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Abstract: Weakly compactly generated Banach spaces and their subspaces are characterized by
the presence of projectional skeletons with some additional properties. We work with real spaces.
However the presented statements can be extended, without much extra effort, to complex spaces.
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1. Introduction

Projectional resolutions of the identity in Banach spaces have been an important
tool for the theory of nonseparable Banach spaces for decades. Recently, a new
related and efficient instrument — projectional skeletons —made its successful way
into the nonseparable theory. It was introduced by W. Kubiś, in his paper [11]:
He proved in particular that the fairly large class of 1-Pličko spaces is exactly
that admitting a commutative 1-projectional skeleton. The paper [4] characterized
Asplund spaces and Asplund WCG spaces with the help of suitable projectional
skeletons. In this note, we characterize WCG spaces and their subspaces in a
similar flavor. The more or less already known characterization of weakly Lindelöf
determined spaces is also recalled.Throughout this note, we consider only real
Banach spaces. The art of how to deal with complex spaces can be found in [14]
and [4].

The notation used here is standard. X (or (X, ‖ · ‖) if we wish to specify the
symbol for its norm) will denote a real Banach space, BX its closed unit ball, and
X∗ its dual space, endowed with the standard dual norm, also denoted by ‖ · ‖.
The word “subspace” will always mean a closed linear subset. If Y is a subspace of

The first author was supported by grants 17-00941S and by RVO: 67985840. The second
author was supported in part by MICINN MTM 2014-57838-C2-2-P (Spain) and the Universitat
Politècnica de València.

2010 Mathematics Subject Classification: primary: 46B26, 46B20



232 Marián Fabian, Vicente Montesinos

a Banach space X, we shall denote by BY its closed unit ball, i.e., BY = BX∩Y . If
M is a subset ofX, then span(M) andM mean the linear hull ofM and the closure
of M , respectively. If M is a subset of X∗, then M

∗
means the weak∗ closure of

M . The action of an element x∗ ∈ X∗ on an element x ∈ X will be denoted
by x∗(x) or, alternatively, by 〈x∗, x〉. If x ∈ X and M ⊂ X∗, we put sup 〈M,x〉
instead of sup {〈x∗, x〉 : x∗ ∈ M}. For a set M in a topological space, densM is
the smallest cardinal κ such that M has a dense subset of cardinality κ. The weak
topology w of a Banach space X is the topology of the pointwise convergence on
the elements in X∗, and the weak-star topology w∗ is the topology on X∗ of the
pointwise convergence on points in X. Further concepts are introduced later. For
the non-defined ones, the reader is invited to look into, e.g., [8].

2. “Dissecting” a nonseparable Banach space

2.1. Complemented subspaces and projections

“Dissecting” a Banach spaceX into pieces — totally or partially ordered “chains” of
complemented subspaces — is a tool for, on the one hand, looking into its structure
and, on the other, proving results by transfinite induction (the Occam’s razor from
the scholasticism). To write X as the topological direct sum of two subspaces X =
V ⊕W is equivalent to construct a continuous linear projection P : X → X such
that PX = V and (P−1{0} =) (I −P )X = W . In order to carry the construction
with no extra effort to other situations — like to dual spaces — it is convenient to
consider, from the beginning, projections that are, moreover, w(X,D)-continuous,
where D is a given r-norming subspace of the dual space X∗, i.e., a subspace D of
X∗ such that (1/r)‖x‖ 6 sup{x∗(x) : x∗ ∈ D, ‖x∗‖ 6 1} 6 ‖x‖ for all x ∈ X and
a fixed r ∈ [1,+∞). The starting point is the following lemma. Its proof is simple;
we include it for the sake of completeness. It was formulated in only one direction
in, e.g., [10, Lemmata 3.33 and 3.34], [6, Lemma 6.1.1], and [4, Lemma 8].

Lemma 1. Let (X, ‖·‖) be a Banach space, r > 1, and two closed subspaces V ⊂ X
and Y ⊂ X∗. Then the conditions (Ar) and (Br) below are mutually equivalent:{

(A1) V separates points of Y
w∗

(i.e., V ⊥ ∩ Y w∗

= {0}), and
(Ar2) for all v ∈ V , ‖v‖ 6 r. sup 〈BY , v〉.

(Ar)

X = V ⊕ Y⊥, and the associated projection P : X → X with range V
and kernel Y⊥ satisfies ‖P‖ 6 r. (Br)

Before proving Lemma 1, let us show a simple consequence:

Lemma 2. If for some r > 1, the projection P satisfies (Br) in Lemma 1 (and so
also (Ar)), then P ∗X∗ = Y

w∗

(and ‖P ∗‖ 6 r).

Proof. Observe first that (Y⊥)⊥ = Y
w∗

. Let x∗ ∈ P ∗X∗, and let y ∈ Y⊥. We have
then Py = 0, so 〈x∗, y〉 = 〈P ∗x∗, y〉 = 〈x∗, Py〉 = 0, hence x∗ ∈ (Y⊥)⊥ (= Y

w∗

).
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This proves that P ∗X∗ ⊂ Y
w∗

. To show the reverse inclusion, let x∗ ∈ Y
w∗(

= (Y⊥)⊥
)
. Then, for x ∈ X,

〈x∗ − P ∗x∗, x〉 = 〈x∗, x〉 − 〈P ∗x∗, x〉 = 〈x∗, x〉 − 〈x∗, Px〉 = 〈x∗, x− Px〉 = 0,

the last equality being true due to the fact that x − Px ∈ Y⊥. This shows that
x∗ − P ∗x∗ = 0, hence x∗ ∈ P ∗X∗. We proved that Y

w∗ ⊂ P ∗X∗. The two
inclusions prove the assertion. That ‖P ∗‖ 6 r is a general fact whose proof shall
be omitted. �

Let us proceed now with the proof of Lemma 1:

Proof. Assume (Ar). Let v ∈ V ∩ Y⊥. Note that (Ar2) implies v = 0, hence
V ⊕ Y⊥ is an algebraic direct sum. If x∗ ∈ X∗ vanishes on V ⊕ Y⊥, then x∗ ∈
V ⊥ ∩ Y w∗

(= {0} by (A1)), hence V ⊕ Y⊥ is dense in X. Moreover, if x ∈ V ⊕ Y⊥
and P : V ⊕ Y⊥ → V denotes the associated linear (not necessarily continuous)
projection onto V , we have

‖Px‖ 6 r sup〈BY , Px〉 = r sup〈BY , Px+ (x− Px)〉 = r sup〈BY , x〉
6 r sup〈BX , x〉 = r‖x‖,

where the first inequality is (Ar2) and the first equality comes from the fact that
x − Px ∈ Y⊥. Thus, P is continuous (in fact, ‖P‖ 6 r), hence V ⊕ Y⊥ is closed
and so V ⊕ Y⊥ = X. This shows (Br).

Assume (Br). Let x∗ ∈ V ⊥ ∩ Y
w∗

. Given x ∈ X we have 〈x∗, x〉 = 〈P ∗x∗, x〉 =
〈x∗, Px〉 = 0, where the first equality comes from Lemma 2. It follows that x∗ = 0.
This proves (A1).

Given x∗ ∈ BX∗ , we have, again by Lemma 2, P ∗x∗ ∈ Y w
∗

. Since ‖P ∗‖ 6 r
we get P ∗x∗ ∈ rB

Y
w∗ , so P ∗BX∗ ⊂ rBY w∗ . Fix v ∈ V . Then

‖v‖ = sup〈BX∗ , v〉 = sup〈BX∗ , Pv〉 = sup〈P ∗BX∗ , v〉
6 sup〈rB

Y
w∗ , v〉 = r sup〈BY , v〉.

This proves (Ar2). �

Remark 3. In the rest of the paper, the associated projection P : X → X with
range V and kernel Y⊥ built in Lemma 1 (see (Br) there) will be denoted by PV×Y .

2.2. Projectional resolutions of the identity and projectional skeletons

Starting from Lemma 1, and proceeding in a clever way, a “long sequence” (i.e.,
a projectional resolution of the identity) of norm-1 projections is produced.
According to J. Lindenstrauss,

Definition 4. A projectional resolution of the identity (PRI, for short) on a Ba-
nach space (X, ‖ · ‖) is a family (Pα : ω 6 α 6 densX) of linear projections on X
such that Pω = 0, P densX is the identity mapping, and for all ω < α 6 densX
the following hold:
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(i) ‖Pα‖ = 1,
(ii) densPαX 6 α,
(iii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever β ∈ [α,densX], and
(iv)

⋃
β<α Pβ+1X = PαX.

If (i) is replaced by ‖Pα‖ 6 r for some fixed finite number r > 1, we speak about
an r-PRI.

Instead of a set of projections indexed by an interval of ordinal numbers,
W. Kubiś [11] produced from Lemma 1 a set — indexed by a partially ordered set
(Γ,6) — of not-necessarily-norm-1 linear and bounded projections with separable
range. The index set (Γ,6) is directed upwards (we shall simply say “directed”),
and — to show some continuity property — σ-complete, i.e., every increasing se-
quence (γn) in Γ has a “supremum” in Γ, i.e., an element γ ∈ Γ such that γn 6 γ
for all n ∈ N, and if s ∈ Γ satisfies γn 6 s for all n ∈ N, then γ 6 s. To be precise,
and following W. Kubiś,

Definition 5. A projectional skeleton in a (rather non-separable) Banach space
(X, ‖ · ‖) is a family of linear bounded projections

(
Ps : s ∈ Γ

)
on X, indexed by

a directed and σ-complete set (Γ,6) such that
(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s 6 t, and
(iv) Given a sequence s1 6 s2 6 · · · in Γ, we have PsX =

⋃
n∈N PsnX, where

s := supn∈N sn.

The concept of projectional skeleton has a topological predecessor — retrac-
tional skeleton — introduced by W. Kubiś and H. Michalewski in [12].

Remark 6. Observe that (iii) in Definition 5 above is equivalent to the fact that,
for all s 6 t in Γ, we have simultaneously PsX ⊂ PtX and P ∗sX∗ ⊂ P ∗t X∗.

Definition 7. For r > 1, we say that
(
Ps : s ∈ Γ

)
is an r-projectional skeleton if

it is a projectional skeleton and ‖Ps‖ 6 r for every s ∈ Γ.

Remark 8. For r-skeletons, it is easy to show that the identity in (iv), Definition 5
above, is equivalent to the convergence Psjx → Psx as j → ∞ for every x ∈ X
and every sequence s1 6 s2 6 · · · in Γ, with s := supn∈N sn.

Indeed, assume that the identity in (iv) holds. Then, given x ∈ X and ε > 0
there exists z ∈ X and n ∈ N such that ‖Psx− Psnz‖ < ε. It follows that

‖Psx− Psnx‖ 6 ‖Psx− Psnz‖+ ‖Psnz − Psnx‖ < ε+ ‖PsnPsnz − PsnPsx‖
< ε+ ‖Psn‖‖Psnz − Psx‖ < ε+ rε = (1 + r)ε. (1)

For m > n we have

‖Psmx− Psnx‖ = ‖PsmPsx− PsmPsnx‖ 6 ‖Psm‖‖Psx− Psnx‖ < r(1 + r)ε, (2)

so ‖Psx− Psmx‖ < (1 + r)2ε for s := supn∈N sn, and we get that Psnx → Psx as
n→∞. The other implication is obvious.
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Remark 9. Observe, too, that given a sequence s1 6 s2 6 · · · in Γ and x∗ ∈ X∗,
we always have P ∗snx

∗ w∗−→ P ∗s x
∗ where s = supn∈N sn. Indeed, if x ∈ X, we

have 〈(P ∗s − P ∗sn)x∗, x〉 = 〈x∗, (Ps − Psn)x〉 → 0. This shows, in particular, that

P ∗sX
∗ ⊂

⋃∞
n=1 P

∗
snX

∗ w
∗

. The other inclusion is obvious, since we mentioned above
that PsnX∗ ⊂ P ∗sX

∗ for all n ∈ N and P ∗sX
∗ is w∗-closed, due to the w∗-w∗-

continuity of P ∗s . We finally get P ∗sX∗ =
⋃∞
n=1 P

∗
snX

∗ w
∗

.
It is worth to note that for any x∗ ∈ X∗, the net {P ∗γ x∗ : γ ∈ Γ, 6} is

w∗-convergent to x∗. Even more holds: given x ∈ X, there exists γ0 ∈ Γ such that
〈x∗ − P ∗γ x∗, x〉 = 0 for every γ > γ0(x) and every x∗ ∈ X∗. Indeed, find γ0 ∈ Γ
so big that Pγ0X 3 x. Then for every γ ∈ Γ, with γ > γ0, and every x∗ ∈ X∗ we
have

〈x∗ − P ∗γ x∗, x〉 = 〈x∗, x〉 − 〈P ∗γ x∗, x〉 = 〈x∗, x〉 − 〈x∗, Pγx〉 = 〈x∗, x− x〉 = 0.

Definition 10. We say that a skeleton
(
Ps : s ∈ Γ

)
is commutative if Ps ◦ Pt =

Pt ◦ Ps, whenever s, t ∈ Γ (no matter if s, t are comparable).

A sufficient condition for the commutativity of a projectional skeleton will be
given in Lemma 14 below.

The instrument of PRI served efficiently for half a century in proving many
statements for non-separable Banach spaces. As an illustration we recall classical
results that once a Banach space X is weakly compactly generated, then there
exist a linear bounded injection from it into c0( densX) and a linear bounded
and weak∗ to weak continuous injection of X∗ into c0( densX); moreover, X then
admits an equivalent locally uniformly rotund norm whose dual norm is strictly
convex. However, the presence of a PRI itself is not much eloquent about the space
in question, provided its density is big enough. For instance, if κ is an ordinal
greater than the density of `∞ (equal to c), then the space `2(κ) × `∞ clearly
admits a PRI. But his space does not admit any projectional skeleton because `∞
is not, by Lindenstrauss, LUR renormable; see [5, pages 120–123]. Note that `∞
does not admit any projectional skeleton: Otherwise c0 will be a subspace of Pγ`∞
for some γ ∈ Γ, and so complemented in Pγ`∞ by Sobczyk’s theorem (see, e.g., [8,
Theorem 5. 11]). This will imply that c0 is complemented in `∞, and this is false.

2.3. Consequences of having a projectional skeleton

By [13, Theorem 12], the existence of an r-projectional skeleton implies that of an
r-PRI (but not reversely!).

In contrast with what was said at the end of Subsection 2.2 regarding projec-
tional resolutions, the presence of a projectional skeleton in a Banach space proves
to be quite eloquent. We mention the following most striking fact. If a Banach
space X admits a projectional skeleton, then:
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• X admits an r-PRI where r > 1 is a finite number [11, Proposition 9 and
Theorem 12];

• X linearly and continuously injects into c0( densX), [13, Corollary 17.5];
• X admits a Markushevich basis, [3]; and
• X admits an equivalent locally uniformly rotund norm, see [13, Corollary

17.5] modulo S. Troyanski and V. Zizler.

2.4. Building efficiently projectional skeletons: Projectional generators,
rich families

One of the most efficient ways to build a projectional resolution of the identity is to
provide a projectional generator (M. Valdivia and J. Orihuela): Let X be a Banach
space, and let W ⊂ X∗ be a 1-norming subspace. Assume there exists an at most
countably valued mapping Φ : W → 2X such that for every nonempty set B ⊂W ,
with linear closure, we have Φ(B)⊥∩B w∗

= {0}. Then the couple (W,Φ) is called
a projectional generator on X (see, e.g., [6, page 106] or [10, page 104]). The
projectional generator is then used for producing a projectional resolution of the
identity on X by a countable “back-and-forth” method. We provide two natural
examples of projectional generators:

(PGi) Let us consider a WCG Banach space X, and let K ⊂ X be a linearly
dense and w-compact subset ofX. Then, the couple (X∗,Φ), where Φ is the (single-
valued) mapping Φ : X∗ → X that to any x∗ ∈ X∗ associates an element in K
where x∗ attains its supremum on K, is easily seen, by using the Mackey–Arens
theorem, or just Lemma 19 below, to be a projectional generator (see, e.g., [10,
Proposition 3.43]). The details are given in the proof of Theorem 21 below.

(PGii) Let X be a Banach space, and let M be a linearly dense subset of X.
Assume there exists a 1-norming subspace D of X∗ such that, for every x∗ ∈ D,
its support suppM (x∗) := {m ∈ M : x∗(m) 6= 0} is countable. Define Φ(x∗) :=
suppM (x∗) for x∗ ∈ D. Then (D,Φ) is a projectional generator on X. Indeed, let
B ⊂ D be a nonempty set such that B is linear. Pick x∗ ∈ Φ(B)⊥ ∩Bw

∗

. Assume
x∗ 6= 0. We can find then m ∈ M such that ε := |x∗(m)| > 0. Find b∗ ∈ B such
that |〈x∗ − b∗,m〉| < ε/2. It follows that |b∗(m)| > ε/2, so m ∈ suppM (b∗), hence
m ∈ Φ(B). Since |x∗(m)| 6= 0, we reach a contradiction.

Regarding projectional skeletons on a Banach space X, still a projectional gen-
erator (W,Φ) on X — if it exists at all — is a useful instrument for building them.
Now we allow a slight change in its definition, namely that, for some r > 1, the
subspace W may be r-norming instead of just 1-norming (from now on, this more
relaxed requirement and the corresponding concept will be adopted). The set of
indices for indexing a projectional skeleton (in the definition, an abstract partially
ordered directed and σ-complete set), may quite naturally be particularized in our
setting by taking a suitable (partially ordered by inclusion) rich family of “rectan-
gles” V × Y in X ×D, where D is a given closed subspace of X∗, and V and Y
are separable subspaces of X and D, respectively. We precise this by introducing
some useful notation:
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Let W be a Banach space. Denote by S(W ) the partially ordered by inclusion
family of all separable subspaces of W . A subfamily R of S(W ) is said to be rich
(in S(W ) or just in W ) if it is cofinal (i.e., for every S ∈ S(W ) there exists R ∈ R
such that R ⊃ S) and σ-closed (i.e., whenever (Rn) is an increasing sequence in R,
then

⋃
Rn ∈ R). This concept was introduced by J.M. Borwein and W. Moors

in [2].; see also [4].
IfW := X×Z, whereX and Z are two Banach spaces, we denote by S@A(X×Z)

the subfamily of S(X ×Z) consisting of all rectangles V × Y , where V and Y are
separable subspaces of X and Z, respectively. Clearly, the family S@A(X × Z) is
rich in S(X × Z). Below, we shall consider rich families R in S@A(X × Z).

For later reference, let us mention here some elementary facta — coming di-
rectly from the definition — about rich families R in S@A(X × Z).
•
⋃
{V × Y : V × Y ∈ R} = X × Z. Indeed, for x ∈ X and z ∈ Z the

rectangle span{x} × span{z} belongs to S@A(X ×Z), and R is cofinal there.
In particular,

X =
⋃
{V : there exists Y ∈ S(Z) such that V × Y ∈ R}, and

Z =
⋃
{Y : there exists V ∈ S(X) such that V × Y ∈ R}.

• The partially ordered set (R,⊂) is directed and σ-complete. Note that if
(Vn × Yn) is an increasing sequence in a rich family R, then

⋃
(Vn × Yn)

(=
⋃
Vn ×

⋃
Yn) is its supremum in S@A(X × Z), and it belongs to R by

assumption.
An important feature of rich families is that the intersection of countably many

rich families is not only non-empty but again rich; see [2].
Suitable rich families give raise to associated projectional skeletons. Indeed,

we have the following basic result, whose proof, after Lemma 1 and the previous
observations, is now almost obvious:

Proposition 11 ([4], Lemma 9). Let X be a Banach space, and for some r > 1
let D ⊂ X∗ be a closed r-norming subspace. Assume that there exists a rich family
Γ ⊂ S@A(X × D) such that for each γ := V × Y ∈ Γ, the condition (Ar) in
Lemma 1 is satisfied. Then (Pγ : γ ∈ Γ) is an r-projectional skeleton in X such
that D ⊂

⋃
γ∈Γ P

∗
γX
∗.

Remark 12. All the projectional skeletons in the rest of the paper will adopt the
particular form given in Proposition 11.

The existence of a projectional generator on a Banach space X ensures that
a rich family with the property in the statement of Proposition 11 does exist. This
is the content of the next result:

Proposition 13 ([4], Proposition 10). Let (X, ‖ · ‖) be a Banach space with
a projectional generator (D,Φ), where D is a closed r-norming subspace of X∗ for
some r > 1. Then there is a family Γ rich in S@A(X ×D) and such that for each
V × Y ∈ Γ, the condition (Ar) in Lemma 1 is satisfied.
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Proof. (Sketch) For every x ∈ X pick a countable set φ(x) ⊂ BD such that
‖x‖ 6 r sup{y(x) : y ∈ φ(x)}. Define Γ as the family of all V × Y ∈ S@A(X ×D)
such that there are countable sets C ⊂ V and E ⊂ Y satisfying C = V , E = Y ,
Φ(E) ⊂ C, and φ(C) ⊂ E. This family satisfies all the requirements for being
a rich family in S@A(X ×D). �

Putting together Propositions 11 and 13, we get that the existence of a projec-
tional generator (D,Φ) on a Banach space X ensures the existence of a projectional
skeleton in it of the form (Pγ : γ ∈ Γ), where Γ is a rich family in S@A(X ×D).

In the rest of the paper we shall need [4, Lemma 11]. We state it here —
with a little complement — for the sake of completeness, and we shall prove only
this little addition. Observe that, in Lemma 14(ii) below, the couple (D,Φ) is
a projectional generator (see (PGii) in Subsection 2.4 above, where it is proved for
the case r := 1).

Lemma 14. Let X be a Banach space with a linearly dense subset M and a
subspace D of X∗ such that, for every x∗ ∈ D, the set Φ(x∗) := suppM (x∗) is
countable. Then

(i) [4, Lemma 11] The family R := {V × Y ∈ S@A(X ×D) : M \ V ⊂ Y⊥} is
rich in S@A(X ×D).

(ii) Assume that, moreover, the subspace D is r-norming for some r > 1. Let Γ
be the rich family in S@A(X×D) given by the projectional generator (D,Φ)
(Proposition 13). Then the projectional skeleton provided by Proposition 11
via the rich family R∩ Γ is commutative.

Proof. (of (ii)) This follows from the properties of M : Indeed, fix γ := V × Y ∈
R ∩ Γ and m ∈M . Then, due to the fact that M \ V ⊂ Y⊥, that Pγ(X) = V and
that kerPγ = Y⊥, we have

Pγ(m) =

{
m, if m ∈ V,
0, otherwise.

As as consequence, given γ = V × Y and γ′ = V ′ × Y ′ in R ∩ Γ, we may easily
check that, for m ∈M ,{

Pγ ◦ Pγ′(m) = Pγ′ ◦ Pγ(m) = m, if m ∈ V ∩ V ′, and
Pγ ◦ Pγ′(m) = Pγ′ ◦ Pγ(m) = 0, otherwise.

SinceM is linearly dense in X, we get, then, the commutativity of the projectional
skeleton (Pγ : γ ∈ Γ). �

3. Classes of nonseparable Banach spaces and projectional skeletons

3.1. WLD spaces

A Banach space is called weakly Lindelöf determined (WLD) if its closed dual unit
ball, provided with the weak∗ topology, is a Corson compactum, which means that
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it is homeomorphic to a subset of the Σ-product of real lines. In the next theorem,
the equivalence (ii)⇔(iv) can be found in [11, Proposition 21 and Theorem 27].

Theorem 15. For a Banach space (X, ‖ · ‖) TFAE:

(i) X is weakly Lindelöf determined.
(ii) There exists a linearly dense set M ⊂ X which countably supports all

elements in X∗, that is, for every x∗ ∈ X∗ the set {x ∈ M : x∗(x) 6= 0}
is at most countable.

(iii) There exist a set M as in (ii) and moreover a rich family WLD ⊂
S@A(X ×X∗) such that every V × Y ∈ WLD satisfies (A1) in Lemma 1,
and M \ V ⊂ Y⊥.

(iv) There exists a commutative 1-projectional skeleton (Pγ : γ ∈ Γ) on (X, ‖·‖)
such that

⋃{
P ∗γ X

∗ : γ ∈ Γ
}

= X∗.

Proof. (i)⇒(ii). The existence of the set M goes back to M. Valdivia [15]; see
also [7, Theorem 5]. First, a projectional generator is constructed. From it a PRI
is found. Having this, the construction of M goes by a transfinite induction over
the density of X.

(ii)⇒(iii). Assume that there exists a set M as in (ii). As it was proved in
Subsection 2.4 (see (PGii) there), the couple (X∗,Φ) is a projectional generator
on X. Now, Proposition 13 above, where D := X∗ and r := 1, provides a rich
family W ⊂ S@A(X ×X∗) that satisfies (A1) in Lemma 1. Put WLD := W ∩R,
where R is the rich family defined in Lemma 14(i). It follows that WLD is also
a rich family in S@A(X ×X∗). And of course, each element in WLD satisfies (A1)
in Lemma 1.

(iii)⇒(iv). Letting D := X∗, Proposition 11 guarantees that the system (Pγ :
γ ∈ Γ) satisfies (iv), except maybe the commutativity statement. However, this
follows from (ii) in Lemma 14 above.

(iv)⇒(ii). This is included in [11, Theorem 27]. In order to get a taste of the
proof, let us show this when densX = ω1. Let (iv) hold without “commutative 1-”.
By [11, Proposition 9], we may and do assume that ‖Ps‖ 6 r for all s ∈ Γ
and some fixed r. A shorter reasoning in one’s mind reveals that there exists
an order homomorphism of the interval [ω, ω1) onto a cofinal subset of Γ such
that, when assuming, for simplicity, that [ω, ω1) ⊂ Γ, we get that (Pα : α ∈
[ω, ω1]), where Pω1 := idX , is an r-PRI on X with

⋃
α∈[ω,ω1) P

∗
αX
∗ = X∗. For

every α ∈ [ω, ω1) find a countable dense subset Cα in the (separable) subspace
(Pα+1 − Pα)X and put then M :=

⋃
α∈[ω,ω1) Cα. According to, say, [6, Proposi-

tion 6.2.1 (iv)], valid also for r-PRI, the set M is linearly dense in X. We shall
show that the support suppMx

∗ := {x ∈ M : x∗(x) 6= 0} is at most count-
able for every x∗ ∈ X∗. Funny, suppMx

∗ is such for every x∗ ∈ P ∗ωX∗ (= {0}).
Consider any α ∈ (ω, ω1). Assume that suppMx

∗ is at most countable for every
x∗ ∈ P ∗βX∗ where β ∈ [ω, α). Now pick any x∗ ∈ P ∗αX∗. If α− 1 exists, then x∗ =
(P ∗α−P ∗α−1)x∗+P ∗α−1x

∗, and so suppM x∗ ⊂ Cα−1∪suppM P ∗α−1x
∗, and the latter

set is at most countable; we used here the “orthogonality” of the projections Pβ+1−
Pβ , β ∈ [ω, ω1). Second, if α is a limit ordinal, then x∗ = w∗-limβ↑α P

∗
βx
∗, and so
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suppM x∗ ⊂
⋃
ω6β<α suppM P ∗βx

∗; the latter set here being at most countable. We
proved (ii). If the density of X is higher than ω1, we can proceed as in the proof
of [11, Theorem 27].

(ii)⇒(i). If M is as in (ii), then the assignment BX∗ 3 x∗ 7−→ (x∗(m) : m ∈
M) ∈ Σ(M) reveals that X is WLD. �

3.2. WCG spaces

Let X be a Banach space, and let A ⊂ X be a non-empty bounded set. We define
the pseudo-metric ρA on X∗ by

ρA(x∗1, x
∗
2) = sup |〈x∗1 − x∗2, A〉|, x∗1, x

∗
2 ∈ X∗, (3)

where sup |〈x∗, A〉| := sup{|〈x∗, a〉| : a ∈ A} for x∗ ∈ X∗. We also denote by S
A

the closure of a set S ⊂ X∗ in ρA. Observe that S
A

= {x∗ ∈ X∗ : ρA(x∗, S) = 0},
where ρA(x∗, S) := inf{ρA(x∗, y∗) : y∗ ∈ S}.

Definition 16. Given an ε > 0, a projectional skeleton (Ps : s ∈ Γ) in X (if
it exists) is called A-ε-shrinking if for every sequence γ1 6 γ2 6 · · · in Γ and for
every x∗ ∈ X∗ we have

lim sup
j→∞

ρA
(
P ∗γjx

∗, P ∗sup γix
∗) 6 ε‖x∗‖;

if ε = 0, we say just “A-shrinking ”.

Remark 17. Note the following fact: If the set A is w-compact and Ps(A) ⊂ A
for all s ∈ Γ, then (Ps : s ∈ Γ) is A-shrinking. Indeed, under these requirements
for A the argument goes as follows: Let γ1 6 γ2 6 · · · be a sequence in Γ, and
let γ := sup{γn : n ∈ N}. Pick any x∗ ∈ X∗. We observed in Subsection 2.2

that P ∗γ x∗ ∈
⋃∞
n=1 P

∗
γnX

∗ w
∗

. If µ(X∗, X) denotes the Mackey topology on X∗ of
the uniform convergence on the family of all convex, symmetric and w-compact
subsets of X then, by the Mackey–Arens theorem, or just using Lemma 19 below,

we have P ∗γ x∗ ∈
⋃∞
n=1 P

∗
γnX

∗ µ(X∗,X)
. The sequence (P ∗γnx

∗) converges to P ∗γ x∗
uniformly on A. To show this, we follow the pattern in formulas (1) and (2) above.
To be precise, if A◦ denotes the polar set of A, and ε > 0, then there exists z∗ ∈ X∗
and n ∈ N such that P ∗γ x∗ − P ∗γnz

∗ ∈ εA◦. We have

P ∗γ x
∗ − P ∗γnx

∗ = (P ∗γ x
∗ − P ∗γnz

∗) + (P ∗γnP
∗
γnz
∗ − P ∗γnP

∗
γ x
∗) ∈ εA◦ + εA◦ ⊂ 2εA◦,

as Pγn(A) ⊂ A. Hence, for m > n,

P ∗γmx
∗ − P ∗γnx

∗ = P ∗γmP
∗
γ x
∗ − P ∗γmP

∗
γnx
∗ ∈ 2εA◦,

so (P ∗γ x
∗ − P ∗γmx

∗) ∈ 4εA◦, and this proves the assertion.
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Remark 18. Let A be a bounded and linearly dense subset of X, and let (Pγ :
γ ∈ Γ) be an A-shrinking projectional skeleton on X. Then

⋃
γ∈Γ P

∗
γX
∗ = X∗

(in particular, it follows from Theorem 15 that the space X is WLD; Theorem 21
below will provide a more precise result). Indeed, pick any x∗ ∈ X∗ and consider
the net {P ∗γ x∗ : γ ∈ Γ, 6}. Given an arbitrary sequence {γn} in Γ and γ ∈ Γ such
that γn ↗ γ, it follows from the definition of A-shrinkingness that P ∗γnx

∗ → P ∗γ x
∗

uniformly on A. By Proposition 20 we get that the net {P ∗γ x∗ : γ ∈ Γ, 6}
converges uniformly on A, say to z∗ ∈ X∗, and that, moreover, there exist an
increasing sequence (sn) in Γ and s0 ∈ Γ such that sn ↗ s0 and P ∗snx

∗ → z∗

(= P ∗s0x
∗) uniformly on A. Since, according to Remark 9, P ∗γ x∗

w∗−→ x∗, given
a ∈ A, we have 〈x∗, a〉 = 〈P ∗s0x

∗, a〉. Due to the fact that A is linearly dense, we
get x∗ = P ∗s0x

∗, and this shows that X∗ =
⋃
γ∈Γ P

∗
γX
∗, as we wanted to prove.

A Banach space is called weakly compactly generated (WCG) if it contains
a linearly dense weakly compact set.

As we mentioned above, the Mackey topology µ∗ := µ(X∗, X) is the topology
onX∗ of the uniform convergence on the family of all convex symmetric and weakly
compact subsets of X. We need the following particular case of the Mackey–Arens
theorem. For the full statement, see, e.g., [8, Theorem 3.41]. We provide here
a direct proof.

Lemma 19. Let X be a Banach space and let C ⊂ X∗ be a convex set. Then
C
w∗

= C
µ∗

.

Proof. Obviously, w∗ 6 µ∗, hence C
w∗ ⊃ C

µ∗

. Let x∗0 6∈ C
µ∗

. Without loss of
generality we may assume x∗0 = 0. Find a convex, symmetric and w-compact sub-
set K of X such that K◦ ∩C = ∅. The set K◦ is a ‖ · ‖-neighborhood of 0, so the
Separation Theorem gives α > 0 and x∗∗ ∈ X∗∗ such that 〈c∗, x∗∗〉 > α > 〈k∗, x∗∗〉
for every c∗ ∈ C and every k∗ ∈ K◦. Since K◦ is symmetric we get |〈k∗, x∗∗〉| 6 α
for every k∗ ∈ K, so x∗∗ ∈ αK◦◦. The bipolar theorem ensures that K◦◦ = K
(⊂ X), so x∗∗ ∈ X; thus {x∗ ∈ X∗ : 〈x∗, x∗∗〉 > α} is w∗-closed (and it con-
tains C), hence 0 6∈ Cw

∗

. �

We shall need a short trip to the convergence of nets. Let (M,ρ) be a metric
space and let n := (xs)s∈Γ be a net consisting of elements from M ; we recall that
Γ is a directed set, with order, “6”, say. We say that n has a limit y ∈ M if for
every ε > 0 there is s ∈ Γ such that ρ(xt, y) < ε whenever t ∈ Γ and t > s. If this
is so, we use for y the symbol lims∈Γ xs. The net n is called Cauchy if for every
ε > 0 there is s ∈ Γ such that ρ(xs, xs′) < ε whenever s′ ∈ Γ and s′ > s.

Proposition 20. Let (M,ρ) be a metric space, let (Γ,6) be a directed and
σ-complete set, let T ⊂ Γ be a directed subset and let (xs)s∈Γ be a net in M
such that limj→∞ ρ

(
xsj , xγ

)
= 0 whenever s1 6 s2 6 · · · is a sequence in T and

γ := supj∈N sj (∈ Γ). Then the limit lims∈T xs exists in the metric ρ (and is equal
to xγ where γ := supi∈N ti for some t1 6 t2 6 · · · in T ).
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Proof. First we show that the net (xs)s∈T is Cauchy. Assume that this is not
true. Find then ε > 0 such that for every s ∈ T there is s′ ∈ T such that s′ > s
and ρ

(
xs, xs′

)
> ε. Using this, we can construct a sequence s1 6 s2 6 s3 6 · · ·

in T such that ρ
(
xs1 , xs2

)
> ε, ρ

(
xs2 , xs3

)
> ε, . . . . Since (Γ,6) is σ-complete,

s := supn∈N sn exists and belongs to Γ. By the assumption, ρ
(
xsj , xs

)
−→ 0 as

j → ∞, and so (ε 6) ρ
(
xsj , xsj+1

)
−→ 0 as j → ∞; a contradiction. We proved

that our net is Cauchy.
Next, we shall construct a sequence t1 6 t2 6 · · · in T as follows. Pick t1 ∈ T

such that ρ(xs, xt1) < 1 whenever s ∈ T and s > t1. Consider any j ∈ N and
assume that tj ∈ T was already found. Pick t ∈ T such that ρ(xs, xt) <

1
2(j+1)

whenever s ∈ T and s > t. Find tj+1 ∈ T such that it majorizes both t and tj .
Now, if s ∈ T is such that s > tj+1, then

ρ(xs, xtj+1
) 6 ρ(xs, xt) + ρ(xt, xtj+1

) < 2 · 1

2(j + 1)
=

1

j + 1
.

Doing so for every j ∈ N, put γ := supj∈N tj . Then limj→∞ ρ(xtj , xγ) = 0. We
claim that lims∈T xs = xγ . Indeed, take any ε > 0. Pick j > 2

ε so big that
ρ(xtj , xγ) < ε

2 . Now, if s ∈ T and s > tj , we have

ρ(xs, xγ) 6 ρ(xs, xtj ) + ρ(xtj , xγ) < 1
j + ε

2 < ε. �

Theorem 21. For a Banach space (X, ‖ · ‖) TFAE:
(i) X is weakly compactly generated.
(ii) There exist a bounded closed symmetric convex and linearly dense set

A ⊂ X, and a (commutative 1-) projectional skeleton (Pγ : γ ∈ Γ) on
(X, ‖ · ‖) (with

⋃
γ∈Γ P

∗
γX
∗ = X∗), which is moreover A-shrinking and

satisfies that Pγ(A) ⊂ A for every γ ∈ Γ.

Proof. (i)=⇒(ii). Assume that X is WCG. The celebrated Amir-Lindenstrauss
theorem provides a set Γ and a linear bounded injective mapping T : X∗ −→ c0(Γ),
which is moreover w∗-w-continuous; see [1], [8, Theorem 13.20]. (Its proof may
nowadays start from constructing a projectional generator on a reflexive space R,
e.g., the simple generator described in (PGi) of Subsection 2.4. Then a PRI on R is
constructed from this generator. Further, a transfinite induction argument provides
a bounded linear and one-to-one mapping from R into c0(Γ). Finally, combining
this with a mapping coming from the factorization theorem [8, Theorem 13.22]
yields our T : X∗ −→ c0(Γ).) Once having T , put

M :=
{
T ∗eγ : γ ∈ Γ

}
,

where eγ ’s are the elements of the canonical basis in `1. It is straightforward to
verify that this M is a subset of X (if we identify X with its canonical image
in X∗∗), that M is linearly dense in X, and that for every x∗ ∈ X∗ the set
Φ(x∗) := {m ∈ M : 〈x∗,m〉 6= 0} is at most countable (in addition, M ∪ {0}
is a w-compact set with the only accumulation point 0). According to (PGii) in
Subsection 2.4 , (X∗,Φ) is a projectional generator on X (better than that from
(PGi)). Let A be the closed convex hull of the set M ∪ (−M).
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Denote ‖ · ‖0 := ‖ · ‖. For n ∈ N, let ‖ · ‖n be the Minkowski functional of the
set A+ (1/n)BX . Then ‖ · ‖n is an equivalent norm on X. For the norm ‖ · ‖n
the set X∗ is obviously 1-norming, and so (X∗,Φ) is a projectional generator on
(X, ‖ · ‖n). Applying Proposition 13, we get a rich family Rn with property (A1)
in Lemma 1. Further put R−1 := {V × Y ∈ S@A(X × X∗) : M \ V ⊂ Y⊥}; this
is a rich family by Lemma 14 (i). Put finally R :=

⋂∞
n=−1Rn; this is again a rich

family and its elements have the property (A1) in Lemma 1 with respect to all
norm ‖ · ‖0, ‖ · ‖, . . . Thus, the 1-projectional skeleton (Pγ : γ ∈ Γ) associated to
R via Proposition 13 is commutative by Lemma 14 (ii). Moreover, for all γ ∈ Γ
and all n ∈ N, due to the fact that ‖Pγ‖n = 1, we have

Pγ(A) ⊂ Pγ(A+ 1
nBX) ⊂ A+ 1

nBX ⊂ A+ 2
nBX ,

and so Pγ(A) ⊂ A for all γ ∈ Γ. The A-shrinking character of our skeleton comes
from Remark 18. And having this, it is easy to check that

⋃
γ∈Γ P

∗
γX
∗ = X∗.

(ii)=⇒(i). Let A and (Pγ : γ ∈ Γ) be as in (ii). We shall prove the bit
stronger statement that there exists a weakly compact set K ⊂ A which is linearly
dense in X (and thus X will be a WCG space). By [11, Proposition 9] or [13,
Proposition 17.6], there exists a directed and σ-closed subset of Γ, denoted for
simplicity again as Γ, such that r := sup{‖Ps‖ : s ∈ Γ} < +∞. Clearly, this
“smaller” (Pγ : γ ∈ Γ) will be an A-shrinking r-projectional skeleton on X.

In order not to get lost and get a taste of the proof, we first consider the special
case when the density of X is ω1. It is not dramatically difficult to find a subset
of Γ which is cofinal, σ-closed, and which is moreover order homeomorphic with
the interval [ω, ω1). For simplicity, we will think that this interval is a subset of Γ,
and the order relation on it coincides with the order of Γ. (If we let Pω1

to denote
the identity mapping on X, then it is easy to check that (Pα : ω 6 α 6 ω1)
is a projectional resolution of the identity on (X, ‖ · ‖), with the only exception
that ‖Pα‖ 6 r for every ω 6 α 6 ω1.) For every ω 6 α < ω1 we find a sequence
xα1 , x

α
2 , . . . in the (separable) set 1

2 (Pα+1 − Pα)A such that ‖xαn‖ → 0 as n → ∞
and that sp {xα1 , xα2 , . . .} = (Pα+1 − Pα)X. Now, put K :=

{
xαn : ω 6 α < ω1 and

n ∈ N
}
∪{0}; then clearlyK ⊂ A. By a (well known) fact [6, Proposition 6.2.1 (iv)],

we immediately get that spK = X. We shall show that the set K is weakly
compact. Let U be a family of weakly open sets in X covering K. We have to find
a finite subfamily of U that still covers K. Pick U ∈ U so that U 3 0. Find a finite
set F ⊂ X∗ so that U ⊃ {x ∈ X : max〈F, x〉 < 1} 3 0. We shall show that K \ U
is finite and thus the weak compactness of K will be proved. It is actually enough
to show that for every x∗ ∈ F the setMx∗ := {(n, α) ∈ N× (ω, ω1) : 〈x∗, xαn〉 > 1}
is finite. So fix one such x∗ ∈ F and assume thatMx∗ is infinite. Since ‖xαn‖ → 0 as
n→∞ for every α ∈ (ω, ω1), the set {α ∈ (ω, ω1) : (n, α) ∈Mx∗ for some n ∈ N}
is infinite. Thus, there are an increasing sequence α1 < α2 < · · · in (ω, ω1) and
a sequence (nj) in N such that (nj , αj) ∈Mx∗ for every j ∈ N. Put α := supj∈N αj ;
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clearly α < ω1. Now, for every j ∈ N we have (due to the fact that Pαjx
αj
nj = 0)

1 6 〈x∗, xαjnj 〉 =
〈
x∗, Pαx

αj
nj

〉
=
〈
P ∗αx

∗, xαjnj
〉

=
〈
P ∗αx

∗ − P ∗αjx
∗, xαjnj

〉
6 ρA

(
P ∗αx

∗, P ∗αjx
∗) −→ 0

as j → ∞; a contradiction. We proved that our K is weakly compact. Therefore
X is WCG.

Now, we consider the general case, when X is any non-separable space satisfy-
ing (ii). We shall prove the existence of a linearly dense and weakly compact set
lying (even) in A. Let κ be an uncountable cardinal and assume that such a set was
found for all X’s with densX < κ. Now, assume that densX = κ. The argument
will be split into several steps.

Step 1. Using ideas from the proofs of [11, Theorem 12] and [4, Theorem 15],
we find an increasing family Tα, ω < α 6 κ, of directed subsets of Γ such that
Tα =

⋃{
Tβ+1 : ω < β < α

}
and cardTα 6 α for every α ∈ (ω, κ], and that the

set
⋃{

PsX : s ∈ Tκ
}
is dense in X.

Step 2. Put Qω := 0 and for every α ∈ (ω, κ] define

Qαx := lim
s∈Tα

Psx, x ∈ X;

see Proposition 20 where M := X and ρ comes from the norm ‖ · ‖; then clearly
QαX = {PsX : s ∈ Tα}. It is easy to verify that (Qα : ω 6 α 6 κ) is then an
r-PRI on (X, ‖ · ‖); for more details, see the proofs mentioned in Step 1. Moreover,
we can easily verify that Ps ◦Qα = Ps whenever α ∈ (ω, κ) and s ∈ Tα, and that
Qα(A) ⊂ A for every α ∈ [ω, κ].

Step 3. For every x∗ ∈ X∗ and every α ∈ (ω, κ] we have

Q∗αx
∗ = ρA- lim

s∈Tα
P ∗s x

∗;

the limit here exists according to Proposition 20 where M := X∗ and ρ := ρA.
Indeed, for every a from the linearly dense set A we have〈

Q∗αx
∗, a
〉

=
〈
x∗, Qαa

〉
=
〈
x∗, lim

s∈Tα
Psa

〉
= lim
s∈Tα

〈
x∗, Psa

〉
= lim
s∈Tα

〈
P ∗s x

∗, a
〉

=
〈
ρA- lim

s∈Tα
P ∗s x

∗, a
〉
.

Step 4. For every x∗ ∈ X∗ and every sequence ω < α1 < α2 < · · · < κ, with
α := sup{α1, α2, · · · } (which may be equal to κ), we have ρA

(
Q∗αjx

∗, Q∗αx
∗) −→ 0

as j → ∞. Indeed, take any ε > 0. Find s0 ∈ Tα so that ρA
(
P ∗s x

∗, Q∗αx
∗) < ε

whenever s ∈ Tα and s > s0. Find j0 ∈ N so big that Tαj0 3 s0. Now fix any j ∈ N
greater than j0. Then Tαj ⊃ Tαj0 3 s0, and so, by Step 3,

Q∗αjx
∗ = ρA - lim

s∈Tαj
P ∗s x

∗ = ρA - lim
s∈Tαj , s>s0

P ∗s x
∗.

Hence ρA
(
Q∗αjx

∗, Q∗αx
∗) = lims∈Tαj , s>s0 ρA

(
P ∗s x

∗, Q∗αx
∗) 6 ε for all j ∈ N

greater than j0.
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Step 5. Fix any α ∈ (ω, κ). Let Γα be the smallest subset of Γ that contains
Tα, is directed, and σ-closed. For the construction of such an envelope we refer
to the proof of [4, Theorem 15]. The system

(
Hα
s := Ps�QαX : s ∈ Γα

)
is then

an r-projectional skeleton on (QαX, ‖ · ‖) such that Hα
s (QαA) ⊂ QαA for every

s ∈ Γα; the verification of this directly follows from the description of Γα. Further,
our skeleton is QαA-shrinking. Indeed, consider any sequence s1 6 s2 6 · · · in Γα
and put s := sup{s1, s2, . . .}. Take any y∗ ∈ (QαX)∗. Find x∗ ∈ X∗ such that
x∗�QαX= y∗ and ‖x∗‖ = ‖y∗‖. An elementary verification reveals that for every
n ∈ N

ρQα(A)

(
Hα
s
∗y∗, Hα

sn
∗y∗
)

= ρQα(A)

(
P ∗s x

∗, Psnx
∗) 6 ρA(P ∗s x∗, Psnx∗)

So, knowing that the skeleton (Ps : s ∈ Γ) is A-shrinking, we can conclude that
the skeleton

(
Hα
s : s ∈ Γα

)
on QαX is QαA-shrinking.

Step 6. Now we are ready to construct a weakly compact subset of A which
is linearly dense in X. Fix any α ∈ (ω, κ) for a while. The subspace Qα+1X
has density less than κ. From Steps 1, 2, 5, by the induction assumption, we
find a weakly compact set Kα ⊂ 1

2Qα+1A which is linearly dense in the subspace
Qα+1X. Define K :=

⋃
α∈(ω,κ)(Qα+1−Qα)Kα∪{0}. By [6, Proposition 6.2.1 (iv)],

we can easily conclude that K is linearly dense in X. Also, K ⊂ A. As regards the
weak compactness of K, let U be a family of weakly open sets in X covering K.
We shall show that U contains a finite subcover. Find U ∈ U so that U 3 0. We
shall show that the set of α’ from (ω, κ) such that (Qα+1−Qα)Kα \U 6= ∅ is finite.
Putting together this with the weak compactness of each set (Qα+1 −Qα)Kα, we
immediately get that U contains a finite subfamily covering the whole K.

So, assume that set of α’s as above is infinite. Find a finite set F ⊂ X∗ so
that U ⊃ {x ∈ X : max〈F, x〉 < 1} 3 0. Then, for sure, there is x∗ ∈ F such
that the set

{
x ∈ (Qα+1 −Qα)Kα : 〈x∗, x〉 > 1

}
is nonempty for infinitely many

α ∈ (ω, κ). Then there exists an infinite increasing sequence α1 < α2 < · · · in
(ω, κ) and for every j ∈ N a point xj ∈ (Qαj+1 −Qαj )Kαj such that 〈x∗, xj〉 > 1.
Put α := supj∈N αj ; clearly α 6 κ. Now, for every j ∈ N (due to the fact that
Qαjxj = 0)

1 6 〈x∗, xj〉 =
〈
x∗, Qαxj

〉
=
〈
Q∗αx

∗, xj
〉

=
〈
Q∗αx

∗ −Q∗αjx
∗, xj

〉
6 ρA

(
Q∗αx

∗, Q∗αjx
∗) −→ 0

as j →∞; a contradiction. We proved that our K is weakly compact, and so X is
WCG. �

Remark 22. (Important) If we do not care about the commutativity of skeletons
constructed on WCG spaces, we may take, in the proof above, for the projectional
generator the simple one constructed in Subsection 2.4 (PGi); thus avoiding the
use of Amir–Lindenstrauss theorem.



246 Marián Fabian, Vicente Montesinos

3.3. SWCG spaces

Before attacking the problem of characterizing the class of subspaces of WCG
spaces via projectional skeletons, we recall the following criterion going back to
V. Farmaki [9].

Theorem 23 ([7, Theorem 3]). A Banach space X is a subspace of a weakly
compactly generated space if and only if there exists a linearly dense set ∆ ⊂ BX
such that for every ε > 0 there is a decomposition ∆ =

⋃∞
n=1 ∆ε

n such that

∀n ∈ N ∀x∗ ∈ X∗ #
{
δ ∈ ∆ε

n : 〈x∗, δ〉 > ε‖x∗‖
}
< ω.

Theorem 24. For a Banach space (X, ‖ · ‖) TFAE:
(i) X is a subspace of a weakly compactly generated space.
(ii) There exist a (commutative 1-) projectional skeleton (Pγ : γ ∈ Γ) on X

and a countable family A of convex closed symmetric subsets of BX such
that
(a) Pγ(A) ⊂ A for every A ∈ A and every γ ∈ Γ,
(b) for every A ∈ A there is εA > 0 such that the skeleton (Pγ : γ ∈ Γ) is

A-εA-shrinking, and
(c)

⋃
{A ∈ A : εA < ε} = BX for every ε > 0.

Proof. (i)=⇒(ii). Assume that X is a subspace of a WCG space (W, ‖·‖). Assume
that the norm on W is an extension of the norm on X. We shall proceed simi-
larly as in the proof of [4, Proposition 10]. The space W being WCG, here exists
a projectional generator (W ∗,Φ) constructed as at the beginning of the proof of
Theorem 21. Now we define a multivalued mapping ψ : W −→ [W ∗]6ω as follows.
For w ∈W we find a countable set ψ(w) ⊂W ∗ such that

‖w‖ = sup
{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖ 6 1

}
‖w‖m = sup

{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖m 6 1

}
m ∈ N,

‖w‖n,m = sup
{
|〈w∗, w〉| : w∗ ∈ ψ(w) and ‖w∗‖n,m 6 1

}
m,n ∈ N,

where ‖ · ‖m and ‖ · ‖m,n are the Minkowski functionals of the sets BX + 1
mBW

and (nK + 1
mBW ) ∩ BX , respectively, BW := {w ∈ W : ‖w‖ 6 1} and BX :=

{x ∈ X : ‖x‖ 6 1}. (Here we always use the convention that a norm and the dual
norm to it is denoted by the same symbol.) Proposition 13 and Lemma 14 above
yields a rich family Γ ⊂ S@A(W ×W ∗) and a commutative projectional skeleton
(Qγ : γ ∈ Γ) on W such that ‖Qγ‖ = ‖Qγ‖m = ‖Qγ‖m,n = 1 for every γ ∈ Γ and
every n,m ∈ N. Now, given any γ ∈ Γ, for every m ∈ N we have

Qγ(BX) ⊂ Qγ
(
BX + 1

mBW
)
⊂ BX + 1

mBW ⊂ BX + 2
mBW ,

and hence Qγ(BX) ⊂ BX , and so QγX ⊂ X. Thus, putting Pγ := Qγ�X , γ ∈ Γ,
we immediately get that (Pγ : γ ∈ Γ) is a commutative 1-projectional skeleton on
the space (X, ‖ · ‖). We define

Amn := nK + 1
2mBW ∩BX for m,n ∈ N
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and put A := {Amn : m,n ∈ N}. Clearly, Am1 ∪ Am2 ∪ · · · = BX for every m ∈ N.
Further, for every γ ∈ Γ and every n,m ∈ N we have Pγ(Amn ) = Qγ(Amn ) ⊂ Amn as
‖Qγ‖n,m = 1. Finally, fix any m,n ∈ N, fix any x∗ ∈ X∗, consider any sequence
γ1 6 γ2 6 · · · in Γ, and put γ := sup{γ1, γ2, . . .}. Find a w∗ ∈ W ∗ such that
w∗�X= x∗ and ‖w∗‖ = ‖x∗‖. From Theorem 21 we know that

sup
∣∣〈Q∗γjw∗ −Q∗γw∗,K〉∣∣ −→ 0 as j →∞. (4)

Also, for every x ∈ Amn we have〈
P ∗γjx

∗ − P ∗γ x∗, x
〉

=
〈
x∗, Pγjx

〉
−
〈
x∗, Pγx

〉
=
〈
w∗, Qγjx

〉
−
〈
w∗, Qγx

〉
=
〈
Q∗γjw

∗ −Q∗γw∗, x
〉
.

Therefore

lim sup
j→∞

sup
∣∣〈P ∗γjx∗ − P ∗γ x∗, Amn 〉∣∣

= lim sup
j→∞

sup
∣∣〈Q∗γjw∗ −Q∗γw∗, Amn 〉∣∣

= lim sup
j→∞

sup
∣∣〈Q∗γjw∗ −Q∗γw∗, nK + 1

2mBW ∩BX
〉∣∣

6 1
2m lim sup

j→∞
sup

∣∣〈Q∗γjw∗ −Q∗γw∗, BW 〉∣∣
6 1

2m · 2‖w
∗‖ = 1

m‖x
∗‖

where the first inequality comes from (4). We proved that the skeleton (Pγ ; γ ∈ Γ)
is Amn - 1

m -shrinking with respect to the norm ‖ · ‖.
(ii)=⇒(i). IfX is separable, then it is even WCG. Further, let κ be any uncount-

able cardinal and assume that the implication holds for all Banach spaces with
density less than κ. Now consider any X, with density κ, and satisfying (ii). A rea-
soning as in the proof of Theorem 21 authorizes us to assume that (Pγ : γ ∈ Γ)
is an r-projectional skeleton with some finite r > 1. (Again, we do not need that
this skeleton is commutative nor that it is a 1-skeleton.)

We copy here Steps 1 and 2 from the proof of Theorem 21. The notation follows
the notation there.

Step 3. Given any 0 6= x∗ ∈ X∗, any α ∈ (ω, κ], and any A ∈ A, there
exists γx∗,α,A ∈ Tα such that ρA

(
P ∗s x

∗, Q∗αx
∗) < 5εA‖x∗‖ whenever s ∈ Tα

and s > γx∗,α,A. Indeed, first we observe that the net
(
P ∗s x

∗)
s∈Tα

is “2εA‖x∗‖-
Cauchy”. Assume this is not so. Pick some s1 ∈ Tα. Find then s2 ∈ Tα such that
s2 > s1 and ρA

(
P ∗s1x

∗, P ∗s2x
∗) > 2εA‖x∗‖. Find then s3 ∈ Tα such that s3 > s2

and ρA
(
P ∗s2x

∗, P ∗s3x
∗) > 2εA‖x∗‖, . . .. Put s := sup{s1, s2, . . .} (∈ Γ). Then we

know that lim supj→∞ ρA
(
P ∗sjx

∗, P ∗s x
∗) < εA‖x∗‖, and so ρA

(
P ∗sjx

∗, P ∗sj+1
x∗
)
<

2εA‖x∗‖ for all j ∈ N big enough, a contradiction. We proved that there exists
γx∗,α,A ∈ Tα such that ρA

(
P ∗γx∗,α,Ax

∗, P ∗s x
∗) < 2εA‖x∗‖ whenever s ∈ Tα and

s > γx∗,α,A, and hence∣∣〈P ∗s′x∗ − P ∗s x∗, a〉∣∣ < 4εA‖x∗‖ whenever a ∈ A, s, s′ ∈ Tα and s, s′ > γx∗,α,A .
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Applying here lims′∈Tα, s′>γx∗,α,A , we get that
∣∣〈Q∗αx∗, a〉− 〈P ∗s x∗, a〉∣∣ 6 4εA‖x∗‖

whenever a ∈ A, s ∈ Tα and s > γx∗,α,A, and so our claim is proved.
Step 4. Given any 0 6= x∗ ∈ X∗, any A ∈ A, and any sequence α1 < α2 < · · ·

in (ω, κ), with α := supj∈N αj , then

lim sup
j→∞

ρA
(
Q∗αjx

∗, Q∗αx
∗) 6 10 εA‖x∗‖.

Indeed, from Step 3, find sα ∈ Tα so big that ρA
(
P ∗s x

∗, Q∗αx
∗) 6 5εA‖x∗‖ whenever

s ∈ Tα and s > sα. Find j0 ∈ N so big that Tαj0 3 sα. Now, take any j ∈ N greater
than j0. From Step 3 find sαj ∈ Tαj so big that ρA

(
P ∗s x

∗, Q∗αjx
∗) < 5εA‖x∗‖

whenever s ∈ Tαj and s > sαj . Pick some s̄ ∈ Tαj so that s̄ > sα and s̄ > sαj . Then
s̄ ∈ Tα and so ρA

(
P ∗s̄ x

∗, Q∗αx
∗) 6 5εA‖x∗‖. Also, ρA

(
P ∗s̄ x

∗, Q∗αjx
∗) < 5εA‖x∗‖.

Therefore ρA
(
Q∗αx

∗, Q∗αjx
∗) < 10 εA‖x∗‖ for every j ∈ N greater than j0.

Step 5. This is just a tiny generalization of Step 5 from the proof of Theorem 21.
For every α ∈ (ω, κ) the system

(
Hα
s := Ps�QαX : s ∈ Γα

)
is an r-projectional

skeleton in QαX such that for every A ∈ A we have Hα
s (QαA) ⊂ QαA whenever

s ∈ Γα, this skeleton is Qα(A)-εA-shrinking, and
⋃
{Qα(A) : A ∈ A, εA < ε} =

BQαX for every ε > 0. Recall that Γα is the smallest subset of Γ that contains Tα,
is directed, and σ-closed. The verification of all these statements is very similar to
that from Step 5 in the proof of Theorem 21, and hence it is omitted.

Step 6. Now, given any α ∈ (ω, κ), we have at hand the validity of the asser-
tion (ii) from our Theorem where X is replaced by QαX and A is replaced by the
family {Qα(A) : A ∈ A}. Hence, by the induction assumption, QαX is a subspace
of a WCG space. Thus for every α ∈ (ω, κ) the subspace Qα+1X, and hence also
(Qα+1−Qα)X, is a subspace of a WCG space. Therefore Theorem 23 yields a set
∆α ⊂ (Qα+1 − Qα) ∩ BX , linearly dense in (Qα+1 − Qα)X, such that for every
ε > 0 we have a decomposition ∆α =

⋃∞
n=1 ∆ε

α,n such that

∀n ∈ N ∀y∗ ∈
(
(Qα+1 −Qα)X

)∗
#
{
δ ∈ ∆ε

α,n : 〈y∗, δ〉 > ε‖y∗‖
}
< ω. (5)

Now put ∆ :=
⋃
{∆α : α ∈ (ω, κ)}. According to, [6, Proposition 6.2.1 (iv)], this

set is linearly dense in the whole X. Fix any ε > 0. We shall verify the criterion
from Theorem 23 for the space X. We have by (c) in (ii) of our theorem

∆ =
⋃{⋃

{∆ε
α,n : α ∈ (ω, κ)} ∩A : n ∈ N, A ∈ A, εA < ε

10

}
;

note that the “bigger” union consists of countably many pieces. Fix for a while any
n ∈ N and any A ∈ A. Consider any x∗ ∈ X∗. We have to verify that the set{

δ ∈
⋃
{∆ε

α,n : α ∈ (ω, κ)} ∩A : 〈x∗, δ〉 > ε‖x∗‖
}

is finite. Arguing by contradiction, assume that this is not so; thus x∗ 6= 0. Find
then a one-to-one sequence δ1, δ2, . . . in

⋃
{∆ε

α,n : α ∈ (ω, κ)} ∩ A such that
〈x∗, δj〉 > ε‖x∗‖ for every j ∈ N. For every j ∈ N find αj ∈ (ω, κ) so that
δj ∈ ∆ε

αj ,n ∩ A. From (5) we easily deduce that the set {α1, α2, . . .} is infinite.
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When going to subsequences, we may and do assume that α1 < α2 < · · · . Put
α := sup{α1, α2, . . .} (which may be also equal to κ). For every j ∈ N we have (as
Qαjδj = 0)

ε‖x∗‖ < 〈x∗, δj〉 =
〈
Q∗αx

∗ −Q∗αjx
∗, δj

〉
6 ρA

(
Q∗αx

∗, Q∗αjx
∗),

and letting j →∞, Step 4 guarantees that

ε‖x∗‖ 6 lim sup
j→∞

ρA
(
Q∗αx

∗, Q∗αjx
∗) 6 10 εA‖x∗‖ < 10 · ε10‖x

∗‖ = ε‖x∗‖,

a contradiction. Hallelujah! We thus verified the criterion from Theorem 23 and
therefore X is a subspace of a WCG space. �

Challenge. To characterize weakly K-analytic and Vašák, i.e. weakly K-countably
determined Banach spaces, via skeletons.

To characterize Banach spaces which are simultaneously Asplund and 1-Pličko
via skeletons (W. Kubiś).
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