Functiones et Approximatio 59.1 (2018), 129–139 doi: 10.7169/facm/1726

A NOTE ON COMPLEX SYMMETRIC COMPOSITION OPERATORS ON THE BERGMAN SPACE $A^2(\mathbb{D})$

TED EKLUND, MIKAEL LINDSTRÖM, PAWEŁ MLECZKO

To the memory of our colleague and friend Paweł Domański

Abstract: In this note complex symmetric composition operators C_{φ} on the Bergman space $A^2(\mathbb{D})$ are studied. It is shown that if an operator C_{φ} is complex symmetric on $A^2(\mathbb{D})$ then either $\varphi \colon \mathbb{D} \to \mathbb{D}$ has a Denjoy–Wolff point in \mathbb{D} or is an elliptic automorphism of the disc. Moreover in the latter case φ is either a rotation or has an order smaller than six.

Keywords: complex symmetric operator, composition operator, Denjoy-Wolff point, Bergman space.

1. Introduction

The space of analytic functions on the open unit disc \mathbb{D} in the complex plane \mathbb{C} is denoted by $H(\mathbb{D})$. Every analytic map $\varphi \colon \mathbb{D} \to \mathbb{D}$ induces a composition operator $C_{\varphi}f = f \circ \varphi$ on $H(\mathbb{D})$. Operators of this type have been considered on many spaces of analytic functions for several decades, starting from the papers on Hardy spaces $H^p(\mathbb{D})$ in the beginning of the 20th century. One of the main lines of research is to study the interplay between properties of the composition operator C_{φ} and its generating function φ . We refer the reader to the monographs [4, 11] for more information on this topic.

A new class of Hilbert space operators, called *complex symmetric operators*, was recently introduced and studied in [7]. In [3] it was proved that if φ is an automorphism of the disc which is not a rotation or elliptic of order three, then $C_{\varphi} \colon H^2(\mathbb{D}) \to H^2(\mathbb{D})$ is complex symmetric if and only if $\varphi = \varphi_{\alpha}$ for some $\alpha \in \mathbb{D} \setminus \{0\}$, where $\varphi_{\alpha}(z) = (\alpha - z)/(1 - \overline{\alpha}z)$. However, the question of which

The third author's research was supported by the National Science Centre, Poland (project no. 2015/17/B/ST1/00064). Part of the research was done while the third author visited Åbo Akademi University.

²⁰¹⁰ Mathematics Subject Classification: primary: 47B33; secondary: 47B32, 47B38

composition operators are complex symmetric on the Hardy–Hilbert space $H^2(\mathbb{D})$ is still not fully answered. We refer the reader to the above papers and to article [6] and references therein.

In this note we study complex symmetric composition operators on the Bergman space $A^2(\mathbb{D})$. Our main results are contained in Theorem 2, where we show that a complex symmetric composition operator C_{φ} on the Bergman space $A^2(\mathbb{D})$ needs either to be induced by an elliptic automorphism $\varphi \colon \mathbb{D} \to \mathbb{D}$ or has a Denjoy–Wolff point in \mathbb{D} , and Theorems 8 and 10, where we prove that if φ is an elliptic automorphism (but not rotation) of order at least six (or infinite), then C_{φ} is not complex symmetric. It should be mentioned that in general we follow the ideas used for the Hardy space $H^2(\mathbb{D})$ in [3], but still in the Bergman case some new facts are needed and the calculations are more involved.

2. Preliminaries

Let us recall that a bounded linear operator $T: \mathcal{H} \to \mathcal{H}$ on a separable Hilbert space \mathcal{H} is called *complex symmetric* if $T = CT^*C$ for some conjugate-linear operator $C: \mathcal{H} \to \mathcal{H}$ satisfying $C^2 = I$ and $\langle Cf, Cg \rangle_{\mathcal{H}} = \langle f, g \rangle_{\mathcal{H}}$ for all $f, g \in \mathcal{H}$. An operator $C: \mathcal{H} \to \mathcal{H}$ with the above mentioned properties is called a *conjugation* (see [7]).

The Bergman space $A^2 = A^2(\mathbb{D})$ is the separable Hilbert space consisting of all functions $f \in H(\mathbb{D})$ such that

$$||f||_{A^2} = \left(\int_{\mathbb{D}} |f(z)|^2 dA(z)\right)^2 < \infty,$$

where dA(z) is the normalized area measure on \mathbb{D} and the Hardy space $H^2 = H^2(\mathbb{D})$, consists of all functions $f \in H(\mathbb{D})$ such that

$$||f||_{H^2} = \sup_{r \in [0,1)} \frac{1}{2\pi} \left(\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^2 < \infty.$$

The inner product in A^2 is defined as (cf. [4])

$$\langle f, g \rangle_{A^2} = \int_{\mathbb{D}} f(z) \overline{g(z)} dA(z) = \sum_{n=0}^{\infty} \frac{\hat{f}(n) \overline{\hat{g}(n)}}{n+1}, \tag{1}$$

where $f, g \in A^2$ have series expansions

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \quad \text{and} \quad g(z) = \sum_{n=0}^{\infty} \hat{g}(n)z^n, \qquad z \in \mathbb{D}.$$

The reproducing kernel K_{α} on A^2 is given by

$$K_{\alpha}(z) = \frac{1}{(1 - \overline{\alpha}z)^2}, \qquad \alpha, z \in \mathbb{D},$$
 (2)

and has the property that $\langle f, K_{\alpha} \rangle_{A^2} = f(\alpha)$ for every $f \in A^2$ (see [4, p. 17]). For more information on Bergman spaces we refer to the books [4, 5].

A function $f \in A^2$ is said to be *cyclic* in A^2 if the closed linear span of f, zf, z^2f, \ldots is all of A^2 , and $f \in A^2$ is called A^2 -outer, if every $g \in A^2$ such that $\|gp\|_{A^2} \leq \|fp\|_{A^2}$ holds for all polynomials p has the property $|g(0)| \leq |f(0)|$. By Theorem 7.2 in [9] the cyclic elements in A^2 are known to be precisely the A^2 -outer functions in A^2 . Since the inequality $\|f\|_{A^2} \leq \|f\|_{H^2}$ holds for every $f \in H^2$, any cyclic element in H^2 is also cyclic in A^2 .

3. Complex symmetric composition operators on the Bergman space

We will study complex symmetric composition operators on A^2 . It is well known that $C_{\varphi} \colon A^2 \to A^2$ is a bounded operator for every analytic self-map φ of the unit disc. The article [6] contains results on complex symmetric composition operators on the Bergman space. In fact from [6, Proposition 2.9] it follows that for any $\alpha \in \mathbb{C}$, $|\alpha| \leqslant 1$, if $\varphi(z) = \alpha z$, $z \in \mathbb{D}$, then the operator C_{φ} is complex symmetric on A^2 and even a normal operator. See also the comment after Theorem 2 for a direct argument.

For $|\alpha| < 1$, let φ_{α} denote the automorphism of \mathbb{D} given by

$$\varphi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}, \qquad z \in \mathbb{D}.$$
(3)

A disc automorphism φ is called *elliptic* if there exists $\lambda \in \partial \mathbb{D}$ such that

$$\varphi = \varphi_{\alpha} \circ (\lambda \varphi_{\alpha}), \qquad |\alpha| < 1. \tag{4}$$

Below we obtain that if C_{φ} is a complex symmetric operator on A^2 , then φ is either an elliptic automorphism of the unit disc or has a Denjoy–Wolff point in \mathbb{D} . To do this we need the following lemma, where we use the relationship $\overline{\operatorname{Ran} T} = (\operatorname{Ker} T^*)^{\perp}$, which is valid for any operator $T \colon \mathcal{H} \to \mathcal{H}$. From this if follows that T has dense range if and only if $\operatorname{Ker} T^* = \{\overline{0}\}$. For a H^2 version of the result see [2, Proposition 2.1].

Lemma 1. Suppose that the analytic self-map φ of \mathbb{D} has a Denjoy-Wolff point in $\partial \mathbb{D}$. If λ is an eigenvalue of $C_{\varphi} \colon A^2 \to A^2$ with an A^2 -outer function as a corresponding eigenfunction, then $C_{\varphi} - \lambda I$ has dense range.

Proof. By assumption $C_{\varphi}g=\lambda g$ for some nonzero A^2 -outer function $g\in A^2$. By Theorem 7.2 in [9] the function g is cyclic in A^2 . The operator $C_{\varphi}-\lambda I$ has dense range if and only if $\mathrm{Ker}(C_{\varphi}^*-\bar{\lambda}I)=\{\bar{0}\}$. In order to reach a contradiction assume that $\bar{\lambda}$ is an eigenvalue of C_{φ}^* . Thus $C_{\varphi}^*h=\bar{\lambda}h$ for some nonzero $h\in A^2$. By assumption φ has a Denjoy-Wolff point $\omega\in\partial\mathbb{D}$. For any integers $n,k\geqslant 0$,

$$\begin{split} \lambda^k \big\langle z^n(\omega-z)g(z), h \big\rangle_{A^2} &= \big\langle z^n(\omega-z)g(z), \bar{\lambda}^k h \big\rangle_{A^2} \\ &= \big\langle z^n(\omega-z)g(z), \big(C_\varphi^*\big)^k h \big\rangle_{A^2} \\ &= \big\langle C_{\varphi_k} \big(z^n(\omega-z)g(z)\big), h \big\rangle_{A^2} \\ &= \big\langle \varphi_k^n(\omega-\varphi_k)g \circ \varphi_k, h \big\rangle_{A^2} \\ &= \lambda^k \big\langle \varphi_k^n(\omega-\varphi_k)g, h \big\rangle_{A^2}, \end{split}$$

where $\varphi_n := \varphi \circ \varphi_{n-1}$ for $n \ge 1$ and $\varphi_0 := \mathrm{Id} \colon \mathbb{D} \to \mathbb{D}$. This shows that

$$\langle z^n(\omega - z)g(z), h \rangle_{A^2} = \langle \varphi_k^n(\omega - \varphi_k)g, h \rangle_{A^2}.$$
 (5)

Since $|\varphi_k^n(\omega - \varphi_k)g\bar{h}| \leq 2|gh| \in L^1(\mathbb{D})$ and the iterate sequence $\{\varphi_k\}_{k=0}^{\infty}$ converges pointwise to ω on \mathbb{D} (even uniformly on compact subsets of the disc, see [4, Theorem 2.51]), we can use the Lebesgue Dominated Convergence Theorem and obtain from the equality (5) that

$$\langle z^n(\omega - z)g(z), h \rangle_{A^2} = \lim_{k \to \infty} \langle \varphi_k^n(\omega - \varphi_k)g, h \rangle_{A^2} = 0, \quad n \geqslant 0.$$
 (6)

The function $z \mapsto \omega - z$ belongs to H^{∞} and is outer in H^2 , and consequently cyclic in H^2 by Beurling's theorem. Therefore the function $z \mapsto (\omega - z)g(z)$ is cyclic in A^2 by [5, Theorem 8.3.2], so the linear span \mathcal{S} of the set of functions $\{z \mapsto z^n(\omega - z)g(z)\}_{n=0}^{\infty}$ is dense in A^2 . This means that if $f \in A^2$ then there exists a sequence $\{f_k\}_{k=0}^{\infty} \subset \mathcal{S}$ converging to f in the norm of A^2 . This shows that $\langle f, h \rangle_{A^2} = \lim_{k \to \infty} \langle f_k, h \rangle_{A^2} = 0$ by (6), and we obtain the contradiction $h \equiv 0$.

The proof of the promised theorem heavily relies on Lemma 1 and mimics the steps of [3, Proposition 2.1], so no proof is given. Note that the function 1 is cyclic in A^2 , since the set of polynomials is dense in A^2 .

Theorem 2. If the composition operator $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric then φ is either an elliptic automorphism of the unit disc or has a Denjoy-Wolff point in \mathbb{D} .

In the rest of the paper we will only analyze elliptic automorphisms φ_{α} of $\mathbb D$ that induce complex symmetric operators C_{φ} on the Bergman space A^2 . The case when $\alpha=0$, that is φ_{α} is a rotation, follows from [6, Proposition 2.9]. Indeed, if $\alpha=0$ then it is easy to see that $C_{\varphi}^*=C_{\psi}$, where $\psi(z)=\overline{\lambda}z$. Thus $C_{\varphi}\colon A^2(\mathbb D)\to A^2(\mathbb D)$ is a unitary operator, and hence complex symmetric since all normal operators have this property. To resolve the remaining cases $\alpha\in\mathbb D\setminus\{0\}$ we need some additional results.

Let φ be an automorphism of the form

$$\varphi = \varphi_{\alpha} \circ (\lambda \varphi_{\alpha}), \qquad |\alpha| < 1.$$

If N is the smallest positive integer such that $\lambda^N = 1$, then φ is said to be of *finite* order N. If no such integer exists, then φ is said to have infinite order.

Lemma 3. Consider the multiplication operator $M_{\mathrm{Id}} \colon A^2 \to A^2$ with symbol $\mathrm{Id}(z) := z$. The adjoint operator acts on any function $f \in A^2$ with corresponding series expansion $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ as

$$M_{\text{Id}}^* f(z) = \sum_{n=0}^{\infty} \frac{n+1}{n+2} \hat{f}(n+1) z^n, \qquad z \in \mathbb{D},$$
 (7)

and in particular for integers $m \ge 0$ we have

$$M_{\text{Id}}^* z^m = \begin{cases} 0, & m = 0\\ \frac{m}{m+1} z^{m-1}, & m \geqslant 1. \end{cases}$$
 (8)

Proof. By using the latter form of the Bergman inner product in (1) we obtain that

$$\frac{\hat{f}(n+1)}{n+2} = \langle f, z^{n+1} \rangle_{A^2} = \langle f, M_{\mathrm{Id}} z^n \rangle_{A^2}$$
$$= \langle M_{\mathrm{Id}}^* f, z^n \rangle_{A^2} = \underbrace{\widehat{M_{\mathrm{Id}}^* f}(n)}_{n+1}$$

and hence

$$\widehat{M_{\mathrm{Id}}^*f}(n) = \frac{n+1}{n+2}\widehat{f}(n+1).$$

This proves the equality (7), from which the formula (8) follows.

Lemma 4. The sequence $\{e_n\}_{n=0}^{\infty}$ of functions $e_n := K_{\alpha}\varphi_{\alpha}^n$ is orthogonal in A^2 , and $\|e_n\|_{A^2} = \frac{1}{(1-|\alpha|^2)\sqrt{n+1}}$.

Proof. Choose arbitrary integers $n, m \ge 0$. The reproducing kernel K_{α} given in the equality (2) is related to the derivative of φ_{α} in the following manner

$$\varphi'_{\alpha}(z) = \frac{|\alpha|^2 - 1}{(1 - \overline{\alpha}z)^2} = (|\alpha|^2 - 1)K_{\alpha}(z).$$

After substituting $w = \varphi_{\alpha}(z)$ we obtain

$$\begin{split} \langle e_n, e_m \rangle_{A^2} &= \int_{\mathbb{D}} e_n(z) \overline{e_m(z)} dA(z) = \int_{\mathbb{D}} \varphi_\alpha(z)^n \overline{\varphi_\alpha(z)^m} |K_\alpha(z)|^2 dA(z) \\ &= \frac{1}{(|\alpha|^2 - 1)^2} \int_{\mathbb{D}} \varphi_\alpha(z)^n \overline{\varphi_\alpha(z)^m} |\varphi_\alpha'(z)|^2 dA(z) \\ &= \frac{1}{(|\alpha|^2 - 1)^2} \int_{\mathbb{D}} w^n \overline{w^m} dA(w) = \frac{1}{(|\alpha|^2 - 1)^2} \langle \operatorname{Id}^n, \operatorname{Id}^m \rangle_{A^2} \\ &= \frac{\delta_{n,m}}{(|\alpha|^2 - 1)^2 (n + 1)}. \end{split}$$

The last equality with the Kronecker delta function $\delta_{n,m}$ holds in view of the latter form of the Bergman inner product in (1). This completes the proof.

For the Hardy space version of the following result see [3, Lemma 2.2].

Lemma 5. Let $\alpha \in \mathbb{D} \setminus \{0\}$, consider $C_{\varphi_{\alpha}} \colon A^2 \to A^2$ as an operator on the Bergman space A^2 and define $v_n := C_{\varphi_{\alpha}}^* z^n$ for integers $n \geqslant 0$. Then $v_n \perp v_m$ if and only if $|n-m| \geqslant 3$.

Proof. According to [10, Theorem 2], the adjoint operator of $C_{\varphi_{\alpha}}$ takes the form

$$C_{\varphi_{\alpha}}^* = M_{K_{\alpha}} C_{\varphi_{\alpha}} M_{1/K_{\alpha}}^*. \tag{9}$$

Since

$$\frac{1}{K_{\alpha}(z)} = (1 - \overline{\alpha}z)^2 = 1 - 2\overline{\alpha}z + \overline{\alpha}^2 z^2,$$

the following equations hold

$$M_{1/K_{\alpha}} = I - 2\overline{\alpha}M_{\mathrm{Id}} + \overline{\alpha}^{2}M_{\mathrm{Id}^{2}} = I - 2\overline{\alpha}M_{\mathrm{Id}} + \overline{\alpha}^{2}(M_{\mathrm{Id}})^{2}.$$

From the above and the equality (9) it follows that

$$C_{\varphi_{\alpha}}^* = M_{K_{\alpha}} C_{\varphi_{\alpha}} \left(I - 2\alpha M_{\mathrm{Id}}^* + \alpha^2 (M_{\mathrm{Id}}^*)^2 \right).$$

Applying this representation and the formula (8) on $v_n = C_{\varphi_\alpha}^* z^n$, we obtain $v_0 = K_\alpha$, $v_1 = K_\alpha(\varphi_\alpha - \alpha)$ and for integers $n \ge 2$:

$$v_{n} = M_{K_{\alpha}} C_{\varphi_{\alpha}} \left(z^{n} - 2\alpha M_{\text{Id}}^{*} z^{n} + \alpha^{2} (M_{\text{Id}}^{*})^{2} z^{n} \right)$$

$$= M_{K_{\alpha}} C_{\varphi_{\alpha}} \left(z^{n} - 2\alpha \frac{n}{n+1} z^{n-1} + \alpha^{2} \frac{n}{n+1} M_{\text{Id}}^{*} z^{n-1} \right)$$

$$= M_{K_{\alpha}} C_{\varphi_{\alpha}} \left(z^{n} - 2\alpha \frac{n}{n+1} z^{n-1} + \alpha^{2} \frac{n}{n+1} \frac{n-1}{n} z^{n-2} \right)$$

$$= K_{\alpha} \varphi_{\alpha}^{n} - 2\alpha \frac{n}{n+1} K_{\alpha} \varphi_{\alpha}^{n-1} + \alpha^{2} \frac{n-1}{n+1} K_{\alpha} \varphi_{\alpha}^{n-2}.$$

The above results can be summarized in terms of the functions $e_n := K_{\alpha} \varphi_{\alpha}^n$ (consult Lemma 4, where it was shown that $\{e_n\}$ are orthogonal in A^2) as

$$\begin{cases} v_0 = e_0 \\ v_1 = e_1 - \alpha e_0 \\ v_n = e_n - 2\alpha \frac{n}{n+1} e_{n-1} + \alpha^2 \frac{n-1}{n+1} e_{n-2}, \quad n \geqslant 2. \end{cases}$$
 (10)

Assume now that $n, m \ge 2$. By the last formula of (10), we have

$$\begin{split} \langle v_n, v_m \rangle_{A^2} &= \left\langle e_n - 2\alpha \frac{n}{n+1} e_{n-1} + \alpha^2 \frac{n-1}{n+1} e_{n-2}, e_m - 2\alpha \frac{m}{m+1} e_{m-1} + \alpha^2 \frac{m-1}{m+1} e_{m-2} \right\rangle_{A^2} \\ &= \left\langle e_n, e_m \right\rangle_{A^2} - 2\overline{\alpha} \frac{m}{m+1} \left\langle e_n, e_{m-1} \right\rangle_{A^2} + \overline{\alpha}^2 \frac{m-1}{m+1} \left\langle e_n, e_{m-2} \right\rangle_{A^2} \\ &- 2\alpha \frac{n}{n+1} \left\langle e_{n-1}, e_m \right\rangle_{A^2} + 4|\alpha|^2 \frac{n}{n+1} \frac{m}{m+1} \left\langle e_{n-1}, e_{m-1} \right\rangle_{A^2} \\ &- 2|\alpha|^2 \overline{\alpha} \frac{n}{n+1} \frac{m-1}{m+1} \left\langle e_{n-1}, e_{m-2} \right\rangle_{A^2} + \alpha^2 \frac{n-1}{n+1} \left\langle e_{n-2}, e_m \right\rangle_{A^2} \\ &- 2|\alpha|^2 \alpha \frac{n-1}{n+1} \frac{m}{m+1} \left\langle e_{n-2}, e_{m-1} \right\rangle_{A^2} + |\alpha|^4 \frac{n-1}{n+1} \frac{m-1}{n+1} \left\langle e_{n-2}, e_{m-2} \right\rangle_{A^2}. \end{split}$$

It follows immediately from the above expression that $v_n \perp v_m$ if $|n - m| \ge 3$, since the sequence $\{e_n\}_{n=0}^{\infty}$ is orthogonal. It remains to check the case when

|n-m| < 3, that is when m = n-2, m = n-1, m = n, m = n+1 and m = n+2. The corresponding inner products can be computed from the above general expression (10) by again using the orthogonality of $\{e_n\}_{n=0}^{\infty}$

$$\begin{split} \langle v_n, v_{n-2} \rangle_{A^2} &= \alpha^2 \frac{n-1}{n+1} \|e_{n-2}\|_{A^2}^2 \\ \langle v_n, v_{n-1} \rangle_{A^2} &= -2\alpha \left(\frac{n}{n+1} \|e_{n-1}\|_{A^2}^2 + |\alpha|^2 \frac{(n-1)^2}{(n+1)n} \|e_{n-2}\|_{A^2}^2 \right) \\ & \langle v_n, v_n \rangle_{A^2} &= \|e_n\|_{A^2}^2 + 4|\alpha|^2 \left(\frac{n}{n+1} \right)^2 \|e_{n-1}\|_{A^2}^2 + |\alpha|^4 \left(\frac{n-1}{n+1} \right)^2 \|e_{n-2}\|_{A^2}^2 \\ & \langle v_n, v_{n+1} \rangle_{A^2} &= -2\overline{\alpha} \left(\frac{n+1}{n+2} \|e_n\|_{A^2}^2 + |\alpha|^2 \frac{n^2}{(n+1)(n+2)} \|e_{n-1}\|_{A^2}^2 \right) \\ & \langle v_n, v_{n+2} \rangle_{A^2} &= \overline{\alpha}^2 \frac{n+1}{n+3} \|e_n\|_{A^2}^2. \end{split}$$

None of these inner products can be zero since $\alpha \neq 0$, so for integers $n, m \geq 2$ it holds that $v_n \perp v_m$ if and only if $|n-m| \geq 3$. Again, from (10) it can also be seen that $v_0 \perp v_n$ if and only if $n \geq 3$ and $v_1 \perp v_n$ if and only if $n \geq 4$, so the proof is complete.

Remark 6. It follows from the above proof that $||v_0||_{A^2} = ||e_0||_{A^2}$, $||v_1||_{A^2} = (||e_1||_{A^2}^2 + |\alpha|^2 ||e_0||_{A^2}^2)^{\frac{1}{2}}$ and

$$||v_n||_{A^2} = \left(||e_n||_{A^2}^2 + 4|\alpha|^2 \left(\frac{n}{n+1}\right)^2 ||e_{n-1}||_{A^2}^2 + |\alpha|^4 \left(\frac{n-1}{n+1}\right)^2 ||e_{n-2}||_{A^2}^2 \right)^{\frac{1}{2}}$$

for $n \ge 2$. Hence $||v_n||_{A^2} \ne 0$ for every $n \in \mathbb{N}$ by Lemma 4.

The following fact was already used in [3, p. 108]. Therefore we leave out the proof.

Lemma 7. If $T: \mathcal{H} \to \mathcal{H}$ is a complex symmetric operator with conjugation C and the equation $C(T - \lambda I) = (T^* - \overline{\lambda}I)C$ holds for some $\lambda \in \mathbb{C}$, then

$$f \in \operatorname{Ker}(T - \lambda I) \iff Cf \in \operatorname{Ker}(T^* - \overline{\lambda}I).$$

Recall, that an operator $T \colon \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is called *cyclic* if there exists a vector $x \in \mathcal{H}$ such that the *orbit*

$$\mathrm{Orb}(T,x) = \left\{ T^n x : n \in \mathbb{N} \right\}$$

has dense linear span in \mathcal{H} .

The proof of the following result is based on the approach taken in [3, Proposition 3.1] for the case of $C_{\varphi} \colon H^2 \to H^2$.

Theorem 8. Suppose φ is an elliptic automorphism of infinite order and is not a rotation. Then $C_{\varphi} \colon A^2 \to A^2$ is not complex symmetric.

Proof. The elliptic automorphism φ is of the form (4), where $\alpha \in \mathbb{D} \setminus \{0\}$ and λ is not a root of unity, so $C_{\varphi} = C_{\varphi_{\alpha}} C_{\lambda z} C_{\varphi_{\alpha}}$. We begin by showing that the adjoint operator

$$C_{\varphi}^* = C_{\varphi_{\alpha}}^* C_{\overline{\lambda}z} C_{\varphi_{\alpha}}^* \tag{11}$$

is cyclic. Since

$$\left(C_{\varphi_{\alpha}}^{*}\right)^{2} = C_{\varphi_{\alpha} \circ \varphi_{\alpha}}^{*} = C_{\mathrm{Id}}^{*} = I,\tag{12}$$

we see from the equality (11) that

$$(C_{\varphi}^*)^n = C_{\varphi_{\alpha}}^* C_{\overline{\lambda}_{\alpha}}^n C_{\varphi_{\alpha}}^*, \quad n \in \mathbb{N}.$$
(13)

Choose some $\beta \in \mathbb{D} \setminus \{0\}$ and notice that

$$C_{\overline{\lambda}z}^n K_{\beta}(z) = K_{\beta}(\overline{\lambda}^n z) = K_{\lambda^n \beta}(z). \tag{14}$$

Now, using equations (13) and (14) we conclude that

$$Orb(C_{\varphi}^*, C_{\varphi_{\alpha}}^* K_{\beta}) = \left\{ C_{\varphi_{\alpha}}^* K_{\lambda^n \beta} : n \in \mathbb{N} \right\}$$

has dense linear span in A^2 since this is the case for the set

$$\{K_{\lambda^n\beta}:n\in\mathbb{N}\}.$$

This shows that C_{φ}^* is cyclic. It is known that if an operator is cyclic, then its adjoint has simple eigenvalues (see [1, Proposition 2.7]). Thus $C_{\varphi} \colon A^2 \to A^2$ has simple eigenvalues.

In order to reach a contradiction suppose that $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric with conjugation C. If we define $v_n := C_{\varphi_{\alpha}}^* z^n$ as in Lemma 5, then by formulas (11) and (12) we have that $v_n \in \text{Ker}(C_{\varphi}^* - \overline{\lambda}^n I)$ and

$$(C_{\varphi}^* - \overline{\lambda}^n I)v_n = C_{\varphi}^* C_{\varphi_{\alpha}}^* z^n - \overline{\lambda}^n C_{\varphi_{\alpha}}^* z^n$$

$$= C_{\varphi_{\alpha}}^* C_{\overline{\lambda}z} (C_{\varphi_{\alpha}}^*)^2 z^n - \overline{\lambda}^n C_{\varphi_{\alpha}}^* z^n$$

$$= \overline{\lambda}^n C_{\varphi_{\alpha}}^* z^n - \overline{\lambda}^n C_{\varphi_{\alpha}}^* z^n = 0.$$

Furthermore by the complex symmetry

$$C(C_{\varphi}^* - \overline{\lambda}^n I) = CC_{\varphi}^* - \lambda^n C = C_{\varphi}C - \lambda^n C = (C_{\varphi} - \lambda^n I)C, \tag{15}$$

and it follows from Lemma 7 that $Cv_n \in \text{Ker}(C_{\varphi} - \lambda^n I)$ for every $n \in \mathbb{N}$, which means that Cv_n is an eigenfunction of $C_{\varphi} - \lambda^n I$. Indeed,

$$||Cv_n||_{A^2}^2 = \langle Cv_n, Cv_n \rangle_{A^2} = \langle v_n, v_n \rangle_{A^2} = ||v_n||_{A^2}^2 \neq 0,$$

as noted in Remark 6. But we also have that $\varphi_{\alpha}^{n} \in \text{Ker}(C_{\varphi} - \lambda^{n}I)$:

$$(C_{\varphi} - \lambda^n I)\varphi_{\alpha}^n = (\varphi_{\alpha} \circ \varphi)^n - \lambda^n \varphi_{\alpha}^n$$
$$= (\varphi_{\alpha} \circ \varphi_{\alpha} \circ (\lambda \varphi_{\alpha}))^n - \lambda^n \varphi_{\alpha}^n$$
$$= \lambda^n \varphi_{\alpha}^n - \lambda^n \varphi_{\alpha}^n = 0.$$

Since $C_{\varphi} \colon A^2 \to A^2$ has simple eigenvalues, the function Cv_n is a scalar multiple of φ_{α}^n , say $Cv_n = \mu_n \varphi_{\alpha}^n$ for some nonzero constant μ_n . Now using Lemma 5 we get that

$$0 = \langle v_0, v_3 \rangle_{A^2} = \langle Cv_0, Cv_3 \rangle_{A^2}$$
$$= \mu_0 \overline{\mu_3} \langle 1, \varphi_{\alpha}^3 \rangle_{A^2} = \mu_0 \overline{\mu_3} \overline{\varphi_{\alpha}(0)}^3$$
$$= \mu_0 \overline{\mu_3 \alpha}^3,$$

which implies that $\alpha=0$, and so φ is a rotation. This contradicts the assumption and the proof is complete.

Lemma 9. Suppose $\varphi = \varphi_{\alpha} \circ (\lambda \varphi_{\alpha})$ is an elliptic automorphism of finite order N that is not a rotation, and define $V_n := \operatorname{Ker}(C_{\varphi}^* - \overline{\lambda}^n I)$ for $n \in \mathbb{N}$. Then $V_0 \perp V_3$ if and only if $N \geq 6$.

Proof. Define $v_n := C_{\varphi}^* z^n$ as in Lemma 5 and recall that $v_n \in V_n$ for every $n \in \mathbb{N}$ as shown in the proof of Theorem 8. We first prove that $V_0 \not\perp V_3$ when N < 6. If N = 1 then φ is a rotation, so this case needs not to be considered. If N = 2, then $\lambda^2 = 1$ and

$$V_2 = \operatorname{Ker}(C_{\varphi}^* - \overline{\lambda}^2 I) = \operatorname{Ker}(C_{\varphi}^* - I) = V_0.$$

Hence $v_2 \in V_2 = V_0$ and $v_3 \in V_3$. But $v_2 \not\perp v_3$ by Lemma 5 so $V_0 \not\perp V_3$ when N = 2. For the other cases we obtain similarly:

$$V_0 = V_3,$$
 $N = 3$
 $V_0 = V_4,$ $N = 4$
 $V_0 = V_5,$ $N = 5,$

and another usage of Lemma 5 shows that $V_0 \not\perp V_3$ for these cases.

Now suppose that $N \ge 6$. Since

$$\operatorname{Ker}(C_{\overline{\lambda}z} - \overline{\lambda}^n I) = \overline{\operatorname{span}}\{z^{kN+n}\}_{k \in \mathbb{N}}$$

we have that

$$f \in V_n \Leftrightarrow (C_{\varphi}^* - \overline{\lambda}^n I) f = \overline{0} \Leftrightarrow C_{\varphi_{\alpha}}^* C_{\overline{\lambda} z} C_{\varphi_{\alpha}}^* f - \overline{\lambda}^n f = \overline{0}$$

$$\Leftrightarrow C_{\overline{\lambda} z} C_{\varphi_{\alpha}}^* f - \overline{\lambda}^n C_{\varphi_{\alpha}}^* f = \overline{0}$$

$$\Leftrightarrow C_{\varphi_{\alpha}}^* f \in \text{Ker}(C_{\overline{\lambda} z} - \overline{\lambda}^n I) = \overline{\text{span}} \{z^{kN+n}\}_{k \in \mathbb{N}}$$

$$\Leftrightarrow f \in \overline{\text{span}} \{C_{\varphi_{\alpha}}^* z^{kN+n}\}_{k \in \mathbb{N}} = \overline{\text{span}} \{v_{kN+n}\}_{k \in \mathbb{N}},$$

and thus $V_n = \overline{\operatorname{span}}\{v_{kN+n}\}_{k\in\mathbb{N}}$. Now consider $v_{kN} \in V_0$ and $v_{jN+3} \in V_3$ for any $k, j \in \mathbb{N}$. Since $N \geqslant 6$ it holds that

$$|kN - (jN + 3)| = |(k - j)N - 3| \ge 3,$$

so Lemma 5 gives that $v_{kN} \perp v_{jN+3}$, and hence $V_0 \perp V_3$.

Below we show that, as in the case of the Hardy space H^2 (see [3, Proposition 3.3]), the class of disc self-maps which induce complex symmetric composition operators on the Bergman space A^2 is quite sparse.

Theorem 10. Suppose φ is an elliptic automorphism of finite order $N \geqslant 6$ and is not a rotation. Then $C_{\varphi} \colon A^2 \to A^2$ is not complex symmetric.

Proof. In order to reach a contradiction assume that $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric, with a conjugation C. By the formula (15) and Lemma 7 it follows that

$$f \in V_n := \operatorname{Ker}(C_{\omega}^* - \overline{\lambda}^n I) \iff Cf \in \operatorname{Ker}(C_{\varphi} - \lambda^n I).$$

Now, using the property $C^2 = I$ we see that C maps V_n onto $\mathrm{Ker}(C_\varphi - \lambda^n I)$ for every $n \in \mathbb{N}$. Thus if $f \in \mathrm{Ker}(C_\varphi - I)$ and $g \in \mathrm{Ker}(C_\varphi - \lambda^3 I)$ then there exist functions $u \in V_0$ and $w \in V_3$ such that f = Cu and g = Cw. Hence since $N \ge 6$ from Lemma 9 it follows

$$\langle f, g \rangle_{A^2} = \langle Cu, Cw \rangle_{A^2} = \langle u, w \rangle_{A^2} = 0.$$

This shows that

$$\operatorname{Ker}(C_{\varphi} - I) \perp \operatorname{Ker}(C_{\varphi} - \lambda^{3} I),$$

and in particular $1 \perp \varphi_{\alpha}^{3}$ because $\varphi_{\alpha}^{n} \in \text{Ker}(C_{\varphi} - \lambda^{n}I)$ for every $n \in \mathbb{N}$ (cf. the proof of Theorem 8). This gives the contradiction $\alpha = 0$ and the proof is complete.

After summarizing what has been proven we see that if the composition operator $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric then φ has a Denjoy–Wolff point in the disc \mathbb{D} , is a rotation (and in this case $C_{\varphi} \colon A^2 \to A^2$ is a normal operator) or is an elliptic automorphism of finite order N=2,3,4 or 5. Using the following result from [8] we can solve the case N=2.

Theorem 11 ([8, Theorem 2]). If an operator $T: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} satisfies p(T) = 0 for some polynomial of degree 2 or less, then T is complex symmetric.

Theorem 12. Suppose $\varphi = \varphi_{\alpha} \circ (\lambda \varphi_{\alpha})$ is an elliptic automorphism of order two. Then $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric.

Proof. The *n*-th iterate of C_{φ} can be written as in the formula (13)

$$C_{\varphi}^{n} = C_{\varphi_{\alpha}} C_{\lambda z}^{n} C_{\varphi_{\alpha}} = C_{\varphi_{\alpha}} C_{\lambda^{n} z} C_{\varphi_{\alpha}}, \qquad n \in \mathbb{N}.$$

Using this with n=2 and recalling that $\lambda^2=1$, we see that C_{φ} satisfies a polynomial equation of order two. Indeed,

$$C_{\varphi}^2 = C_{\varphi_{\alpha}}^2 = I,$$

so $C_{\varphi} \colon A^2 \to A^2$ is complex symmetric by Theorem 11.

References

- [1] P. S. Bourdon and J. H. Shapiro, *Cyclic phenomena for composition operators*, Mem. Amer. Math. Soc. **125** (1997).
- [2] P.S. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67(2) (2012), 537–560.
- [3] P. S. Bourdon and S. Waleed Noor, Complex symmetry of invertible composition operators, J. Math. Anal. Appl. **429** (2015), 105–110.
- [4] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [5] P. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, RI 2004.
- [6] S. R. Garcia and C. Hammond, Which weighted composition operators are complex symmetric?, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl. 236, Birkhäuser/Springer, Basel 2014, 171–179.
- [7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. **358** (2006), 1285–1315.
- [8] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. **362** (2010), no. 11, 6065–6077.
- [9] H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces*, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.
- [10] P. R. Hurst, Relating composition operators on different weighted Hardy spaces, Arch. Math. 68 (1997) 503–513.
- [11] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.

Addresses: Ted Eklund and Mikael Lindström: Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland;

Payed Mischer Faculty of Mathematics and Computer Science Adam Mischerier University

Paweł Mleczko: Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznań, Umultowska 87, 61-614 Poznań, Poland.

E-mail: ted.eklund@abo.fi, mikael.lindstrom@abo.fi, pml@amu.edu.pl

Received: 16 December 2017; revised: 23 January 2018