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OPTIMAL GROUPS FOR THE r–RANK ARTIN CONJECTURE

Leonardo Cangelmi, Raffaele Marcovecchio

Abstract: For any finitely generated subgroup Γ of Q∗, Pappalardi and the first–named author
[1] found a formula to compute the density of the primes ` for which the reduction modulo ` of
Γ contains a primitive root modulo `. They conjectured a characterization of optimal groups,
free or torsion, i.e. subgroups with maximal density. In this paper we prove their conjecture and
give a similar characterization for optimal positive groups.
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1. Introduction and main results

Let Γ be a finitely generated subgroup of Q∗, the multiplicative group of non–zero
rational numbers. We denote the rank of Γ by r, and we assume r > 1. We
define Supp(Γ) as the (finite) set of primes ` such that ν`(a) 6= 0 for some a ∈ Γ.
Hereafter, ` will always denote a prime number. For any ` /∈ Supp(Γ), we set
Γ mod ` = {a mod ` : a ∈ Γ}, which is a subgroup of the multiplicative group F∗` .
For any positive real number x, letNΓ(x) = #{` 6 x : ` /∈ Supp(Γ) and Γ mod ` =
F∗`}.

The Artin Conjecture for primitive roots states that NΓ(x) → ∞ for x →
∞, when Γ is generated by an integer a which is different from −1 and is not
a perfect square. Under the Generalized Riemann Hypothesis for some number
fields, Hooley [2] proved that NΓ(x) ∼ δΓ

x
log x , when Γ = 〈a〉 with a as above,

giving an explicit formula to compute the density. In the general case of groups Γ
of any rank, Pappalardi [6] proved the same asympototic formula for NΓ(x), and
Pappalardi and the first–named author [1] gave a complicated formula to compute
δΓ. Indeed, they proved that δΓ = ArbΓcΓ, where

Ar =
∏
`>2

(
1− 1

`r(`− 1)

)
(1)
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is the r–rank Artin constant,

bΓ =
∏
`>2

(
1− `r−r` − 1

`r(`− 1)− 1

)
(2)

and
cΓ = 1− 1

2r2

∑
ξ∈Γ̃

µ(|s(ξ)|)
∏
`|s(ξ)

1

`r`(`− 1)− 1
. (3)

Here, r` = dimF`
(ΓQ∗`/Q∗`), where Q∗` = {a` : a ∈ Q∗}. Furthermore, for any

ξ ∈ Q∗/Q∗2, we let s(ξ) denote the unique square–free integer in the equivalence
class ξ. Then, Γ̃ = {ξ ∈ ΓQ∗2/Q∗2 : s(ξ) ≡ 1 (mod 4)}. Since r` < r only for
finitely many primes ` (see Section 2), then the product defining bΓ is finite, so
that bΓ is a positive rational number. We also note that cΓ is rational, since Γ̃ is
finite.

We refer the reader to the paper by Moree [4] for a comprehensive survey on
Artin’s primitive root conjecture, written both for a general audience and for spe-
cialists, including some historical remarks, a complete bibliography, open problems
and outlines to many variations of the conjecture. With regard to generalizations
to the higher rank case, we point out the papers by Pappalardi and Susa [8], Pap-
palardi [7], and Menici and Pehlivan [3]. It is also interesting to note that Moree
and Stevenhagen [5] recovered the above formula for δΓ using a unified general
approach for the computation of Artin primitive root densities.

For any r, it is easy to find a subgroup Γ with rank r such that δΓ is arbitrarily
small. In contrast, it is not evident that for any r there is a maximum value of δΓ,
varying Γ among all the subgroups of Q∗ with rank r. In [1], the authors conjecture
that, for any given rank r, there exists a free group of rank r having maximal
density, and the same is stated for torsion groups of rank r. Moreover, they
propose a characterization of free groups, and of torsion groups, having maximal
density, which they call optimal. In the present paper we prove their claims, with
just a minor correction, and complete the picture, taking into account also the
positive groups, that is the subgroups of Q+.

We say that a free (or torsion) subgroup of Q∗ with rank r is an optimal
group when its density is maximal in the set of the densities of all free (or torsion,
respectively) subgroups of Q∗ with rank r.

Let (pi)i>1 be the increasing sequence of all the odd primes.

Theorem 1. The free group
〈
(−1/pi)pi : i = 1, . . . , r

〉
is optimal, and its density

is

Ar

(
1− 1

2r

r∏
i=1

(
1− 1

pri (pi − 1)− 1

))
.

Moreover, a free subgroup Γ of Q∗ with rank r is optimal if and only if Γ̃ =〈
(−1/pi)piQ∗2 : i = 1, . . . , r

〉
, and r` = r for every ` when r > 2, while r` = 1 for

every ` 6= 3 when r = 1.
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Theorem 2. The torsion group
〈
− 1, pi : i = 1, . . . , r

〉
is optimal, and its density

is

Ar

(
1− 1

2r+1

r∏
i=1

(
1− 1

pri (pi − 1)− 1

))
.

Moreover, a torsion subgroup Γ of Q∗ with rank r is optimal if and only if Γ̃ =〈
(−1/pi)piQ∗2 : i = 1, . . . , r

〉
, and r` = r for every ` > 2.

By Theorem 1 no positive group is optimal, as a free group. However, we can
say that a positive subgroup of Q∗ with rank r is an optimal group when its density
is maximal in the set of the densities of all positive subgroups of Q∗ with rank r.
Let (qi)i>1 be the increasing sequence of all the primes q satisfying q ≡ 1 (mod 4).

Theorem 3. The positive group
〈
qi : i = 1, . . . , r

〉
is optimal, and its density is

Ar

(
1− 1

2r

r∏
i=1

(
1− 1

qri (qi − 1)− 1

))
.

Moreover, a positive subgroup Γ of Q∗ with rank r is optimal if and only if Γ̃ =〈
qiQ∗2 : i = 1, . . . , r

〉
, and r` = r for every ` when r > 2, while r` = 1 for every

` 6= 5 when r = 1.

In Section 2, we sketch the proof of our results and give some remarks related
to finitely generated subgroups of Q∗. In Section 3, we prove a basic technical
lemma about certain sums over subgroups of Q∗/Q∗2, which will be the the main
tool in the proof of our theorems. In Sections 4, 5 and 6, we prove Theorems 1, 2
and 3, respectively.

2. Outline of the proof and preliminary remarks

The idea behind the proof of the characterization of optimal groups is the following.
Given a non–optimal group Γ, we look for some other group (with the same rank)
having density greater than that of Γ. This is attained by recursively removing,
adding, or substituting primes in Supp(Γ). Since, for any fixed r, δΓ = ArbΓcΓ
and Ar is constant, we have to maximize the product bΓcΓ. The term we mainly
have to control is cΓ, while bΓ is dealt with easily in a second phase, when some
compensation may occur. Hence we are led to study the sum in the formula of
cΓ, and this can be more easily undertaken in a more general set, considering
similar sums over subgroups of Q∗/Q∗2. When dealing with the product bΓcΓ in
Sections 4, 5 and 6, we shall need some general remarks that we list below.

Let Γ be a finitely generated subgroup of Q∗ with rank r. Then, Γ is free if
and only if −1 /∈ Γ, and is torsion otherwise. In both cases, there exist ai ∈ Q∗,
for i = 1, . . . , r, such that a1, . . . , ar are multiplicatively independent, and Γ =
〈a1, . . . , ar〉 when Γ is free, while Γ = 〈−1, a1, . . . , ar〉 when Γ is torsion; in the
latter case, we may assume that ai > 0, for i = 1, . . . , r.
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We recall that r` = dimF`
(ΓQ∗`/Q∗`). In other words, r` is the maximal

number of elements in Γ that are multiplicatively independent modulo `–powers.
Therefore, 0 6 r` 6 r for every odd prime `, and 0 6 r2 6 r when Γ is free, while
1 6 r2 6 r + 1 when Γ is torsion.

We note that Γ̃ is a subgroup of ΓQ∗2/Q∗2 and −Q∗2 /∈ Γ̃. If we let t =

dimF2(Γ̃), then 0 6 t 6 min{r2, r}. It easily follows that cΓ is positive when r2

is positive, while cΓ = 0 when r2 = 0. We also note that if Γ̃ =
〈
(−1/`i)`i : i =

1, . . . , r
〉
for some primes `i, then r2 = r when Γ is free, and r2 = r + 1 when Γ is

torsion.
If Supp(Γ) = {`1, . . . , `s} then s > r, and there exists a matrix M = (mij)

of size r × s, with integer entries, such that |ai| =
∏s
j=1 `

mij

j . It is shown in [1]
that r` = rank(M mod `) for every odd prime `, and r2 = rank(M mod 2) when
−1 /∈ ΓQ∗2, while r2 = rank(M mod 2) + 1 when −1 ∈ ΓQ∗2 (which is the case
when Γ is torsion). Moreover, for every odd prime `, we have r` = r if and only if
` - ∆(M), where ∆(M) is the greatest common divisor of the minors of maximum
size (i.e. r) of M . Hence, r` < r only for finitely many primes `. In addition,
r` = r for all ` if and only if ∆(M) = 1, while r` = r for all ` 6= 3 (or ` 6= 5) if and
only if ∆(M) = 3n (or 5n, respectively) for some integer n > 0. This shows that
the condition on the r`’s in Theorems 1, 2 and 3 can be reformulated in terms of
∆(M).

3. Sums over subgroups of Q∗/Q∗2

Let G be a finite subgroup of Q∗/Q∗2. Each element of Q∗/Q∗2 can be uniquely
written as mQ∗2, where m is a square–free integer. Hence, hereafter m will denote
a square–free integer, and we shall write an element ofQ∗/Q∗2 asmQ∗2. According
to the notation in Section 1, for ξ = mQ∗2 we have m = s(ξ). We suppose that
−Q∗2 /∈ G; this implies that, for all m ∈ Z, if mQ∗2 ∈ G then −mQ∗2 /∈ G.

Let χ : G → {±1} be a homomorphism of multiplicative groups. Let f(`) be
a real function defined over the set of primes, with values in the open unit interval
(0, 1). For G, χ and f as above, let

S(G,χ, f) =
∑

mQ∗2∈G

χ(mQ∗2)
∏
`|m

f(`).

If G = {Q∗2}, the above sum equals 1. Furthermore, if χ1 is the trivial homomor-
phism (that is the one with constant value 1), then S(G,χ1, f) > 1 for any G and
any f , where the equality holds if and only if G = {Q∗2}.

Let Supp(G) be the (finite) set of primes ` dividing m for some integer m
with mQ∗2 ∈ G. For ` ∈ Supp(G), let G` be the subgroup of G of the elements
mQ∗2 ∈ G such that ` - m. Clearly, ` /∈ Supp(G`).

Lemma 4. For all G, χ and f , we have

S(G,χ, f) > 0,
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and for each ` ∈ Supp(G)

S(G,χ, f) >
(
1− f(`)

)
S(G`, χ, f),

where the equality holds if and only if ±`Q∗2 ∈ G and χ(±`Q∗2) = −1.

Proof. We argue by induction on h =
∣∣Supp(G)

∣∣. If h = 0, then G = {Q∗2},
thus S(G,χ, f) = 1. If h > 1, in order to fix the ideas, let Supp(G) = {`1, . . . , `h}
and ` = `1. Even if not required, we prove directly also the case h = 1: now
G = {Q∗2, `Q∗2} or G = {Q∗2,−`Q∗2}, so that

S(G,χ, f) = 1 + χ(±`Q∗2)f(`).

Since G` = {Q∗2}, we have S(G`, χ, f) = 1, and the result follows from this and
0 < f(`) < 1.

Let h > 1. Since Supp(G`) ⊆ {`2, . . . , `h}, by the inductive hypothesis we have

S(G`, χ, f) > 0. (4)

We distinguish two cases.
First case. Suppose that ±`Q∗2 ∈ G, that is `Q∗2 ∈ G or −`Q∗2 ∈ G (but not

both of them). Since G` is a subgroup of G with index 2, we have:

if mQ∗2 ∈ G \G`, then ` | m and ± m

`
Q∗2 ∈ G`,

and
if mQ∗2 ∈ G`, then ` - m and ± `mQ∗2 ∈ G \G`.

Hence
S(G,χ, f)− S(G`, χ, f) = χ(±`Q∗2)f(`)S(G`, χ, f). (5)

Since 0 < f(`) < 1, by (4) and (5) we obtain the result.
Second case. Suppose now that `Q∗2 /∈ G and −`Q∗2 /∈ G. Let H be the

subgroup of Q∗/Q∗2 generated by the elements of G and by `Q∗2. We lift χ to a
homomorphism on H, which we still call χ, by putting χ(`Q∗2) = 1. We consider
H` and note that Supp(H`) = {`2, . . . , `h}. Hence, besides (4), we have

S(H`, χ, f) > 0. (6)

Moreover, G andH` are subgroups ofH with index 2, andG` = G∩H`. As a result,
we have:

if mQ∗2 ∈ G \G`, then ` | m and
m

`
Q∗2 ∈ H` \G`,

and
if mQ∗2 ∈ H` \G`, then ` - m and `mQ∗2 ∈ G \G`.

Therefore

S(G,χ, f)− S(G`, χ, f) = f(`)
(
S(H`, χ, f)− S(G`, χ, f)

)
. (7)
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Recalling that 0 < f(`) < 1, by (6) and (7) we get

S(G,χ, f) >
(
1− f(`)

)
S(G`, χ, f), (8)

which is positive by (4). �

Remark. In the second case of the above proof, besides G and H`, there exists
a third subgroup of H containing G`, namely the group K generated by the el-
ements of G` and by `Q∗2. Then we may lift χ to a homomorphism χ− on H
by putting χ−(`Q∗2) = −1, this time. We have K` = G` and S(K,χ−, f) =(
1− f(`)

)
S(G`, χ, f). Hence, the inequality (8) can be read as

S(G,χ, f) > S(K,χ−, f),

thus relating Lemma 4 to the outline of the proof given at the beginning of Sec-
tion 2.

We point out that Γ̃ is a subgroup of Q∗/Q∗2 and that −Q∗2 /∈ Γ̃. Hence we
are going to apply Lemma 4 to Γ̃, with the homomorphism µ+ : Q∗/Q∗2 → {±1}
defined by

µ+(mQ∗2) = µ(|m|).

4. Optimal free groups

We note that 2 /∈ Supp(Γ̃). For any odd prime `, we let

f(`) =
1

`r`(`− 1)− 1
,

so that 0 < f(`) < 1.
We know that Γ̃ has 2t elements, for some integer t such that 0 6 t 6 r2 6 r.

As a consequence, Supp(Γ̃) has at least t elements. By Lemma 4, using induction
on t, there exist t primes `1, . . . , `t ∈ Supp(Γ̃) such that

S(Γ̃, µ+, f) >
t∏
i=1

(
1− f(`i)

)
,

and the equality holds if and only if Γ̃ =
〈
(−1/`1)`1Q∗2, . . . , (−1/`t)`tQ∗2

〉
. It

follows that there always exist r (instead of t) odd primes `1, . . . , `r (not necessarily
in Supp(Γ̃)) such that

S(Γ̃, µ+, f) >
r∏
i=1

(
1− f(`i)

)
,

and the equality holds if and only if t = r and

Γ̃ =
〈
(−1/`1)`1Q∗2, . . . , (−1/`r)`rQ∗2

〉
. (9)
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Since r2 6 r, we have by (3)

cΓ = 1− 1

2r2
S(Γ̃, µ+, f) 6 1− 1

2r2

r∏
i=1

(
1− f(`i)

)
6 1− 1

2r

r∏
i=1

(
1− f(`i)

)
,

and the two equalities hold if and only if (9) holds and r2 = r, respectively. Here
we recall that for free groups (9) implies r2 = r.

With regard to bΓ, defined by (2), the factor corresponding to ` is 1 when
r` = r, and less than 1 when r` < r. Hence

bΓ 6
r∏
i=1

(
1− `

r−r`i
i − 1

`ri (`i − 1)− 1

)
,

where the equality holds if and only if r` = r for every ` /∈ {2, `1, . . . , `r}.
Thus

bΓcΓ 6
r∏
i=1

(
1− `

r−r`i
i − 1

`ri (`i − 1)− 1

)(
1− 1

2r

r∏
i=1

(
1− 1

`
r`i
i (`i − 1)− 1

))
,

and the equality holds if and only if (9) holds and r` = r for every ` /∈ {`1, . . . , `r}.
Putting

xi = `r`i (`i − 1), yi = `ri (`i − 1),

we have xi 6 yi, and the bound for bΓcΓ can be written as

r∏
i=1

yi
yi − 1

r∏
i=1

xi − 1

xi

(
1−

r∏
i=1

xi − 2

2(xi − 1)

)
.

We let

gr(x1, . . . , xr) =

r∏
i=1

xi − 1

xi

(
1−

r∏
i=1

xi − 2

2(xi − 1)

)

=

r∏
i=1

(
1− 1

xi

)
−

r∏
i=1

(
1

2
− 1

xi

)
.

For r = 1, g1(x1) is constant, equal to 1/2. For r > 2, we highlight the dependency
on x1 by noting that

gr(x1, . . . , xr) =

r∏
i=2

(
1− 1

xi

)
− 1

2

r∏
i=2

(
1

2
− 1

xi

)

− 1

x1

(
r∏
i=2

(
1− 1

xi

)
−

r∏
i=2

(
1

2
− 1

xi

))
.
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By symmetry in x1, . . . , xr, we see that gr(x1, . . . , xr) 6 gr(y1, . . . , yr) when r > 2,
and the equality holds if and only if xi = yi for i = 1, . . . , r, that is r`i = r for
i = 1, . . . , r. In conclusion

bΓcΓ 6 gr(y1, . . . , yr)

r∏
i=1

yi
yi − 1

= 1−
r∏
i=1

yi − 2

2(yi − 1)

= 1− 1

2r

r∏
i=1

(
1− 1

`ri (`i − 1)− 1

)
.

Moreover, the equality holds if and only if (9) holds, and r` = 1 for every ` 6= `1
when r = 1, whereas r` = r for every ` when r > 2.

We remind that (pi)i>1 is the sequence of all the odd primes. Then

1− 1

2r

r∏
i=1

(
1− 1

`ri (`i − 1)− 1

)
6 1− 1

2r

r∏
i=1

(
1− 1

pri (pi − 1)− 1

)
,

where the equality holds if and only if `i = pi, for i = 1, . . . , r. This completes the
proof of the characterization of optimal free groups in Theorem 1. It is plain that〈
(−1/pi)pi : i = 1, . . . , r

〉
is the simplest optimal free group.

5. Optimal torsion groups

We repeat the same arguments as in the case of free groups, except that now we
have r2 6 r + 1. Therefore there exist r primes `1, . . . , `r such that

cΓ 6 1− 1

2r2

r∏
i=1

(
1− f(`i)

)
6 1− 1

2

r∏
i=1

xi − 2

2(xi − 1)

and

bΓcΓ 6
r∏
i=1

yi
yi − 1

r∏
i=1

xi − 1

xi

(
1− 1

2

r∏
i=1

xi − 2

2(xi − 1)

)
.

In the latter bound the equality holds if and only if (9) holds, r` = r for every
` /∈ {2, `1, . . . , `r}, and r2 = r + 1. We recall that for torsion groups (9) implies
r2 = r + 1. We set

hr(x1, . . . , xr) =

r∏
i=1

xi − 1

xi

(
1− 1

2

r∏
i=1

xi − 2

2(xi − 1)

)

=

r∏
i=1

(
1− 1

xi

)
− 1

2

r∏
i=1

(
1

2
− 1

xi

)
.
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We underline the dependency on x1 by noting that

hr(x1, . . . , xr) =

r∏
i=2

(
1− 1

xi

)
− 1

4

r∏
i=2

(
1

2
− 1

xi

)

− 1

x1

(
r∏
i=2

(
1− 1

xi

)
− 1

2

r∏
i=2

(
1

2
− 1

xi

))
.

We observe that h1(x1) is not constant, being equal to 3/4− x1/2. By symmetry
in x1, . . . , xr, we see that hr(x1, . . . , xr) 6 hr(y1, . . . , yr), where the equality holds
if and only if xi = yi for i = 1, . . . , r, or, equivalently, r`i = r for i = 1, . . . , r. In
conclusion

bΓcΓ 6 hr(y1, . . . , yr)

r∏
i=1

yi
y1 − 1

= 1− 1

2

r∏
i=1

yi − 2

2(yi − 1)

= 1− 1

2r+1

r∏
i=1

(
1− 1

`ri (`i − 1)− 1

)
.

Moreover, the equality holds if and only if (9) holds, and r` = r for every
` > 2 (and r2 = r + 1). Finally,

1− 1

2r+1

r∏
i=1

(
1− 1

`ri (`i − 1)− 1

)
6 1− 1

2r+1

r∏
i=1

(
1− 1

pri (pi − 1)− 1

)
,

where equality holds if and only `i = pi, for i = 1, . . . , r. This concludes the
proof of the characterization of optimal torsion groups in Theorem 2. Obviously,〈
− 1, pi : i = 1, . . . , r

〉
is the simplest optimal torsion group.

6. Optimal positive groups

We follow the same arguments as in the case of free groups. However, we now select
only primes in Supp(Γ̃) which are congruent to 1 (mod 4). By Lemma 4, using
induction, there exist u primes `1, . . . , `u ∈ Supp(Γ̃), for some u ∈ {0, . . . , t}, and
a subgroup Γ̃0 of Γ̃ with 2t−u elements, such that: `i ≡ 1 (mod 4), for i = 1, . . . , u;
every ` ∈ Supp(Γ̃0) satisfies ` ≡ 3 (mod 4); and

S(Γ̃, µ+, f) >
u∏
i=1

(
1− f(`i)

)
S(Γ̃0, µ+, f).

The equality holds if and only if `1Q∗2, . . . , `uQ∗2 ∈ Γ̃. If mQ∗2 ∈ Γ̃0, then
m > 0, m ≡ 1 (mod 4), and ` ≡ 3 (mod 4) for all ` dividing m. Therefore m is
the product of an even number of primes, whence µ(m) = 1. It follows that

S(Γ̃0, µ+, f) > 1,
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and the equality holds if and only if Γ̃0 = {Q∗2}, or, equivalently, u = t. Therefore

S(Γ̃, µ+, f) >
u∏
i=1

(
1− f(`i)

)
,

and the equality holds if and only if u = t and Γ̃ =
〈
`1Q∗2, . . . , `tQ∗2

〉
. Hence

there always exist r (instead of u) primes `1, . . . , `r such that `i ≡ 1 (mod 4) for
i = 1, . . . , r, and

S(Γ̃, µ+, f) >
r∏
i=1

(
1− f(`i)

)
,

where the equality holds if and only if Γ̃ =
〈
`1Q∗2, . . . , `rQ∗2

〉
.

The proof continues exactly as in Section 4, the only difference being that in
the last inequality we have to consider just the primes q ≡ 1 (mod 4). We add
that

〈
qi : i = 1, . . . , r

〉
is the simplest optimal positive group.
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