2, and similarly 2̄1̄k2̄, cannot arise in a subtern. To see
this for 21k2 (the argument for 2̄1̄k2̄ is similar), suppose otherwise and let these
digits be the mth to the (m+ k+1)th digits of the subtern Se1 . . . et formed from
the terns Tc1 . . . cr and Td1 . . . ds as ei = ci − di (i = 1, . . . , t). Then cm − dm = 2,
cm+i − dm+i = 1 (i = 1, . . . , k), and cm+k+1 − dm+k+1 = 2. It follows that
cm = 2, cm+i > 1 (i = 1, . . . , k), and cm+k+1 = 2. But this contradicts the
rule of 2s applied to Tc1 . . . cr. Conversely, any finite string e1 . . . et of digits from
{2̄, 1̄, 0, 1, 2} in which blocks of the form 21k2 and 2̄1̄k2̄ are absent is the difference
of terns Tc1 . . . cr and Td1 . . . ds: for example, ei = ci − di, where

ci =

{
0 if ei 6 0

ei if ei > 0
and di =

{
−ei if ei 6 0

0 if ei > 0
(i = 1, . . . , t),

with r = max{ i ∈ N : ci > 0 } and s = max{ i ∈ N : di > 0 }.
Let S denote the set of subterns. The map n in eqn (3) naturally extends to a

map z defined on S by

z : S −→ Z : Sc1 . . . cr 7−→ zc1 . . . cr =
r∑
i=1

ciai.

We also define a fraction-valued map

f : S −→ Q : Sc1 . . . cr 7−→ fc1 . . . cr =
r∑
i=1

ci
ai
.

Suppose that we operate on a subtern σ by the addition of the digits of a string
of the form 0i1̄31̄, called a basic patch or a patch of order zero, or of the form
0i1̄21j21̄, called a patch of order j + 1, to the placewise corresponding digits of
the subtern. Then a consequence of Lemma 1 is, as long as the result σ′ of
the operation is still a subtern, that the z-value is unaffected: zσ′ = zσ. The
recursive application of patches to a subtern is called patching. We will patch
strictly according to the following rules:
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1. A patch is applied only to a subtern whose first nonzero digit is positive.
2. The initial 1̄ of a patch must be added to a positive digit that is not preceded

by any negative digit.
3. The final 1̄ of a patch must be added either (a) to a positive digit or (b) to

the virtual zero beyond the end of the subtern, thus creating an extra digit
1̄.

4. The intermediate block of positive digits of a patch, namely, 3, 22, 212, or
generally 21k2, must be added only to a corresponding block of nonpositive
digits that includes at least one negative digit.

5. The patching process stops as soon as either (a) all the digits are nonnegative
(i.e. the subtern is a tern) or (b) the final digit of the subtern is 1̄ and all the
preceding digits are nonnegative.

A subtern satisfying either condition of rule 5 is said to be fully patched. (Later
we will relax rule 5b to allow the extension of subterns.) To illustrate the patching
process, an example is shown below. At each stage, the digits to be patched are
distinguished, and the patch to be applied is shown on the right.

0 1 1̄ 1 1̄ 2̄ 1̄ 1̄ 0 1̄ 1 0 0 0 2̄
0 0 2 0 1̄ 2̄ 1̄ 1̄ 0 1̄ 1 0 0 0 2̄
0 0 1 2 0 1̄ 0 0 1 1 0 0 0 0 2̄
0 0 1 1 2 0 1 2 0 1 0 0 0 0 2̄ 0
0 0 1 1 2 0 1 2 0 0 2 1 1 1 0 1̄

(01̄31̄)
(021̄21521̄)
(031̄21221̄)
(091̄21321̄)
(fully patched).

Suppose that we are given an initial subtern whose first nonzero digit is positive.
To see that the patching process always stops, observe that a patch of order n (i.e.
of length n + 3) raises the sum of digits by n + 1 for n ∈ N. If the final digit of
the original subtern is positive, then patching does not extend its length r (the
length may be reduced, since a created terminal 0 is ignored). So the patching
must stop before the sum of digits exceeds the sum of r 2s (otherwise the rule
of 2s would be violated). Now consider the case when the final digit is negative
(as in the example above). Suppose that patching has gone as far as possible
without extending the subtern. Then the subtern at this stage will comprise an
initial block of nonnegative digits ending in a positive digit appended by a block
of nonpositive digits ending in a negative digit: say Sc1 . . . cmcm+1 . . . cm+k, where
cm > 0, cm+i 6 0 (i = 1, . . . , k − 1), and cm+k < 0. If the subtern is not yet
fully patched, apply a patch 0m−11̄31̄ (if k = 1) or 0m−11̄21k−221̄ (if k > 2) to
extend the subtern by one digit (a 1̄) and result in a subtern that has no digit 2̄.
If the subtern is still not fully patched, then continue the patching process as far
as possible without extending the subtern. The result will be, as before, a subtern
comprising a block of nonnegative digits ending in a positive digit appended by
a block of nonpositive digits, ending in a 1̄, that now features no digit 2̄: say
Sc1 . . . clcl+1 . . . cl+j , where cl > 0, cl+i ∈ {0, 1̄} (i = 1, . . . , j − 1), and cl+j = 1̄.
This time around, a patch 0l−11̄31̄ (if j = 1) or 0l−11̄21j−221̄ (if j > 2) clears any
remaining negative digits, except for the newly introduced terminal 1̄, and so the
subtern is fully patched.
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The reader will perhaps be glad to learn at this stage that only one further,
comparatively simple, recursive operation on subterns is required: shunting. Ini-
tially we restrict shunting to terns. A shunt is performed when a positive digit is
reduced by 1 while a higher-placed digit less than 2 is increased by 1. The result
of a shunt must still be a tern—that is, the rule of 2s must not be violated—and
shunting must not go beyond the end of a tern. A tern that cannot be shunted
(further) is fully shunted. Examples of fully shunted terns are the empty string,
1, 2, 01, 02, 12, . . . , 00001, . . . , 0001112, . . . . A nonempty fully shunted tern must
be of the form 0m1 or 0m1n2, where m,n ∈ N.

As remarked in Corollary 1, the inequalities 0 < a1 < a2 < · · · hold. From this
it is easy to see that shunting increases the n-value, or equivalently the z-value, of
terns. In a parallel way, shunting decreases the f-value.

The shunting process may be simply extended to subterns of the form τ 1̄, where
τ is a nonempty tern, by restricting the shunting to the initial block of nonnegative
digits, i.e. to τ . If τ is of length r, and τ ′ is the result of fully shunting τ (τ ′ = τ if
τ is already fully shunted), then zτ 6 zτ ′ 6 z1r−12 = z0r1− 1, the latter equality
holding by Lemma 1. Therefore zτ 1̄ = zτ − z0r1 is negative. It follows that
shunting a subtern of the form τ 1̄ (τ a tern) increases its z-value while maintaining
the negativity of the z-value. Hence shunting such subterns reduces the absolute
z-value: |zτ ′1̄| < |zτ 1̄|, where τ ′ derives from τ by shunting. In a similar way it is
easily seen that the fractional value fτ ′1̄ of a shunted subtern τ ′1̄, while remaining
positive, is less than the fractional value fτ 1̄ of the subtern from which it derives.

After recording the following three useful lemmas, we will be ready to embark
on the proof of Theorem 2.

Lemma 2. a2n − an−1 an+1 = 1 (n = 1, 2, . . . ).

Proof. The result clearly holds for n = 1. Suppose it true for n = k. Then

1 = a2k − ak−1 ak+1 = a2k − (3ak − ak+1)ak+1 = a2k+1 − ak(3ak+1 − ak)

= a2k+1 − ak ak+2,

establishing the result for n = k + 1 and, by induction, for all n = 1, 2, . . . . �

Lemma 3.
1

an−1
− 3

an
+

1

an+1
=

3

an−1 an an+1
(n = 2, 3, . . .).

Proof.

1

an−1
− 3

an
+

1

an+1
=

an an+1 − 3an−1 an+1 + an−1 an
an−1 an an+1

=
an an+1 − 3(a2n − 1) + (3an − an+1)an

an−1 an an+1
(by Lemma 2)

=
3

an−1 an an+1
. �
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Lemma 4. am am+n−1 − am−1 am+n = an (m = 1, 2, . . . ;n = 0, 1, . . .).

Proof. The result is obvious for n = 0, and Lemma 2 is the result for n = 1.
Suppose the result to hold for n = 0, . . . , k and all m = 1, 2, . . . , where k > 1.
Taking n = k and m = l > 2 gives

al al+k−1 − al−1 al+k = ak (l = 2, 3, . . . ). (4)

Also, taking n = k − 1 and m = l + 1 gives

al+1 al+k−1 − al al+k = ak−1 (l = 2, 3, . . . ). (5)

Multiplying eqn (4) through by 3 and subtracting eqn (5) yields

(3al − al+1)al+k−1 − (3al−1 − al)al+k = 3ak − ak−1,

or
al−1 al+k−1 − al−2 al+k = ak+1 (l = 2, 3, . . . ).

That is, am am+k − am−1 am+k+1 = ak+1 (m = 1, 2, . . .), which is the result for
n = k + 1. By induction, the general result follows. �

Proof of Theorem 2. Let g = |p − q| |fp − fq|, where p,q ∈ N with p ̸= q.
Our task is to show that g > 1. Without loss of generality, we may assume
fp> fq. Let p = nc1 . . . cr and q = nd1 . . . ds, and let σ be the subtern Se1 . . . et,
where ei = ci − di for i = 1, . . . , t, with t = max{ i : ci − di ̸= 0 }. Then
g = |ze1 . . . et|fe1 . . . et. Let σ̃ = Sẽ1 . . . ẽt̃ be the result of fully patching σ. Then
either (A) p > q and ẽi > 0 for i = 1, . . . , t̃, or (B) p < q, ẽi > 0 for i = 1, . . . , t̃−1,
and ẽt̃ = 1̄.

In case A, because zσ̃ = zσ and fσ̃ 6 fσ, we have

g >
t̃∑
i=1

ẽi ai

t̃∑
i=1

ẽi
ai

>
t̃∑
i=1

ẽ2i > 1

since all ẽi are nonnegative and not all are 0.
In case B, we shunt σ̃ to a subtern of the form (B1) 0m−111̄ or (B2) 0m−11n21̄,

where n and m− 1 are in N.
In case B1:

g − 1 > |zσ̃|fσ̃ − 1 > |z0m−111̄|f0m−111̄− 1

= (am+1 − am)

(
1

am
− 1

am+1

)
− 1 =

a2m − 3am am+1 + a2m+1

am am+1
.

The numerator of this last expression is

a2m − am+1(3am − am+1) = a2m − am−1 am+1,

which is positive by Lemma 2. It follows that g > 1.
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In case B2, we now relax rule 5b to continue patching indefinitely. Observe
that applying the basic (order 0) patch 0m−11̄31̄ to 0m−121̄ produces 0m−1121̄,
while applying the multiple (order k+1) patch 0m−11̄21k21̄ produces 0m−11k+221̄
(k ∈ N). Thus, by Lemma 1, all subterns 0m−11j21̄ (j ∈ N) have the same z-value,

z0m−11j21̄ = z0m−121̄ (j ∈ N), (6)

for a given m. At the same time, by Lemma 3, the same patching reduces the
f-values according to the order, or multiplicity, of the patch. That is, ( f0m−11i21̄ :
i ∈ N ) is a strictly decreasing sequence of positive terms which therefore has a
limit

∑∞
i=m 1/ai. It follows that

f0m−11n21̄ >

∞∑
i=m

1

ai
. (7)

Since patching preserves z-values and reduces f-values,

g > |z0m−11n21̄| f0m−11n21̄

= |z0m−121̄| f0m−11n21̄ (by eqn (6))

> |z0m−121̄|
∞∑
i=m

1

ai
(by eqn (7))

= (am+1 − 2am)
∞∑
i=m

1

ai
(by Corollary 1)

= (am − am−1)

∞∑
i=m

1

ai

= 1 + lim
k→∞

[m+k∑
i=m

(
am
ai+1

− am−1

ai

)
− am

am+k+1

]

= 1 +
∞∑
i=m

am ai − am−1 ai+1

ai ai+1
(by Corollary 1)

= 1 +
∞∑
i=m

ai−m+1

ai ai+1
(by Lemma 4)

> 1. �

4. Further remarks and questions

Let β0 = 0, and define βn (n = 1, 2, . . .) to be the least positive real number
x that satisfies (n − k)|x − βk| > 1 for k = 0, . . . , n − 1. We conjecture that
(βn : n ∈ N ) and ( fn : n ∈ N ) are equal and of maximal separation. However,
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without a proof, the question in the title remains. Is there a sequence that clusters
more slowly than ( fn : n ∈ N ), namely is more separated in the sense defined in
eqn (2)?1 More fundamentally, is there a “measure of reluctance to cluster” that
is more elementary, natural, or canonical than that of separation presented here?
And what would be an example of a “most slowly clustering” sequence under such
a definition?
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