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ON SUPERSINGULAR PRIMES OF THE ELKIES’ ELLIPTIC
CURVE

Naoki Murabayashi

Abstract: Let E be the elliptic curve y2 = x3 +(i− 2)x2 +x over the imaginary quadratic field
Q(i). In this paper, we investigate the supersingular primes of E. We introduce the curve C of
genus two over Q covering a quotient of E and for any prime number p, we state a condition
(over Fp) about the reduction of the jacobian variety of C modulo p which is equivalent to the
existence of a supersingular prime of E lying over p (Theorem 5.10).
Keywords: curve of genus two, quadratic twist, supersingular abelian surface, ideal class,
Magma, Groebner basis.

1. Introduction

In [2] Elkies proved that for any number field K of odd degree over Q, every elliptic
curve defined over K has infinitely many supersingular primes. He remarked that
for number fields of even degree over Q, the situation is more complicated. As
examples, he also presented the elliptic curve

E : y2 = x3 + (i− 2)x2 + x

defined over Q(i) (i2 = −1), to which his method for existence of infinitely many
supersingular primes does not apply. He showed that an odd supersingular char-
acteristic p of E must be inert in Q(i) (i.e., p ≡ 3 (mod 4)) and the number of
supersingular primes (p) of E with p 6 x is expected to behave as C · log log x for
some constant C when x tends to infinity. He also stated that a computer search
found no odd supersingular prime less than 74000. Since the prime ideal (1+i) is a
bad prime of E, this means that E has no supersingular prime whose characteristic
of the residue field is less than 74000.

Using Magma [1], the author obtained that E has no supersingular prime whose
characteristic of the residue field is less than 5×1010. The program is very simple:
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for t in [m..n] do
if IsPrime(3+4*t) then

F:=FiniteField(3+4*t);
PF<x>:=PolynomialAlgebra(F);
F2<a>:=ext<F|x^2+4*x+5>;
E:=EllipticCurve([0,a,0,1,0]);
if IsSupersingular(E) then

print 3+4*t;
end if;

end if;
end for;

where m and n in the first line are non-negative specified integers with m < n. We
executed this program at intervals 125× 105 with respect to t for prime numbers
less than 7 × 108. For other prime numbers, intervals with respect to t were the
following.

prime number p interval with respect to t
7× 108 6 p < 9× 108 250× 105

9× 108 6 p < 42× 108 500× 105

42× 108 6 p < 70× 108 1000× 105

70× 108 6 p < 15× 109 2000× 105

15× 109 6 p < 5× 1010 2500× 105

One of the reasons why supersingular primes of E are rare is that for any
supersingular prime (p), the reduction of E modulo (p) has no model defined
over Fp.

In this paper we construct a curve C of genus two defined overQ whose jacobian
variety J(C) is isogenous to E×Eσ over Q(i) (Gal(Q(i)/Q) = 〈σ〉) and investigate
properties over Fp of the reduction of J(C) modulo p for any supersingular prime
(p) of E.

2. A curve of genus two covering a quotient of E

Let C be the curve

y2 = x5 + 16x4 − 8x3 − 64x2 + 16x (= x(x− 2)(x+ 2)(x2 + 16x− 4) )

of genus two defined over Q. Set P := (0, 0) ∈ E[2], the set of 2-torsion points of
E and E1 := E/〈P 〉. Then it is straightforward to check that E1 is defined by an
equation

y2 = x(x+ 4)(x+ i)

and
ϕ : C −→ E1, (x, y) 7−→

(
x

4
− 1

x
,

1

8x

(
1 +

2i

x

)
y

)
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is a morphism of degree two. Therefore C has the automorphism

η : C −→ C, (x, y) 7−→
(
− 4

x
, −8i

y

x3

)
which is the generator of the Galois group of ϕ. Putting

ψ := ϕ× ϕσ : C −→ E1 × Eσ1 ,

we consider the isogeny

Φ : J(C) −→ E1 × Eσ1 , cl(P1 + P2 − 2∞) 7−→ ψ(P1) + ψ(P2),

where∞ denotes the unique Weierstrass point of C at infinity and cl(P1+P2−2∞)
denotes the linearly equivalent class represented by a divisor P1 + P2 − 2∞ of C.
Let R1, R2, R3, R4, R5 and R6 be the Weierstrass points of C whose x-coordinates
are infinity, 0, −2, 2, −8−2

√
17 and −8+2

√
17, respectively (therefore, R1 =∞).

Theorem 2.1. The kernel of Φ is

{0, cl(R2 −R1), cl(R4 −R3), cl(R6 −R5)}

and isomorphic to (Z/2Z)⊕2.

Proof. We take any element cl(P1+P2−2∞) of J(C). Under the assumption that
P1 ∈ {R1, R2}, cl(P1 +P2− 2∞) ∈ Ker Φ is equivalent to P2 ∈ {R1, R2} because
of the fact that ϕ−1(O) = {R1, R2}, where O is the point at infinity of E1. In this
case we have two elements 0 and cl(R1+R2−2∞) = cl(R2−R1) of Ker Φ. Therefore
it is enough to consider the case Pj /∈ {R1, R2} (j = 1, 2). Then considering the
coordinate (xj , yj) of Pj (j = 1, 2), we have that cl(P1 + P2 − 2∞) ∈ Ker Φ if
and only if

1

4
x1 −

1

x1
=

1

4
x2 −

1

x2
, (2.1)

1

8x1

(
1 +

2i

x1

)
y1 = − 1

8x2

(
1 +

2i

x2

)
y2, (2.2)

1

8x1

(
1− 2i

x1

)
y1 = − 1

8x2

(
1− 2i

x2

)
y2. (2.3)

It follows that (2.1) is equivalent to

1

4
(x1 − x2) = −x1 − x2

x1x2
.

It is divided into two cases: x1 − x2 6= 0 and x1 − x2 = 0.
In the former case, we have that x2 = − 4

x1
. By substituting this for (2.2) and

(2.3), we have that

1

x1

(
1 +

2i

x1

)
y1 =

1

4
x1

(
1− i

2
x1

)
y2, (2.4)

1

x1

(
1− 2i

x1

)
y1 =

1

4
x1

(
1 +

i

2
x1

)
y2. (2.5)
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If x1 = 2i (resp. −2i), x2 = − 4
x1

= 2i (resp. −2i). Hence we have that x1 = x2, so
a contradiction. Therefore we obtain that x1 6= ±2i. If y1 6= 0 and y2 6= 0, dividing
both sides of (2.4) by both sides of (2.5), we obtain that(

1 +
2i

x1

)(
1 +

i

2
x1

)
=

(
1− 2i

x1

)(
1− i

2
x1

)
and this implies x1 = ±2i, so a contradiction. We consider the case: y1 = 0.
If y2 6= 0, (2.4) implies x1 = −2i. This is a contradiction. We have that y2 = 0.
Therefore x1 and x2 are roots of the equation x(x+2)(x−2)(x2+16x−4) = 0 whose
product equals to −4. Hence we have that {P1, P2} = {R3, R4} or {R5, R6}, i.e.,
cl(R3 +R4− 2∞) = cl(R4−R3), cl(R5 +R6− 2∞) = cl(R6−R5) ∈ Ker Φ. In the
case: y2 = 0, the same argument implies the same result.

In the later case, since 1 + 2i
x1
6= 0 or 1− 2i

x1
6= 0, (2.2) or (2.3) implies that

y1 = −y2. Therefore we have that P2 = τ(P1), where τ denotes the hyperelliptic
involution of C. Hence we have that

cl(P1 + P2 − 2∞) = cl(P1 + τ(P1)− 2∞) = 0. �

3. On the Frobenius morphism of a supersingular reduction of E

Proposition 3.1. For any supersingular prime (p) of E, the Legendre symbol(
17
p

)
is equal to 1.

Proof. Let

F2(x, y) = x3 + y3 − x2y2 + 1488x2y + 1488xy2 − 162000x2 − 162000y2

+ 40773375xy + 8748000000x+ 8748000000y − 157464000000000

be the modular polynomial of level two. The j-invariant jE of E is equal to 214

i−4 .
Using Magma we obtain the factorization over Q(i):

F2

(
x,

214

i− 4

)
=

{
x+

1

172
(974608− 292800i)

}
×
{
x2 − (19834336 + 8863808i)x− 1

17
(881201733376 + 313519195136i)

}
.

Let f(x) be the second factor and D be the discriminant of f(x). By assumption
the roots in Fp of the equation f(x) ≡ 0 (mod (p)) over Fp2 are supersingular
j-invariants, especially they must be contained in Fp2 . Therefore we have that
D mod (p) is a square in Fp2 . We obtain the prime decomposition in Z[i]:

17D = (1 + i)24(2− i)2(5 + 2i)2(7 + 10i)2(30 + 31i)2(90− 61i)2(1− 4i).

Multiplying 1 + 4i on both sides and cancelling 17, we have that 1 + 4i mod (p) is
a square in Fp2 . It follows that this is equivalent to

(
17
p

)
= 1. (Indeed,

(
17
p

)
= 1
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implies that a congruence equation x2 − x − 4 ≡ 0 (mod p) has integer solutions
a, b. Since

(
−1
p

)
= −1, we have

(
ab
p

)
= −1. We may assume

(
a
p

)
= 1. Therefore

there exist integers c, c′ such that c2 ≡ a (mod p) and cc′ ≡ 1 (mod p). Then we
have that (c+ 2c′i)2 ≡ 1 + 4i (mod (p)).) �

We consider the field L(E1[4]) generated over L := Q(i) by the coordinates of
all 4-torsion points of E1.

Lemma 3.2. L(E1[4]) = L(
√
i,
√

4− i).

Proof. By replacing x by x− 4+i
3 , we see that E1 is isomorphic over L to the

elliptic curve defined by the equation:

y2 = x3 +Ax+B, A =
−15 + 4i

3
, B =

140− 50i

27
.

Set f(x) := x3 +Ax+B and let

ψ′4(x) := x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3

be the x-part of the 4th division polynomial (see Exercise 3.7 in [8] (p. 105)). We
obtain the prime factorization over L:

ψ′4(x) =

(
x2 − 8 + 2i

3
x+

15− 28i

9

)(
x2 +

16− 2i

3
x− 81− 20i

9

)
×
(
x2 − 8− 4i

3
x+

21 + 20i

9

)
.

Let αj and α′j be the zeros of the jth polynomial in this factorization (j = 1, 2, 3).
Then using Magma we obtain that

L(E1[4]) = L(αj , α
′
j ,
√
f(αj),

√
f(α′j) | j = 1, 2, 3)

= L(α1, α2) = L(
√
i,
√

4− i). �

For an abelian variety B defined over a finite field Fq and a positive integer r,
we denote by FrobB, qr the qr-th power Frobenius morphism of B.

Theorem 3.3. For any supersingular prime (p) of E, it holds that FrobE(p), p2 =
[−p]E(p)

, where E(p) denotes the reduction of E modulo (p) and [−p]E(p)
denotes

the multiplication by −p map of E(p).

Proof. Since E and E1 are isogenous over L, the claim is equivalent to
FrobE1(p), p2 = [−p]E1(p)

. Since E1(p) is supersingular, the multiplication by p map
is purely inseparable. Since

NL/Q(jE1) =
28 2413

172
and NL/Q(jE1 − 1728) = 28 54 132,
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we see that Aut(E1(p)) = {±1}. Therefore we have that [p]E1(p)
= ±FrobE1(p), p2 .

The condition p ≡ 3 (mod 4) (resp. Proposition 3.1) implies that i mod (p) (resp.
4 − i mod (p)) (∈ Fp2) is a square in Fp2 . Therefore, by Lemma 3.2, we have
that (p) splits completely in L(E1[4]). This implies that FrobE1(p), p2 induces the
identity map on E1(p)[4]. Hence we have that FrobE1(p), p2 = [−p]E1(p)

. �

For any prime number p which is congruent to 3 modulo 4, we consider the
elliptic curve

A : y2 = x3 − x
defined over Fp. Then it is well known that A is supersingular and its endomor-
phism ring EndFp2 (A) defined over Fp2 is isomorphic to the maximal order

O = Z + Z
1 + α

2
+ Zβ + Z

(1 + α)β

2
(α2 = −p, β2 = −1, βα = −αβ)

of the quaternion algebra B over Q ramified precisely at p and ∞ by the cor-
respondence: FrobA, p to α; I : (x, y) 7−→ (−x,

√
−1y) to β (see [2]). For any

supersingular prime (p) of E, we consider the reduction of Φ (in Theorem 2.1)
modulo (p)

Φ(p) : J(C)p −→ E1(p) × E σ
1(p),

where σ denotes the p-th power Frobenius automorphism of Fp2 induced by σ (in
Introduction). Let αp be the group scheme SpecFp[X]/(Xp) over Fp. Since the
degree of Φ(p) is 22, we have the dual isogeny

Φ̂(p) : E1(p) × E σ
1(p) −→ J(C)p

with Φ̂(p) ◦ Φ(p) = [4]J(C)p and Φ(p) ◦ Φ̂(p) = [4]E1(p)×E σ
1(p)

. Then we can consider

the two homomorphism of Fp-vector spaces:

ϕ1 : Hom(αp, J(C)p) −→ Hom(αp, E1(p) × E σ
1(p)), h 7−→ Φ(p) ◦ h

and

ϕ2 : Hom(αp, E1(p) × E σ
1(p)) −→ Hom(αp, J(C)p), h 7−→ Φ̂(p) ◦ h.

For any h ∈ Hom(αp, J(C)p), we have [4]J(C)p ◦h = h ◦ [4]αp . Therefore ϕ2 ◦ϕ1 is
the scalar multiplication by 4 map of Hom(αp, J(C)p), which is an automorphism
of the Fp-vector space Hom(αp, J(C)p). Similary ϕ1 ◦ ϕ2 is an automorphism of
the Fp-vector space Hom(αp, E1(p)×E σ

1(p)). In particular ϕ1 is an isomorphism of
Fp-vector spaces. Hence the dimension of Hom(αp, J(C)p) is two. Theorem 2 in [6]
implies that there exist two supersingular elliptic curves E2 and E3 such that J(C)p
is isomorphic to E2×E3 over Fp. On the other hand, by Theorem 3.5 in [7], E2×E3

is isomorphic to A×A over Fp. Hence there exists an isomorphism δ : J(C)p −→
A×A defined over Fp. Since FrobJ(C)p, p2 = FrobE1(p), p2×FrobE σ

1(p)
, p2 = [−p]J(C)p

and FrobA×A, p2 = [−p]A×A, it holds that δ ◦ FrobJ(C)p, p2 = FrobA×A, p2 ◦ δ, i.e.,
δ is defined over Fp2 .
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For any prime p with
(

17
p

)
= 1, x2+16x−4 splits completely into linear factors

in Fp[x]. Therefore, for any supersingular prime (p) of E, the group J(C)p[2](Fp)
of Fp-rational 2-torsion points of J(C)p is isomorphic to (Z/2Z)

⊕4.

Proposition 3.4. For any supersingular prime (p) of E, J(C)p ∼= A×A over Fp2
and J(C)p[2](Fp) ∼= (Z/2Z)

⊕4.

It is not trivial to answer the question of whether J(C)p is isomorphic to
A× A over Fp. We next study the surfaces defined over Fp which are isomorphic
to A×A over Fp2 .

4. Restricted quadratic twists of A × A

Set

TwistFp2/Fp(A×A) :=

{
[B]

∣∣∣∣ B is an abelian surface defined over Fp
such that B ∼= A×A over Fp2

}
,

where [B] denotes the isomorphism class over Fp represented by B and

Twist
(4)

Fp2/Fp
(A×A) := {[B] ∈ TwistFp2/Fp(A×A) | B[2](Fp) ∼= (Z/2Z)⊕4}.

In this section we construct all the elements of Twist
(4)

Fp2/Fp
(A × A) explicitly by

following the paper of C. F. Yu [11]. In the following we restrict the arguments in
[11] to the case where the dimension is two.

Yu considers the set

S :=

{
[B]

∣∣∣∣ B is an abelian surface defined over Fp
such that B is isogenous to A×A over Fp

}
.

Then we have that
S = TwistFp2/Fp(A×A).

Indeed, for any [B] ∈ S, Lemma 2.2 in [11] implies that B is superspecial (i.e., iso-
morphic to a product of two supersingular elliptic curves). By Theorem 3.5 in [7],
we get that B is isomorphic to A × A over Fp. Lemma 2.2 in [11] also implies
that FrobB, p2 = Frob2

B, p = −p. By the above arguments in Section 3, we obtain
that B is isomorphic to A × A over Fp2 . So we have [B] ∈ TwistFp2/Fp(A × A).
Conversely, for any [B] ∈ TwistFp2/Fp(A×A), we have that Frob2

B, p = FrobB, p2 =

FrobA, p2 × FrobA, p2 = [−p]B . So the characteristic polynomial of FrobB, p is
(X2 + p)2, which coincides with that of FrobA×A, p. A theorem of Tate (Theo-
rem 1 (c) in [10]) implies that B is isogenous to A×A over Fp.

We will take A × A as a fixed abelian variety A0 in Section 3 of [11]. Let
R and K denote Z[

√
−p] and Q(

√
−p), respectively. Set R := Z

[
1+
√
−p

2

]
. Let

T`(A × A) be the `-adic Tate module of A × A for any prime ` 6= p and let
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M(A×A) be the covariant Dieudonné module of A×A. Since the endomorphism
ring EndFp(A×A) of A×A defined over Fp is isomorphic toM2(R), T`(A×A) (resp.
M(A × A)) has the structure of R⊗ Z` (resp. R⊗ Zp)-modules compatible with
Gal(Fp/Fp)-action. For any prime `′, R⊗ Z`′ is a DVR or a product of DVRs.
Therefore T`(A× A) (resp. M(A× A)) is a free R⊗ Z` (resp. R⊗ Zp)-module of
rank 2, i.e., we have that

T`(A×A) ∼= (R⊕ R)⊗Z Z`

for any prime ` 6= p and

M(A×A) ∼= (R⊕ R)⊗Z Zp.

Therefore on the isomorphism (∗)

T (A×A)⊗Ẑ Af ∼= (K⊕K)⊗Q Af

in the proof of Theorem 3.1 in [11], where

T (A×A) = M(A×A)×
∏
` 6=p

T`(A×A),

we can assume that

R⊕ R = {v ∈ K⊕K | v ⊗ 1 ∈ T (A×A)}.

For any [B] ∈ Twist
(4)

Fp2/Fp
(A × A) ⊆ S, we have an isogeny f : B −→ A × A

defined over Fp. On the other hand, since B[2] is contained in Ker(1 + FrobB, p),
we have that 1+FrobB, p

2 is an element of EndFp(B), i.e., R ⊆ EndFp(B). So the
lattice corresponding to B

{v ∈ R⊕ R | v ⊗ 1 ∈ f∗(T (B))}

has the structure of R-module. Thus we obtain that on the correspondence of
Theorem 3.1 in [11], elements of Twist

(4)
Fp2/Fp

(A × A) correspond to isomorphism

classes of finitely generated R-submodules of R⊕ R of rank two.
For any ideal a in R ∼= EndFp(A), we set A[a] := {P ∈ A | a(P ) = O for ∀a ∈ a}

and Aa := A/A[a]. Since A[a] is invariant under the action of Gal(Fp/Fp), Aa is
defined over Fp. Let {q1, . . . , qh} be a complete set of representatives of the ideal
class group of K such that qj (1 6 j 6 h) is a prime ideal lying over an odd prime
number qj which splits in K. Then {q1, . . . , qh} is also a complete set of represen-
tatives, where qj := {v | v ∈ qj} and v denotes the image of v by the automorphism
of R sending 1+

√
−p

2 to 1−
√
−p

2 . It is well known from the general theory of mod-
ules over Dedekind domains that {R⊕ q1, . . . , R⊕ qh} becomes a complete set of
representatives of the set of isomorphism classes of finitely generated torsion-free
R-modules of rank two. For 1 6 j 6 h, we set

πj : A×Aqj −→ A×A, (P, Q) 7−→ (P, qjQ) (P, Q ∈ A).
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Then it is easily seen that

R⊕ qj = {v ∈ R⊕ R | v ⊗ 1 ∈ πj∗(A×Aqj )}

(1 6 j 6 h). Consequently, we have obtained the following:

Theorem 4.1. Twist
(4)

Fp2/Fp
(A×A) = {[A×Aq1

], . . . , [A×Aqh ]}.

5. A property of J(C)p over Fp

In this section we prove that for any supersingular prime (p) of E, J(C)p is iso-
morphic to A×A over Fp. More generally, we show the following:

Theorem 5.1. Let p be a prime number such that (i) p ≡ 3 (mod 4); (ii) p 6= 3 and
q be an element of {q1, . . . , qh}. Let σ be the p-th power Frobenius automorphism
of Fp. Assume that there exist an irreducible principal polarization D on A × Aq

and an automorphism ε of A×Aq with ε2 = 1 such that

(i) Dσ is algebraically equivalent to D (this is denoted by Dσ ≡ D);

(ii) ε∗D ≡ D;

(iii) εσ = −ε.

Then we have that q is principal, i.e., A×Aq
∼= A×A over Fp.

We note that for any supersingular prime (p) of E, the principally polarized
abelian surface (J(C)p, Θ) (Θ := {cl(P−∞) |P ∈ Cp}) satisfies the assumptions in
Theorem 5.1. In fact, Proposition 3.4 and Theorem 4.1 imply that J(C)p ∼= A×Aq

over Fp for some q. Let
η : J(C)p −→ J(C)p,

cl(P1 + P2 − 2∞) 7−→ cl(η(P1) + η(P2)− 2η(∞)) = cl(η(P1) + η(P2)− 2∞),

where η is the automorphism of C defined in Section 2 (η(∞) = (0, 0) = R2).
Then it follows that η(0) = 0 and η2 = 1, i.e., η is an automorphism of A × Aq

with order 2. We can easily check that Θσ = Θ, η∗Θ = Θ + cl(∞−R2) ≡ Θ and
ησ = −η.

The strategy for proving Theorem 5.1 is that we derive the following simul-
taneous equations (5.6) from the assumptions in Theorem 5.1 and solve (5.6) by
using a Groebner basis and construct a generator of q from some integral solution
of (5.6).

By the identification

EndFp2 (A) ∼= O ∼= R⊕ Rβ

(the first is explained in Section 3 and the second is done by assigning α to
√
−p),
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it is obtained that

EndFp(A×Aq) = EndFp2 (A×Aq)

∼=
{(

γ1 γ2
γ3 γ4

) ∣∣∣∣ γ1 ∈ R + Rβ, γ2 ∈ q + qβ

γ3 ∈ q−1 + q−1β, γ4 ∈ R + q−1qβ

}
=:

(
R + Rβ q + qβ

q−1 + q−1β R + q−1qβ

)
.

Through this identification, the action of σ on M2(K) + M2(K)β
(∼= EndFp2 (A×Aq)⊗Z Q) is given by

(U + V β)σ = U − V β

for any U, V ∈M2(K). We set X := A× {O}+ {O} ×Aq and consider

φX : A×Aq
∼−→ Pic0(A×Aq), (P, Q) 7−→ cl(T ∗

(P,Q)
X −X),

where T ∗
(P,Q)

X denotes the pullback of the divisor X by the morphism T(P,Q) :

A×Aq → A×Aq, Z 7→ Z+ (P, Q). It is easy to check that the Rosati involution
ι on EndFp2 (A×Aq)⊗Z Q with respect to X is given by

ι : M2(B) 3
(
γ1 γ2
γ3 γ4

)
7−→

 γ1 qγ3

γ2
q γ4

 ∈M2(B),

where for γ = u1 + u2β (u1, u2 ∈ K), γ denotes u1 − u2β, the image of γ under
the main involution of the quaternion algebra B in Section 3 and q is the prime
number lying under q.

Since φ−1X ◦ φD is contained in AutFp(A × Aq) ∼=
(

R q
q−1 R

)×
and fixed by the

Rosati involution with respect to X (see p. 190 in [4]), there exist r ∈ q and
s, t ∈ Z such that

φ−1X ◦ φD =

(
s r
r
q t

)
.

Since φ−1X ◦ φD is positive definite (see Prop. 2.8 in [3]) and R
×

= {±1}, it holds
that s > 0, t > 0 and

st− rr

q
= 1. (5.1)

By assumption ε is expressed in the form:

ε =

(
x y
z w

)
β (x ∈ R, y ∈ q, z ∈ q−1 =

1

q
q, w ∈ q−1q =

1

q
q2).
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Since ε2 = 1, we obtain four equations:

xx+ yz = −1,
ww + zy = −1,
xy + yw = 0,
zx+ wz = 0.

 (5.2)

By assumption we obtain that φε∗D = φD, hence ε̂ ◦ φD ◦ ε = φD, where ε̂
denotes the induced map Pic0(A×Aq)→ Pic0(A×Aq) from ε by the pullback of
line bundles. Therefore we have that

ε̂ ◦ φX ◦
(

s r
r
q t

)
◦ ε = φX ◦

(
s r
r
q t

)
.

Since

φ−1X ◦ ε̂ ◦ φX = ι(ε) = −
(
x qz
y
q w

)
β,

we obtain three equations:

sx+ rz = 0,
ry
q + tw = 0,

rx+ qtz = −sy − rw.

 (5.3)

We also have that

φ−1X ◦ φε∗X = φ−1X ◦ ε̂ ◦ φX ◦ ε = ι(ε) ◦ ε =

(
xx+ qzz xy + qzw
yx
q + wz yy

q + ww

)
.

Since ε∗X is principal, its determinant is equal to 1. Therefore we obtain one
equation

(xx+ qzz)(yy + qww)− (xy + qzw)(yx+ qwz) = q. (5.4)

To solve the simultaneous equations (5.1), (5.2), (5.3) and (5.4), we introduce
the canonical basis of R, q and q2. We put ω := 1+

√
−p

2 . Then R = [1, ω]. It is well
known that we can take a, b ∈ Z such that

(i) 0 6 a 6 q − 1, 0 6 b 6 q2 − 1;

(ii) a2 + a+ p+1
4 = kq, b2 + b+ p+1

4 = `q2 (for some k, ` ∈ N);
(iii) b− a = mq (for some m ∈ Z);
(iv) q = [q, a+ ω], q2 = [q2, b+ ω].

 (5.5)

(For any non-zero ideal a of R, let a0 be the minimum positive integer in a and
let b0 + c0ω be an element of a such that the coefficient of ω is minimum positive.
Then it follows that a = [a0, b0 + c0ω] and both a0 and b0 are divisible by c0.
Therefore we have that a = c0[a1, b1 + ω], where a0 = c0a1 and b0 = c0b1. Since q
splits in Q(

√
−p), we have c0 = 1 for q and q2.)
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By reselecting {q1, . . . , qh} if necessary, we can assume that qj > p+1
4 for 1 6

j 6 h. Therefore we can add the conditions that a 6= 0 and b 6= 0. We set

r = qr1 + r2(a+ ω), x = x1 + x2ω, y = qy1 + y2(a+ ω),

z = z1 + z2
a+ ω

q
, w = qw1 + w2

b+ ω

q

(r1, r2, x1, x2, y1, y2, z1, z2, w1, w2 ∈ Z). Using ω2 − ω + p+1
4 = 0 and the

relations (ii) and (iii) in (5.5), we get the following simultaneous equations with
respect to s, t, r1, r2, x1, x2, y1, y2, z1, z2, w1, w2 from (5.1), (5.2), (5.3) and (5.4)
by comparing coefficients of 1 and ω:

• qr21 + (2a+ 1)r1r2 + kr22 − st+ 1 = 0,

• x21 + x1x2 + p+1
4 x22 + qy1z1 + (2a+ 1)y1z2 + ky2z2 + 1 = 0,

• y1z2 − y2z1 = 0,
• q2w2

1 + (2b+ 1)w1w2 + `w2
2 + qy1z1 + (2a+ 1)y1z2 + ky2z2 + 1 = 0,

• qx1y1 + x1y2 + p+1
4 x2y2 + q2y1w1 + y1w2 + aqy2w1 + (k + am)y2w2 = 0,

• x1y2 − qx2y1 − ax2y2 + y1w2 − qy2w1 −my2w2 = 0,

• x1z1 + x2z1 + a
qx1z2 + 1

q (a+ p+1
4 )x2z2 + qz1w1 + (a+ 1)z2w1 + b

q z1w2

+(`− bm
q )z2w2 = 0,

• x2z1 − 1
qx1z2 + a

qx2z2 + z2w1 − 1
q z1w2 + m

q z2w2 = 0,

• sx2 + r1z2 − r2z1 = 0,
• sx1 + qr1z1 + ar1z2 + (a+ 1)r2z1 + kr2z2 = 0,

• qr1y1 + ar1y2 + ar2y1 + (k − a
q −

1
q ·

p+1
2 )r2y2 + qtw1 + b

q tw2 = 0,

• r1y2 + r2y1 + 1
q (2a+ 1)r2y2 + 1

q tw2 = 0,

• qr1x1 + ar2x1 − p+1
4 r2x2 + qtz1 + atz2 + qsy1 + asy2 + q2r1w1 + br1w2

+q(a+ 1)r2w1 + (q`− bm)r2w2 = 0,
• qr1x2 + r2x1 + (a+ 1)r2x2 + tz2 + sy2 + r1w2 − qr2w1 −mr2w2 = 0,

• (x21 + x1x2 + p+1
4 x22 + qz21 + (2a+ 1)z1z2 + kz22)

×(q2y21 + q(2a+ 1)y1y2 + qky22 + q3w2
1 + q(2b+ 1)w1w2 + q`w2

2)
−(q2w2

1 + (2b+ 1)w1w2 + `w2
2)(q2z21 + q(2a+ 1)z1z2 + qkz22 − 2q2y1z1

−q(4a+ 2)y1z2 − 2qky2z2 + q2y21 + q(2a+ 1)y1y2 + qky22)− q = 0.


(5.6)

We compute a Groebner basis of the ideal associated to (5.6) by using Magma
V2.19-7. For this we view m, `, k, b, a, q, p as indeterminates and consider the
residue class ring

R := Q[m, k, `, p, q, a, b]/(a2 + a+
p+ 1

4
− qk, b2 + b+

p+ 1

4
− q2`,

b− a− qm, m(a+ b+ 1)− q`+ k)

because of that the relations (ii) and (iii) in (5.5) imply q(m(a+b+1)−q`+k) = 0.
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Then we can see that the simultaneous equations
• a2 + a+ p+1

4 − qk = 0,

• b2 + b+ p+1
4 − q

2` = 0,

• b− a− qm = 0,

• m(a+ b+ 1)− q`+ k = 0

is equivalent to
• b = a+ qm,

• k = q`− qm2 − (2a+ 1)m,

• p = 4q2`− 4a2 − 4a− 4q2m2 − 4(2a+ 1)qm− 1.

So R is isomorphic to a polynomial ring in four variable over Q. Therefore we
can consider the field of fractions of R, denoted by K. Let f1, . . . , f15 be the
polynomials appearing in the left hand sides of equations in (5.6) in turn. Put

J := (f1, . . . , f15),

the ideal in the polynomial ring K[s, t, r1, r2, x1, x2, y1, y2, z1, z2, w1, w2].
In this setting, we can compute a Groebner basis of J by Magma. It should be
remarked that the Groebner basis is computed using the standard lexicographical
order of variables (default in Magma). We denote the resulting basis by G (see
[5] for Magma’s commands to calculate G and I1, . . ., I8 defined in the following
paragraphs). Then the number of the elements of G is 48. The 48th element of G,
denoted by G[48], is a polynomial with respect to z1, z2, w1 and w2 only and has
the factorization:

(w2
1 +

2b+ 1

q2
w1w2 +

4b2 + 4b+ p+ 1

4q4
w2

2 +
1

q2
)

× (z31w2 −
aq

b
z21z2w1 +

ab− a+ b

qb
z21z2w2 −

2a2

b
z1z

2
2w1

+
−4a2b− 2pa− 8a2 + pb+ 4ab− 2a+ b

4q2b
z1z

2
2w2 +

−4a3 + pa+ a

4qb
z32w1

+
−4a3b− 2pa2 − 4a3 + pab− 2a2 + ab

4q3b
z32w2).

The assumptions in Theorem 5.1 imply an integral solution of the simultaneous
equations associated to G. From now on (s, t, r1, r2, x1, x2, y1, y2, z1, z2, w1, w2)
denotes one integral solution of the simultaneous equations associated to G, not
indeterminates.

The first factor in this factorization is equal to

(w1 +
2b+ 1

2q2
w2)2 +

p

4q4
w2

2 +
1

q2
.
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Since the first two summands are non-negative and the last is positive, we have
that the first factor is a positive rational number. Therefore the second factor is
zero. The second factor is equal to

− a

qb
z2(q2z21 + 2aqz1z2 +

4a2 − p− 1

4
z22)w1

+w2(z1 +
a

q
z2)(z21 +

−a+ b

qb
z1z2 +

−4a2b− 2pa− 4a2 + pb− 2a+ b

4q2b
z22). (5.7)

Lemma 5.2. z2(q2z21 + 2aqz1z2 + 4a2−p−1
4 z22) 6= 0.

Proof. We suppose that z2 = 0. Then (5.7) implies w2z
3
1 = 0. If z1 = 0, then z = 0

and this contradicts the first equation in (5.2). If w2 = 0, then the 4th equation
in (5.6) implies that q2w2

1 + qy1z1 + 1 = 0. Hence we have that 1 ≡ 0 (mod q), a
contradiction. Therefore z2 6= 0.

The discriminant of the quadratic polynomial q2T 2+2aqT+ 4a2−p−1
4 is q2(p+1).

This is not a square because of p 6= 3. Hence the equation q2T 2+2aqT+ 4a2−p−1
4 =

0 has no rational roots. �

We obtain the fractional expression of w1 with respect to z1, z2 and w2, denoted
by I1 (therefore w1 = I1).

G[47] is a polynomial with respect to y2, z1, z2, w1 and w2 and the degree of
G[47] with respect to y2 is 1. The coefficient of y2 in G[47] is

z32(w2
1 +

2b+ 1

q2
w1w2 +

4b2 + p+ 4b+ 1

4q4
w2

2).

Lemma 5.3. w2
1 + 2b+1

q2 w1w2 + 4b2+p+4b+1
4q4 w2

2 6= 0.

Proof. We suppose that w2 = 0. By (5.7) and Lemma 5.2, we have w1 = 0, i.e.,
w = 0. By the second equation in (5.3), we have that y = 0 or r = 0. If r = 0, then
D ≡ X. This contradicts the assumption that D is irreducible. Therefore y = 0.
This contradicts the first equation in (5.2). Therefore w2 6= 0.

The discriminant of the quadratic polynomial T 2 + 2b+1
q2 T + 4b2+p+4b+1

4q4 is − p
q4 .

Hence the equation T 2 + 2b+1
q2 T + 4b2+p+4b+1

4q4 = 0 has no real roots. �

We obtain the fractional expression of y2 with respect to z1, z2, w1 and w2.
By substituting I1 for w1, we obtain the fractional expression of y2 with respect
to z1, z2 and w2, denoted by I2.

We see that y1 does not appear in G[n] (n = 46, . . . , 42).
The degree of G[41] with respect to y1 is 1 and the coefficient of y1 is

w2(w2
1 +

2b+ 1

q2
w1w2 +

4b2 + p+ 4b+ 1

4q4
w2

2 +
1

q2
).
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By the same arguments as above, we see that it is non-zero. Therefore we obtain
the fractional expression of y1 with respect to z1, z2 and w2, denoted by I3.

Next we obtain the fractional expression I4 (resp. I5) of x2 (resp. x1) with
respect to z1, z2 and w2 from G[37] (resp. G[30]).

The polynomial G[24] is equal to

r22 −
2q2

p
x1w1 −

2b+ 1

p
x1w2 −

q2

p
x2w1 −

p+ 2b+ 1

2p
x2w2 −

2q3

p
w2

1

− 4qb+ 2q

p
w1w2 −

4b2 + p+ 4b+ 1

2pq
w2

2.

By substituting I1, I4 and I5 and setting u := ±
√
qz21 + (2a+ 1)z1z2 + kz22 , we

obtain

r2 =
m

a
·

w2(z1 + a2

qa−qbz2)

z21 + 2a
q z1z2 + 4a2−p−1

4q2 z22
· u (=: I6u).

The degree of G[23], G[22] and G[21] with respect to r1 are all 1. But G[21] is
fairly shorter than G[23] and G[22]. The coefficient of r1 in G[21] is equal to

z1w2 − qz2w1 +
a− b
q

z2w2. (5.8)

Lemma 5.4. z1w2 − qz2w1 + a−b
q z2w2 6= 0.

Proof. We assume that z1w2 − qz2w1 + a−b
q z2w2 = 0. Then the resultant of (5.7)

and (5.8) with respect to w1 is 0. On the other hand this resultant is equal to

q(b− a)

b
w2z2

(
z1 +

a2

q(a− b)
z2

)(
z21 +

2a+ 1

q
z1z2 +

4a2 + p+ 4a+ 1

4q2
z22

)
.

Therefore we have that z1 + a2

q(a−b)z2 = 0. By substituting a2

q(b−a)z2 for z1 in the

assumption and dividing by z2, we also have that w1 + 2ab−b2
q2(a−b)w2 = 0. By substi-

tuting a2

q(b−a)z2 and 2ab−b2
q2(b−a)w2 for z1 and w1, respectively, in G[47] and factoring

it, we have that

y2z2 +
1

q
w2

2 +
4q3m2

4a2b2 + qm(pqm+ 4ab+ qm)
= 0.

In particular 4q4m2

4a2b2+qm(pqm+4ab+qm) is an integer. Since q and 4ab are coprime,
4a2b2 + qm(pqm+ 4ab+ qm) divides 4m2. Especially

4m2 > 4a2b2 + qm(pqm+ 4ab+ qm) > q2m2 > 4m2.

This is a contradiction. �
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Therefore we obtain that
r1 = I7u

for some fractional expression I7 with respect to z1, z2 and w2.
The polynomial G[8] is

tw2 + qr1y2 + qr2y1 + (2a+ 1)r2y2.

It is proved that w2 6= 0 in the proof of Lemma 5.3. Therefor we get t = I8u for
some fractional expression I8 with respect to z1, z2 and w2.

Finally, from G[1], we obtain that

s = −u.

Lemma 5.5. Let T , Z1, Z2,W2 be indeterminates and we regard In = In(Z1, Z2, W2)
as the fractional expressions with respect to Z1, Z2 and W2 (1 6 n 6 8). Then we
have that

(1) In(TZ1, TZ2, W2) = In(Z1, Z2, W2) for n = 1, 4, 5;

(2) In(TZ1, TZ2, W2) = 1
T In(Z1, Z2, W2) for n = 2, 3, 6, 7;

(3) I8(TZ1, TZ2, W2) = 1
T 2 I8(Z1, Z2, W2).

Proof. They are checked by Magma. See [5]. �

Let d be the greatest common divisor of z1 and z2 and set zn = z′nd (n = 1, 2).
By Lemma 5.5,( s

d
, dt, r1, r2, x1, x2, dy1, dy2, z

′
1, z

′
2, w1, w2

)
is also a solution. But d2 divides qz21 + (2a + 1)z1z2 + kz22 = u2 = s2. Hence it is
an integral solution. Therefore we may assume that z1 and z2 are coprime.

Lemma 5.6. We have the following relations:
(1) x2 = z2

r1
u − z1

r2
u ;

(2) w2 = −qz2 r1u − (qz1 + (2a+ 1)z2) r2u .

Proof. Using the fractional expressions r1
u = I7, r2

u = I6 and x2 = I4, they are
checked by Magma. See [5]. �

Set
M :=

(
z2 −z1
−qz2 −(qz1 + (2a+ 1)z2)

)
∈M2(Z).

By Lemma 5.6, we have that detM · ( r1u ,
r2
u ) ∈ Z2, i.e.,

(2qz1z2 + (2a+ 1)z22)
(r1
u
,
r2
u

)
∈ Z2. (5.9)

Since u2 = qz21 + (2a+ 1)z1z2 + kz22 , we also have that

(qz21 + (2a+ 1)z1z2 + kz22)
(r1
u
,
r2
u

)
∈ Z2. (5.10)
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Lemma 5.7. Set R := pq3. Then it holds that for any coprime integers Z1, Z2,

gcd(qZ2
1 + (2a+ 1)Z1Z2 + kZ2

2 , 2qZ1Z2 + (2a+ 1)Z2
2 ) | R.

Proof. We follow the proof of (a) of Lemma 3′ in [9] (p. 72). Since a2 + a +
p+1
4 = qk, we have that

4q

p
(qX2 + (2a+ 1)X + k)− 4q

p

(
1

2
X +

2a+ 1

4q

)
(2qX + (2a+ 1)) = 1.

Let A, a0, D and d be the same as they are in the proof in [9]. Then we have that
A = p, a0 = q, D = 1 and d = 2. Therefore we get the claim. �

By (5.9), (5.10) and Lemma 5.7, we have that

R
r1
u
, R

r2
u
∈ Z.

By multiplying
(
R
u

)2 on the both sides of the first equation in (5.6), we have that

q
(
R
r1
u

)2
+ (2a+ 1)

(
R
r1
u

)(
R
r2
u

)
+ k

(
R
r2
u

)2
+R2 t

u
+
R2

u2
= 0. (5.11)

By using y1 = I3, y2 = I2 and t = I8u, we have the following:

Lemma 5.8. It holds that y1 = t
uz1, y2 = t

uz2.

Proof. It is checked by Magma. See [5]. �

Since z1 and z2 are coprime, we have that t
u ∈ Z by Lemma 5.8. Therefore, by

(5.11), we have that

u2 = qz21 + (2a+ 1)z1z2 + kz22 | R2 = p2q6. (5.12)

Lemma 5.9. We have that q |/u.

Proof. Assume that q|u. Since s = −u, we have that s ≡ 0 (mod q). The first
and nth equations in (5.6) (n = 9, 10) imply the following congruence relations:

• (2a+ 1)r1r2 + kr22 + 1 ≡ 0 (mod q); (5.13)
• r1z2 ≡ r2z1 (mod q); (5.14)
• ar1z2 + (a+ 1)r2z1 + kr2z2 ≡ 0 (mod q). (5.15)

By (5.14) and (5.15), we have that

r2((2a+ 1)z1 + kz2) ≡ 0 (mod q).

By (5.13), we have that r2 6≡ 0 (mod q). Therefore

(2a+ 1)z1 + kz2 ≡ 0 (mod q). (5.16)



58 Naoki Murabayashi

By (5.14) and (5.16), we have that(
r2 −r1

2a+ 1 k

)(
z1
z2

)
≡
(

0
0

)
(mod q).

Since z1 and z2 are coprime, (z1, z2) 6≡ (0, 0) (mod q). Therefore the determinant
of the matrix is congruent to 0, i.e., kr2 + (2a + 1)r1 ≡ 0 (mod q). Therefore we
have that

kr22 + (2a+ 1)r1r2 ≡ 0 (mod q). (5.17)

By (5.13) and (5.17), we obtain that 1 ≡ 0 (mod q). This is a contradiction. �

By (5.12) and Lemma 5.9, it holds that qz21 + (2a + 1)z1z2 + kz22 = 1 or p2.
Suppose that qz21 + (2a+ 1)z1z2 + kz22 = p2. Since

NK/Q(z1q + z2(a+ ω)) = q(qz21 + (2a+ 1)z1z2 + kz22),

the principal ideal (p) (in R) divides the principal ideal (z1q + z2(a + ω)). In
particular z1q+z2(a+ω) ∈ Zp+Zpω, hence p|z1 and p|z2. This is a contradiction.
Therefore we have that

NK/Q(z1q + z2(a+ ω)) = q,

i.e., q = (z1q + z2(a + ω)). Hence q is also principal. This completes the proof of
Theorem 5.1.

Altogether we have the following:

Theorem 5.10. Let

E : y2 = x3 + (i− 2)x2 + x,

A : y2 = x3 − x,
C : y2 = x5 + 16x4 − 8x3 − 64x2 + 16x

be the curves defined over Q(i), Q and Q, respectively. Then, for any prime num-
ber p, the following conditions are equivalent:

(1) there exists a supersingular prime ideal of E lying over p;
(2) p ≡ 3 (mod 4) and J(C)p is isomorphic to Ap ×Ap over Fp2 ;
(3) p ≡ 3 (mod 4) and J(C)p is isomorphic to Ap ×Ap over Fp.
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