POWERS IN $\prod_{k=1}^{n}\left(a k^{2^{2} \cdot 3^{m}}+b\right)$

Zhongfeng Zhang

Abstract

Let $f(x)=a x^{2^{l} \cdot 3^{m}}+b \in \mathbb{Z}[x]$ be a polynomial with $l \geqslant 1, l+m \geqslant 2, a b \neq 0$ and such that $f(k) \neq 0$ for any $k \geqslant 1$. We prove, under $A B C$ conjecture, that the product $\prod_{k=1}^{n} f(k)$ is not a $2^{l} \cdot 3^{m}$-th power for n large enough.

Keywords: powers, the greatest prime factor, $A B C$ conjecture.

1. Introduction

In [1], J. Cilleruelo proved that the product $\prod_{k=1}^{n}\left(k^{2}+1\right)$ is not a square when $n>3$. Using similar arguments, Erhan Gürel, Ali Ulaş Özgür Kişisel [2] proved that $\prod_{k=1}^{n}\left(k^{3}+1\right)$ is not a square for any positive integer n. For any irreducible quadratic polynomial $f(x) \in \mathbb{Z}[x]$, Zhang and Yuan[4] proved that the product $\prod_{k=1}^{n} f(k)$ is not a square when $n>C(f)$. Their proof also tells us how to calculate the constant $C(f)$. For higher degree polynomials, it is not easy to obtain a similar result.

For the special family of polynomials $f(x)=a x^{2^{l} \cdot 3^{m}}+b \in \mathbb{Z}[x]$, we obtain a result of this type under the $A B C$ conjecture.

Theorem 1.1. Let l, m be non-negative integers, $l \geqslant 1, l+m \geqslant 2$, and let $f(x)=$ $a x^{2^{l} \cdot 3^{m}}+b \in \mathbb{Z}[x]$ be a polynomial such that $a b \neq 0$ and $f(k) \neq 0$ for $k \geqslant 1$. Then under $A B C$ conjecture, the product $T_{n}=\prod_{k=1}^{n} f(k)$ is not a $2^{l} \cdot 3^{m}$ power for sufficiently large n.

2. Proof of Theorem 1.1

First, we introduce the $A B C$ conjecture.

ABC Conjecture. Let $\epsilon>0$, then there is a constant C_{ϵ}, depending only on ϵ, such that for all triples $A, B, C \in \mathbb{Z}$, with $A+B+C=0$ and $\operatorname{gcd}(A, B, C)=1$, the following inequality holds:

$$
\max \{|A|,|B|,|C|\}<C_{\epsilon} \prod_{p \mid A B C} p^{1+\epsilon}
$$

The following lemma is obtained by Nagell[3] .
Lemma 2.1. Let $f(x)$ be any polynomial with integer coefficients which is not the product of linear factors with integral coefficients. Denote by P_{n}, the greatest prime factor of $\prod_{k=1}^{n} f(k)$. Then

$$
P_{n}>C_{1} n \log n,
$$

where the positive constant C_{1} depends on $f(x)$.
Proof of Theorem 1.1. We give two propositions, and then Theorem 1.1 follows.

Proposition 2.2. Let $l \geqslant 2$ be an integer, $f(x)=a x^{2^{l}}+b \in \mathbb{Z}[x]$, $a b \neq 0$, $f(k) \neq 0, k \geqslant 1$. Then, under ABC conjecture, there is a positive constant C_{f}, depending only on $f(x)$, such that the product $\prod_{k=1}^{n} f(k)$ is not a 2^{l}-th power when $n>C_{f}$.

Proof. Let $T_{n}=\prod_{k=1}^{n} f(k)$ be a 2^{l}-th power, $n>\max \{|a|,|b|\}$, and p any prime which divides T_{n}. First, we prove that there exists a constant $C_{1}=C_{1}(f)$, such that $p<C_{1} n$. We distinguish three cases which cover all the situations and assume $p>n$ in the following discussion.

Case 1: $p^{3} \mid f(k)$ for some $1 \leqslant k \leqslant n$.
Let $a k^{2^{l}}+b=p^{3} e$, then $d=\operatorname{gcd}\left(a k^{2^{l}}, b, p^{3} e\right)=\operatorname{gcd}\left(a k^{2^{l}}, b, e\right)$ because $p>n>|b|$. We have now to consider the equality

$$
\frac{a k^{2^{l}}}{d}+\frac{b}{d}=p^{3} \frac{e}{d}
$$

There is a constant $C_{2}=C_{2}(f)$, such that

$$
|a| k \frac{|b|}{d} p \frac{|e|}{d}=\frac{|a b| k p}{d^{2}} \frac{\left|a k^{2^{2}}+b\right|}{p^{3}}=\frac{|a b|}{d^{2}} \frac{\left|a k^{2^{2}+1}+b k\right|}{p^{2}}<C_{2} k^{2^{l}-1}
$$

since $p>n \geqslant k$. Take $\epsilon=2^{-(l+1)}$ in the $A B C$ conjecture, we have

$$
|a| k^{2^{l}}<C_{\epsilon}\left(C_{2} k^{2^{l}-1}\right)^{1+2^{-(l+1)}}
$$

which yields $k<C_{3}=C_{3}(f)$, and then we obtain $p<C_{4}=C_{4}(f)$. Therefore, we have $p<C_{5} n=C_{5}(f) n$ in Case 1.

Case 2: $p^{2} \mid f\left(r_{j}\right)$ for some $1 \leqslant r_{1}<r_{2}<\ldots<r_{2^{l-1}} \leqslant n$.

In this case, one has $p^{2} \mid a\left(r_{j}^{2^{l}}-r_{i}^{2^{l}}\right)=a\left(r_{j}^{2^{l-1}}-r_{i}^{2^{l-1}}\right)\left(r_{j}^{2^{l-1}}+r_{i}^{2^{l-1}}\right)$ for any $1 \leqslant i<j \leqslant 2^{l-1}$. Since

$$
r_{j}^{2^{l-1}}+r_{i}^{2^{l-1}}=r_{j}^{2^{l-1}}-r_{i}^{2^{l-1}}+2 r_{i}^{2^{l-1}}
$$

and $p>n$, we get $\operatorname{gcd}\left(p, r_{j}^{2^{l-1}}-r_{i}^{2^{l-1}}, r_{j}^{2^{l-1}}+r_{i}^{2^{l-1}}\right)=1$.
Define $S_{l}=2^{l-2}+1$ for $l \geqslant 2$, then $S_{l+1}=2 S_{l}-1$. We will prove, by induction on l, that if $p^{2} \mid a\left(t_{j}^{2^{l}}-t_{1}^{2^{l}}\right), 2 \leqslant j \leqslant S_{l}$ for some $1 \leqslant t_{1}<t_{2}<\ldots<t_{S_{l}} \leqslant n$, then $p<2 n$.

When $l=2$, we have $p<2 n$ from $p^{2} \mid a\left(t_{2}^{4}-t_{1}^{4}\right)=a\left(t_{2}^{2}-t_{1}^{2}\right)\left(t_{2}^{2}+t_{1}^{2}\right)$ and $p>n>|a|$.

If the statements holds for $l-1$, we prove that it is also true for l.
Since $p^{2} \mid f\left(r_{j}\right)$, we have $p^{2} \mid f\left(r_{j}\right)-f\left(r_{1}\right)$, that is

$$
p^{2} \mid a\left(t_{j}^{2^{l}}-t_{1}^{2^{l}}\right)=a\left(t_{j}^{2^{l-1}}-t_{1}^{2^{l-1}}\right)\left(t_{j}^{2^{l-1}}+t_{1}^{2^{l-1}}\right), \quad 2 \leqslant j \leqslant S_{l}=2 S_{l-1}-1
$$

Together with $\operatorname{gcd}\left(p, r_{j}^{2^{l-1}}-r_{i}^{2^{l-1}}, r_{j}^{2^{l-1}}+r_{i}^{2^{l-1}}\right)=1, \quad p>n>|a|$ and pigeonhole principle, we have
(i) $p^{2} \mid t_{j_{i}}^{2^{l-1}}-t_{1}^{2 l-1}$ for some $2 \leqslant j_{1}<\ldots<j_{S_{l-1}-1} \leqslant S_{l}$,
or
(ii) $p^{2} \mid t_{j_{i}}^{2^{l-1}}+t_{1}^{2^{l-1}}$ for some $2 \leqslant j_{1}<\ldots<j_{S_{l-1}} \leqslant S_{l}$.

Case (i) is just the situation of $l-1$, by induction, we obtained $p<2 n$. Case (ii) leads to $p^{2} \mid t_{j_{i}}^{2^{l-1}}-t_{j_{1}}^{2 l-1}, 2 \leqslant i \leqslant S_{l-1}$, and is also the situation of $l-1$, thus we get $p<2 n$ by induction. Since $S_{l}=2^{l-2}+1 \leqslant 2^{l-1}$, we have $p<2 n$ in Case 2 .

Case 3: $p \mid f\left(r_{j}\right)$ for some $1 \leqslant r_{1}<r_{2}<\ldots<r_{2^{l-1}+1} \leqslant n$.
In this case, one has

$$
p \mid a\left(r_{j}^{2^{l}}-r_{i}^{2^{l}}\right)=a\left(r_{j}^{2^{l-1}}-r_{i}^{2^{l-1}}\right)\left(r_{j}^{2^{l-1}}+r_{i}^{2^{l-1}}\right), \quad 1 \leqslant i<j \leqslant 2^{l-1}+1 .
$$

Similar to Case 2, we can get $p<2 n$ by induction. Actually, since $2^{l-1}+1=S_{l+1}$, we replace p^{2} by p in the induction of Case 2 , and the same argument leads to $p<2 n$ if it is true for $l=2$. Thus we only need to check the case $l=2$.

When $l=2$, we have $p \mid a\left(r_{j}^{4}-r_{1}^{4}\right)=a\left(r_{j}^{2}-r_{1}^{2}\right)\left(r_{j}^{2}+r_{1}^{2}\right), 2 \leqslant j \leqslant 3$. If $p \mid r_{2}^{2}-r_{1}^{2}$ or $r_{3}^{2}-r_{1}^{2}$, then $p<2 n$. Otherwise $p \mid r_{j}^{2}+r_{1}^{2}, 2 \leqslant j \leqslant 3$ since $p>n>|a|$, that is, $p \mid\left(r_{3}^{2}+r_{1}^{2}\right)-\left(r_{2}^{2}+r_{1}^{2}\right)=r_{3}^{2}-r_{2}^{2}$, which yields $p<2 n$.

From the discussion of Cases 1, 2, 3 we know that there exists a constant $C_{1}=C_{1}(f)$, such that $p<C_{1} n$. It is obvious that $f(x)$ can not decompose into linear factors with integral coefficients, so by Lemma 2.1 we get $n<C_{f}$.

Proposition 2.3. Let $l \geqslant 1, m \geqslant 1$ be integers, $f(x)=a x^{2^{l} \cdot 3^{m}}+b \in \mathbb{Z}[x], a b \neq 0$, $f(k) \neq 0, k \geqslant 1$. Then, under $A B C$ conjecture, there is a positive constant C_{f}, depending only on $f(x)$, such that the product $\prod_{k=1}^{n} f(k)$ is not a $2^{l} \cdot 3^{m}$-th power when $n>C_{f}$.

Proof. Let $T_{n}=\prod_{k=1}^{n} f(k)$ be an $2^{l} \cdot 3^{m}$-th power, $n>\max \{|a|,|b|\}, p$ is any prime which divides T_{n}. Similar to Proposition 2.2, we prove that there exists a constant $C_{1}=C_{1}(f)$, such that $p<C_{1} n$. Since $2^{l} \cdot 3^{m-1}+2^{l+1} \cdot 3^{m-1}=2^{l} \cdot 3^{m}$, we distinguish three cases which cover all the situations and assume $p>\max \{n, 3\}$ in the following discussion.

Case 1: $p^{3} \mid f(k)$ for some $1 \leqslant k \leqslant n$.
Similar to the proof of Proposition 2, Case 1, we have $p<C_{2} n=C_{2}(f) n$ under $A B C$ conjecture.

Case 2: $p^{2} \mid f\left(r_{j}\right)$ for some $1 \leqslant r_{1}<r_{2}<\ldots<r_{2^{l} \cdot 3^{m-1}+1} \leqslant n$.
Case 2.1: We will prove $p<2 n$ by induction in the following situation: There exist $3^{m-1}+1$ different integers $1 \leqslant t_{i} \leqslant n$, which for any $2 \leqslant i \leqslant 3^{m-1}+1$, one has $p^{2} \mid a\left(t_{i}^{3^{m}}-t_{1}^{3^{m}}\right)$.

Define $Q_{m}=3^{m-1}+1$ for $m \geqslant 1$, then $Q_{m+1}=3 Q_{m}-2$. We proceed to prove the statement by induction on m.

When $m=1$, since $Q_{1}=3^{1-1}+1=2$, we have

$$
p^{2} \mid a\left(t_{2}^{3}-t_{1}^{3}\right)=a\left(t_{2}-t_{1}\right)\left(t_{2}^{2}+t_{2} t_{1}+t_{1}^{2}\right),
$$

together with $p \nmid a\left(t_{2}-t_{1}\right)$ implied by $p>n>|a|$ leads to $p<2 n$.
Assume we get $p<2 n$ for $m-1$, we will prove $p<2 n$ for m. Since

$$
\begin{aligned}
& p^{2} \mid a\left(t_{i}^{3^{m}}-t_{1}^{3^{m}}\right) \\
& \quad=a\left(t_{i}^{3^{m-1}}-t_{1}^{3^{m-1}}\right)\left(t_{i}^{2 \cdot 3^{m-1}}+t_{i}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right), \quad 2 \leqslant i \leqslant Q_{m}
\end{aligned}
$$

and

$$
\begin{aligned}
t_{i}^{2 \cdot 3^{m-1}}+t_{i}^{3^{m-1}} t_{1}^{3^{m-1}} & +t_{1}^{2 \cdot 3^{m-1}} \\
& =\left(t_{i}^{3^{m-1}}-t_{1}^{3^{m-1}}\right)^{2}+3 t_{i}^{3^{m-1}} t_{1}^{3^{m-1}}, \quad p>\max \{n, 3\}
\end{aligned}
$$

implies

$$
\operatorname{gcd}\left(p, t_{i}^{3^{m-1}}-t_{1}^{3^{m-1}}, t_{i}^{2 \cdot 3^{m-1}}+t_{i}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right)=1
$$

one has three cases which contain all the possibilities.
(i) $p^{2} \mid t_{i_{s}}^{3^{m-1}}-t_{1}^{3^{m-1}}$ for some $2 \leqslant i_{1}<i_{2}<\ldots<i_{Q_{m-1}-1} \leqslant Q_{m}$, then we get $p<2 n$ by induction.
(ii) $p^{2} \nmid t_{i}^{3^{m-1}}-t_{1}^{3^{m-1}}$ for some $2 \leqslant i \leqslant Q_{m}$. Without loss of generality, we assume $p^{2} \nmid t_{2}^{3^{m-1}}-t_{1}^{3^{m-1}}$. If $p^{2} \mid t_{j_{s}}^{3^{m-1}}-t_{2}^{3^{m-1}}$ for some $3 \leqslant j_{1}<j_{2}<\ldots<$ $j_{Q_{m-1}-1} \leqslant Q_{m}$, then we also get $p<2 n$ by induction.
(iii) Assume $p^{2} \nmid t_{2}^{3^{m-1}}-t_{1}^{3^{m-1}}$, and recall that $Q_{m}=3 Q_{m-1}-2$, then since $3 Q_{m-1}-2-\left(Q_{m-1}-2+Q_{m-1}-2+2\right)=Q_{m-1}$, the left case is that

$$
p^{2} \nmid t_{j_{s}}^{3^{m-1}}-t_{1}^{3^{m-1}}, \quad p^{2} \nmid t_{j_{s}}^{3^{m-1}}-t_{2}^{3^{m-1}}
$$

for some $3 \leqslant j_{1}<j_{2}<\ldots<j_{Q_{m-1}} \leqslant Q_{m}$. Therefore one has

$$
\begin{aligned}
p^{2} \mid\left(t_{j_{s}}^{2 \cdot 3^{m-1}}+t_{j_{s}}^{3^{m-1}} t_{1}^{3^{m-1}}\right. & \left.+t_{1}^{2 \cdot 3^{m-1}}\right)-\left(t_{2}^{2 \cdot 3^{m-1}}+t_{2}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right) \\
& =\left(t_{j_{s}}^{3^{m-1}}-t_{2}^{3^{m-1}}\right)\left(t_{j_{s}}^{3^{m-1}}+t_{2}^{3^{m-1}}+t_{1}^{3^{m-1}}\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
p^{2} \mid\left(t_{j_{s}}^{3^{m-1}}+t_{2}^{3^{m-1}}+t_{1}^{3^{m-1}}\right) & -\left(t_{j_{1}}^{3^{m-1}}+t_{2}^{3^{m-1}}+t_{1}^{3^{m-1}}\right) \\
& =t_{j_{s}}^{3^{m-1}}-t_{j_{1}}^{3^{m-1}}, \quad 2 \leqslant s \leqslant Q_{m-1}
\end{aligned}
$$

which yields $p<2 n$ by induction.
Case 2.2: Now we use Case 2.1, together with induction on l to show $p<2 n$ in Case 2.

When $l=1$, one has

$$
p^{2} \mid a\left(r_{i}^{2 \cdot 3^{m}}-r_{1}^{2 \cdot 3^{m}}\right)=a\left(r_{i}^{3^{m}}-r_{1}^{3^{m}}\right)\left(r_{i}^{3^{m}}+r_{1}^{3^{m}}\right),
$$

combined with

$$
\operatorname{gcd}\left(p, r_{i}^{3^{m}}-r_{1}^{3^{m}}, r_{i}^{3^{m}}+r_{1}^{3^{m}}\right)=1, \quad 2 \leqslant i \leqslant 2 \cdot 3^{m-1}+1
$$

implied by $p>n$, we obtain
(i) $p^{2} \mid r_{i_{s}}^{3^{m}}-r_{1}^{3^{m}}$ for some $2 \leqslant i_{1}<i_{2}<\ldots<i_{3^{m-1}} \leqslant 2 \cdot 3^{m-1}+1$, or
(ii) $p^{2} \mid r_{j_{s}}^{3^{m}}+r_{1}^{3^{m}}$ for some $2 \leqslant j_{1}<j_{2}<\ldots<j_{3^{m-1}+1} \leqslant 2 \cdot 3^{m-1}+1$.

Because (ii) implies (i), by Case 2.1, each case leads to $p<2 n$.
Assume we get $p<2 n$ for $l-1$, we will prove $p<2 n$ for l. Since

$$
\begin{aligned}
& p^{2} \mid a\left(r_{i}^{2^{l} \cdot 3^{m}}-r_{1}^{2^{l} \cdot 3^{m}}\right) \\
& \quad=a\left(r_{i}^{2^{l-1} \cdot 3^{m}}-r_{1}^{2^{l-1} \cdot 3^{m}}\right)\left(r_{i}^{2^{l-1} \cdot 3^{m}}+r_{1}^{2^{l-1} \cdot 3^{m}}\right), \quad 2 \leqslant i \leqslant 2^{l} \cdot 3^{m-1}+1
\end{aligned}
$$

and

$$
\operatorname{gcd}\left(p, r_{i}^{2^{l-1} \cdot 3^{m}}-r_{1}^{2^{l-1} \cdot 3^{m}}, r_{i}^{2^{l-1} \cdot 3^{m}}+r_{1}^{2^{l-1} \cdot 3^{m}}\right)=1
$$

implied by $p>n$, one has
(i) $p^{2} \mid r_{i_{s}}^{2^{l-1} \cdot 3^{m}}-r_{1}^{2^{l-1} \cdot 3^{m}}$ for some $2 \leqslant i_{1}<i_{2}<\ldots<i_{2^{l-1} \cdot 3^{m-1}} \leqslant 2^{l} \cdot 3^{m-1}+1$, or
(ii) $p^{2} \mid r_{j_{r}}^{2^{l-1} \cdot 3^{m}}+r_{1}^{2^{l-1} \cdot 3^{m}}$ for some $2 \leqslant j_{1}<j_{2}<\ldots<j_{2^{l-1} \cdot 3^{m-1}+1} \leqslant 2^{l} \times$ $3^{m-1}+1$.

From the fact that (ii) implies (i), each case leads to $p<2 n$ by induction.
Case 3: $p \mid f\left(r_{j}\right)$ for some $1 \leqslant r_{1}<r_{2}<\ldots<r_{2^{l+1.3^{m-1}}} \leqslant n$.
Case 3.1: We now prove $p<3 n$ by induction in the following two situations.
Case 3.1.1: There exists $2 \cdot 3^{m-1}+1$ different integers $1 \leqslant t_{i} \leqslant n$, which for any $2 \leqslant i \leqslant 2 \cdot 3^{m-1}+1$, one has $p \mid t_{i}^{3^{m}}-t_{1}^{3^{m}}$.

Case 3.1.2: There exists $2 \cdot 3^{m-1}+1$ different integers $1 \leqslant t_{i} \leqslant n$, which for any $2 \leqslant i \leqslant 2 \cdot 3^{m-1}+1$, one has $p \mid t_{i}^{3^{m}}+t_{1}^{3^{m}}$.

Define $L_{m}=2 \cdot 3^{m-1}+1$ for $m \geqslant 1$, then $L_{m+1}=3 L_{m}-2$.
In the situation Case 3.1.1, when $m=1$, then

$$
p\left|t_{2}^{3}-t_{1}^{3}=\left(t_{2}-t_{1}\right)\left(t_{2}^{2}+t_{2} t_{1}+t_{1}^{2}\right), \quad p\right| t_{3}^{3}-t_{1}^{3}=\left(t_{3}-t_{1}\right)\left(t_{3}^{2}+t_{3} t_{1}+t_{1}^{2}\right)
$$

Since $p>n$, we have $p \nmid t_{2}-t_{1}, p \nmid t_{3}-t_{1}$, then

$$
p \mid\left(t_{3}^{2}+t_{3} t_{1}+t_{1}^{2}\right)-\left(t_{2}^{2}+t_{2} t_{1}+t_{1}^{2}\right)=\left(t_{3}+t_{2}+t_{1}\right)\left(t_{3}-t_{2}\right),
$$

which yields $p<3 n$. Since $L_{m+1}=3 L_{m}-2$, induction on m, the same arguments as the proof of Case 2.1, we get $p<3 n$ in this situation.

We continue to prove $p<3 n$ in situation Case 3.1 .2 by induction on m.
When $m=1$, similar to the situation Case 3.1.1, we can get $p<3 n$.
For $m \geqslant 2$, from
$p \mid t_{i}^{3^{m}}+t_{1}^{3^{m}}=\left(t_{i}^{3^{m-1}}+t_{1}^{3^{m-1}}\right)\left(t_{i}^{2 \cdot 3^{m-1}}-t_{i}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right), \quad 2 \leqslant i \leqslant L_{m}$,
one has two cases.
(i) $p \mid t_{i_{s}}^{3^{m-1}}+t_{1}^{3^{m-1}}$ for some $2 \leqslant i_{1}<i_{2}<\ldots<i_{L_{m-1}-1} \leqslant L_{m}$, by induction we have $p<3 n$.
(ii) $p \mid t_{j_{s}}^{2 \cdot 3^{m-1}}-t_{j_{s}}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}$ for some $2 \leqslant j_{1}<j_{2}<\ldots<j_{2 L_{m-1}-1} \leqslant$ L_{m}, that is

$$
\begin{aligned}
& p \mid\left(t_{j_{s}}^{2 \cdot 3^{m-1}}-t_{j_{s}}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right)-\left(t_{j_{1}}^{2 \cdot 3^{m-1}}-t_{j_{1}}^{3^{m-1}} t_{1}^{3^{m-1}}+t_{1}^{2 \cdot 3^{m-1}}\right) \\
& =\left(t_{j_{s}}^{3^{m-1}}-t_{j_{1}}^{3^{m-1}}\right)\left(t_{j_{s}}^{3^{m-1}}+t_{j_{1}}^{3^{m-1}}-t_{1}^{3^{m-1}}\right), \quad 2 \leqslant s \leqslant 2 L_{m-1}-1 .
\end{aligned}
$$

If the number of s satisfy $p \mid t_{j_{s}}^{3^{m-1}}-t_{j_{1}}^{3^{m-1}}$ is at least $L_{m-1}-1$, then $p<$ $3 n$ by the conclusion of Case 3.1.1. Otherwise the number of s satisfy $p \mid t_{j_{s}}^{3^{m-1}}+t_{j_{1}}^{3^{m-1}}-t_{1}^{3^{m-1}}$ is not less than L_{m-1}, subtract by pairs and using the conclusion of Case 3.1.1, we also get $p<3 n$.
Case 3.2: Similar to Case 2.2, together with Case 3.1 and induction on l, we get $p<3 n$ in Case 3 .

From the discussion of Cases 1, 2, 3, we obtained $p<C_{1} n$ for some positive constant $C_{1}=C_{1}(f)$. It is easy to see that $f(x)$ can not decompose into linear factors with integral coefficients, so by Lemma 2.1 we obtain $n<C_{f}$.

Acknowledgments. The author is grateful to the referees for their valuable suggestions.

References

[1] J. Cilleruelo, Squares in $\left(1^{2}+1\right) \ldots\left(n^{2}+1\right)$, Journal of Number Theory 128 (2008), 2488-2491.
[2] E. Gürel and A. U. Özgür Kişisel, A note on the products $\left(1^{\mu}+1\right)$ $\left(2^{\mu}+1\right) \ldots\left(n^{\mu}+1\right)$, Journal of Number Theory 130 (2010), 187-191.
[3] T. Nagell, Zur Arithmetik der Polynome, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1922, 179-194.
[4] Z. Zhang, P. Yuan, Squares in $\prod_{k=1}^{n}\left(a k^{2}+b k+c\right)$, Acta Mathematica Sinica (Chinese) 53 (2010), 199-204.

Address: Zhongfeng Zhang: School of Mathematics and Information Science, Zhaoqing University, Zhaoqing 526061, P. R. China.
E-mail: zh12zh31f@yahoo.com.cn
Received: 20 May 2010; revised: 5 May 2011

