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ON THE DISCREPANCY BETWEEN BEST
AND UNIFORM APPROXIMATION

Johannes Schleischitz

Abstract: For ζ a transcendental real number, we consider the classical Diophantine exponents
wn(ζ) and ŵn(ζ). They measure how small |P (ζ)| can be for an integer polynomial P of degree
at most n and naive height bounded by X, for arbitrarily large and all large X, respectively. The
discrepancy between the exponents wn(ζ) and ŵn(ζ) has attracted interest recently. Studying
parametric geometry of numbers, W. Schmidt and L. Summerer were the first to refine the trivial
inequality wn(ζ) > ŵn(ζ). Y. Bugeaud and the author found another estimation provided that
the condition wn(ζ) > wn−1(ζ) holds. In this paper we establish an unconditional version of the
latter result, which can be regarded as a proper extension. Unfortunately, the new contribution
involves an additional exponent and is of interest only in certain cases.
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1. Introduction

Let n be a positive integer and ζ be a transcendental real number. For a polyno-
mial P as usual let H(P ) denote its height, which is the maximum modulus among
the coefficients of P . We want to investigate relations between the two classical ex-
ponents of Diophantine approximation wn(ζ) and ŵn(ζ) introduced below. Define
wn(ζ) as the supremum of w ∈ R such that

H(P ) 6 X, 0 < |P (ζ)| 6 X−w, (1)

has a solution P ∈ Z[T ] of degree at most n for arbitrarily large values of X.
Similarly, let ŵn(ζ) be the supremum of w such that (1) has a solution P ∈ Z[T ]
of degree at most n for all large X. The interest of the exponent in (1) and
the derived exponents arises partly from the relation to approximation to a real
number by algebraic numbers of bounded degree. Indeed, when α is an algebraic
number very close to ζ, then the evaluation Pα(ζ) is also very small by absolute
value, for Pα the irreducible minimal polynomial of α over Z. More precisely
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|Pα(ζ)| 6 C(n, ζ)H(Pα)|ζ − α| for a constant that depends only on ζ and the
degree n of α. The converse is a delicate problem, at least for certain numbers ζ,
related to the famous problem of Wirsing posed in [20]. We do not further discuss
this issue here and only affirm that results involving the exponents wn, ŵn typically
imply comparable results concerning approximation by algebraic numbers in an
obvious way. For any real number ζ, our exponents clearly satisfy the relations

w1(ζ) 6 w2(ζ) 6 · · · , ŵ1(ζ) 6 ŵ2(ζ) 6 · · · . (2)

Dirichlet’s box principle further implies

wn(ζ) > ŵn(ζ) > n. (3)

The value wn(ζ) can be infinity. In this case ζ is called a U -number, more precisely
ζ is called Un-number if n is the smallest such index. The existence of Un-numbers
for any n > 1 was first proved by LeVeque [11]. On the other hand, the quantities
ŵn(ζ) can be effectively bounded. For n = 1, it is not hard to see that we always
have ŵ1(ζ) = 1, see [10]. For n = 2, Davenport and Schmidt [9] showed

ŵ2(ζ) 6
3 +
√
5

2
= 2.6180 . . . . (4)

Roy [13] proved that for certain numbers he called extremal numbers there is
equality, so (4) is sharp. For an overview of the results on the values ŵ2(ζ) attained
for real ζ, see [6]. For n > 3, little is known about the exponents ŵn(ζ). The
supremum of the values ŵn(ζ) over all real real numbers ζ remains unknown in
this case, in fact even the existence of a real number ζ with the property ŵn(ζ) > n
is open. The first result in this direction was due to Davenport and Schmidt [9],
who showed ŵn(ζ) 6 2n− 1 for any real ζ. Recently this bound has been refined
in [8] and further in [16], in the latter paper the currently best known bound

ŵn(ζ) 6
3(n− 1) +

√
n2 − 2n+ 5

2
(5)

was established. The right hand side is of order 2n− 2 + o(1) as n→∞. Condi-
tionally on a conjecture of Schmidt and Summerer [19], small improvements of (5)
can be obtained with the method in [8]. In particular for n > 10 it would imply
ŵn(ζ) 6 2n− 2, see [15, Theorem 3.1].

2. The discrepancy between wn(ζ) and ŵn(ζ)

2.1. The main result

Investigating parametric geometry of numbers introduced by them, Schmidt and
Summerer [18] found the estimate

wn(ζ) >
(n− 1)ŵn(ζ)(ŵn(ζ)− 1)

1 + (n− 2)ŵn(ζ)
,
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for the minimum discrepancy between wn(ζ) and ŵn(ζ), for any transcendental
real ζ. Rearrangements lead to the equivalent formulation

ŵn(ζ) 6
1

2

(
1 +

n− 2

n− 1
wn(ζ)

)
+

√
1

4

(
n− 2

n− 1
wn(ζ) + 1

)2

+
wn(ζ)

n− 1
. (6)

In fact analogous estimates were established in the more general context of linear
forms with respect to any given real vector (ζ1, . . . , ζn) that is Q-linearly indepen-
dent together with {1}, and in this case they are sharp for any dimension and
parameter, see Roy [12]. The above estimates yield a proper improvement of the
obvious left inequality in (3) unless wn(ζ) = ŵn(ζ) = n. A non-trivial identity case
occurs for n = 2 and ζ an extremal number as defined in Section 1. See also [19] for
an improvement of (6) when n = 3, and a conjecture concerning the optimal bound
for arbitrary n. A special case of the recent [8, Theorem 2.2] complements (6).

Theorem 2.1 (Bugeaud, Schleischitz). Let n > 2 be integers and ζ be a tran-
scendental real number. Then in case of

wn(ζ) > wn−1(ζ), (7)

we have

ŵn(ζ) 6
nwn(ζ)

wn(ζ)− n+ 1
. (8)

Observe that in contrast to (6), the bound in (8) for ŵn(ζ) decreases as wn(ζ)
increases. For n = 2 and ζ any Sturmian continued fraction, see [7] for a definition,
there is equality in (8). This can be verified by inserting the exact values of w2(ζ)
and ŵ2(ζ) determined in the main result of [7]. In particular, for extremal numbers
mentioned above we have equality in both (6) and (8) when n = 2.

The condition (7) in Theorem 2.1 was used predominately to guarantee that
the polynomials in the definition of wn have degree precisely n (in the special case
of [8, Theorem 2.2] reproduced in Theorem 2.1). In other words, for any ε > 0,
there are arbitrarily large irreducible integer polynomials P of degree exactly n
for which the estimate

|P (ζ)| 6 H(P )−wn(ζ)+ε (9)

holds. This was a crucial observation for the proof. We point out that this property
does not hold in general, i.e. when we drop the condition (7). Indeed, using
continued fraction expansion, one can even construct real numbers for which the
degree of any P which satisfies (9) equals one, when ε is sufficiently small. This
can be deduced from the proof of [5, Corollary 1]. It is unknown whether (8) still
holds when we drop the condition (7). The purpose of this paper is to provide
a weaker but unconditioned relation. We will agree on w0(ζ) = 0 in our following
main result.
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Theorem 2.2. Let n be a positive integer and ζ be a real transcendental number.
Let l ∈ {1, 2, . . . , n} be the smallest integer such that wl(ζ) = wn(ζ). Then the
estimation

ŵn(ζ) 6 min

{
n+ l − 1,

nwn(ζ)

wn(ζ)− l + 1
+ wn−l(ζ) ·

(
1− n

wn(ζ)− l + 1

)}
(10)

holds.

Remark 1. In case of wn(ζ) 6 n+ l − 1, the trivial estimate in (3) implies (10).
More generally, when wn(ζ) does not exceed n + l − 1 by much, the Schmidt-
Summerer bound (6) is even smaller than both bounds in (10).

The left bound in (10) will be an easy consequence of Theorem 3.1 from [8]
reproduced below, the main new contribution is the right bound. When l 6 bn/2c,
by definition of l we have wn−l(ζ) = wn(ζ) and the right bound in the minimum
in (10) becomes wn(ζ), which is trivial in view of (3). Thus Theorem 2.2 is of
interest primarily when l > n/2 and wn(ζ) > n+ l− 1. However, if these relations
hold and wn−l(ζ) does not exceed n − l by much, then one checks that the right
expression in the minimum in (10) is the smaller one. In general, the new right
bound in (10) is of interest when l is rather close to n and wn−l(ζ) is relatively
small, whereas wn(ζ) is large. For l = n, the bound in (10) becomes (8), and we
recover Theorem 2.1. The expression wn−l(ζ) involved in (10) is unpleasant, as it
can be arbitrarily close to wn(ζ). We would like to replace it by ŵn−l(ζ), which
could be effectively bounded with (5) by roughly 2(n− l). The proof will suggest
that such improvements are realistic.

2.2. Um-numbers

The claim of Theorem 2.2 is of particular interest when ζ is a Um-number (see
Section 1). In that case, in [8, Corollary 2.5] it was deduced essentially from the
generalization [8, Theorem 2.3] of Theorem 2.1 that ŵm(ζ) = m, and moreover

ŵn(ζ) 6 n+m− 1, n > 1. (11)

We remark that [8, Theorem 2.3] rephrased in Theorem 3.1 below provides another
proof of (11). We can now refine this estimate when n is roughly between m
and 2m.

Corollary 2.3. Let n > m > 1 be integers and ζ be a Um-number. Then

ŵn(ζ) 6 n+min {m− 1, wn−m(ζ)} .
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Proof. By assumption we have wm−1 < wm = wm+1 = · · · = wn =∞, where we
agree on w0(ζ) = 0 if m = 1. Thus we may apply Theorem 2.2 with l = m, which
yields the claimed bound. �

As indicated, the possible gain by the replacement of m − 1 by wn−m(ζ) in
the minimum can only occur when n is not too large compared to m. More pre-
cisely n < 2m − 1 is a necessary condition by (3). On the other hand, when ζ is
a Um-number and wl(ζ) is small for some l < m−1, then Corollary 2.3 yields a sig-
nificant improvement for n = m+ l. It is reasonable that even Um-numbers with
the property wl(ζ) = l for 1 6 l 6 m−1 exist. Form = 2 this is true, using contin-
ued fraction expansion one can even construct a U2-number ζ with any prescribed
value w1(ζ) ∈ [1,∞). See [4, Theorem 7.6] and its preceding remarks. However,
for U2-numbers we do not get any new insight from Theorem 2.2. Concerning
U -numbers of larger index, Alniaçik [1] showed the existence of uncountably many
Um-numbers of arbitrary index m > 2 with the property w1(ζ) = 1. (In [2] the
analogous result for T -numbers is proposed, however as pointed out by Bugeaud
in [4, Section 7.10] crucial estimates in [2] are not carried out properly and serious
revision of the paper is required.) For such Um-numbers, the succeeding uniform
exponent ŵm+1(ζ) can be bounded with Corollary 2.3 as

ŵm+1(ζ) 6 m+ 2.

For large m, this leads to a reasonable improvement compared to the trivial bound
(m+ 1) +m− 1 = 2m from (11). Moreover, Alniaçiks main theorem in [1] seems
to allow one to construct Um-numbers with arbitrary prescribed value w1(ζ) =
w1 ∈ [1,∞), thus extending the result for U2-numbers above. Indeed, it suffices
to take bsn+1 = νsn+1 = bqw1−1

sn+1 c (in fact rather bsn+1 = νsn+1 = bqw1−1
sn c in the

classical notation of continued fractions where qn+1 = an+1qn + qn−1 for aj the
partial quotients and pn/qn the convergents, this seems to be a minor inaccuracy
in [1]) and let the remaining (i.e. j not of the form sn + 1) bj = aj in the
formulation of the theorem. Elementary facts on continued fractions and Roth’s
Theorem imply w1(ζ) = w1. Strangely, this observation seems not to have been
previously mentioned. As soon as w1(ζ) = w1 < m − 1, the resulting bound
ŵm+1(ζ) 6 m+ w1 + 1 again improves the trivial upper bound 2m.

On the other hand, the larger intermediate exponents w2(ζ), w3(ζ), . . . , wm−1(ζ)
are hard to control for a Um-number. A construction of Schmidt [17] shows that it
is possible to obtain wl(ζ) 6 m+ l − 1 simultaneously for 1 6 l 6 m− 1 for some
Um-number ζ. This refined an earlier result of Alniaçik, Avci and Bugeaud [3].
However, this estimation is not sufficient to improve the previously known bound
ŵn(ζ) 6 m + n − 1 with Corollary 2.3. Finally, we point out that Um-numbers
which allow arbitrarily good irreducible polynomial evaluations |P (ζ)| of some de-
gree n > m as well satisfy ŵn(ζ) = n. By the condition more precisely we mean
that the exponent w in (1) can be chosen arbitrarily large among polynomials
of degree m and additionally among irreducible polynomials P of degree n > m.
Indeed, the second expression in the right hand estimate in (10) can be dropped
in this case, as can be seen from the proof below.
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3. Proof of Theorem 2.2

We reproduce some results from [8] for the proof. The first is [8, Theorem 2.3],
which essentially implies the left bound in (10).

Theorem 3.1 (Bugeaud, Schleischitz). Let m,n be positive integers and ζ be
a transcendental real number. Then

min{wm(ζ), ŵn(ζ)} 6 m+ n− 1.

Theorem 3.1 was recently refined [14] by replacing the right hand side by
1/λ̂m+n−1(ζ), for λ̂m+n−1(ζ) > 1/(m + n − 1) the classic exponent of uniform
simultaneous rational approximation to (ζ, ζ2, . . . , ζm+n−1) for a real number ζ.
See for example [5] for an exact definition. We will further directly apply the
following [8, Lemma 3.1], a generalization of [9, Lemma 8] by Davenport and
Schmidt, which was the core of the proof of both Theorem 2.1 and Theorem 3.1.
We write A �. B in the sequel when B exceeds A at most by a constant that
depends on the subscript variables.

Lemma 3.2 (Bugeaud, Schleischitz). Let P,Q be two coprime integer polyno-
mials of degree m and n, respectively. Further let ζ be any real number. Then at
least one of the estimates

|P (ζ)| �m,n,ζ H(P )−n+1H(Q)−m, |Q(ζ)| �m,n,ζ H(P )−nH(Q)−m+1

holds. In particular

max{|P (ζ)|, |Q(ζ)} �m,n,ζ H(P )−n+1H(Q)−m+1 min{H(P )−1, H(Q)−1}.

In the formulation of the lemma we dropped the condition ζP (ζ)Q(ζ) 6= 0
stated in [8], which is not required as pointed out to me by D. Roy. We further
point out that Wirsing [20] showed that for any n > 1 there exists a constant
K(n) > 1, such that uniformly for all polynomials P,Q ∈ Z[T ] of degree at most n

K(n)−1H(P )H(Q) 6 H(PQ) 6 K(n)H(P )H(Q) (12)

holds. He deduced that the polynomials within the definition of wn(ζ) can be
chosen irreducible. Moreover it follows from the definition of the exponents that
in the case of wn(ζ) > wn−1(ζ) these irreducible polynomials have degree precisely
n. This fact was already an essential ingredient in the proof of [8, Theorem 2.1],
which is our Theorem 2.1.

Proof of Theorem 2.2. First assume wn(ζ) 6 l + n − 1. Then by (3) clearly
ŵn(ζ) 6 l+n−1 as well. Moreover, it is easy to check that the right bound in (10)
exceeds n+l−1, see also Remark 1. Hence we can restrict to wn(ζ) > l+n−1. We
will further assume wn(ζ) <∞ for simplicity. The case wn(ζ) =∞ can be treated
very similarly by considering the polynomials P for which − log |P (ζ)|/ logH(P )
tends to infinity.
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By the choice of l we have wn(ζ) = wl(ζ) > wl−1(ζ). Hence, as carried out
above, for any ε > 0 there exist infinitely many irreducible integer polynomials P
of degree precisely l such that

H(P )−wn(ζ)−ε 6 |P (ζ)| 6 H(P )−wn(ζ)+ε. (13)

Fix one such irreducible P of large height and small δ > 0 to be chosen later and
let

θ =
wn(ζ)− l + 1

n
, Xδ = H(P )θ−δ. (14)

We want to give a lower bound on |Q(ζ)| for Q an arbitrary integer polynomial of
degree at most n and height H(Q) 6 Xδ. We distinguish two cases.

Case 1. The polynomial Q is not a polynomial multiple of P . Then P,Q are
coprime as P is irreducible, and thus we may apply Lemma 3.2. First assume
|Q(ζ)| > |P (ζ)|. Then we infer

− log |Q(ζ)|
logXδ

6 − log |P (ζ)|
logXδ

6
wn(ζ) + ε

θ − δ
. (15)

The upper bound follows for such Q as we may choose ε and δ arbitrarily small,
and doing so the right hand side in (15) tends to nwn(ζ)/(wn(ζ)− l+1), whereas
the remaining expression in (10) is non-negative. Now assume |Q(ζ)| < |P (ζ)|.
Then (13) yields

max{|P (ζ)|, |Q(ζ)|} = |P (ζ)| 6 H(P )−wn(ζ)+ε. (16)

First assume H(Q) 6 H(P ). Then Lemma 3.2 yields

max{|P (ζ)|, |Q(ζ)|} �n,ζ H(P )−lH(Q)−n+1 > H(P )−n−l+1.

This contradicts (16) for sufficiently largeH(P ) and sufficiently small ε > 0, by our
hypothesis wn(ζ) > l + n− 1. Hence H(Q) > H(P ) must hold. Then Lemma 3.2
implies

max{|P (ζ)|, |Q(ζ)|} �n,ζ H(P )−l+1H(Q)−n > H(Q)−
l−1
τ H(Q)−n,

where τ = logH(Q)/ logH(P ) > 1. Combination with (16) yields

wn(ζ)

τ
− ε 6 wn(ζ)− ε

τ
6 n+

l − 1

τ
,

hence
τ >

wn(ζ)− l + 1

n+ ε
= θ · n

n+ ε
.

This contradicts our assumption H(Q) 6 Xδ, which is equivalent to τ 6 θ − δ,
when ε is chosen small enough compared to δ. This contraction finishes the proof
of case 1.
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Case 2. The integer polynomial Q is of the form Q = PV for some integer
polynomial V . The degree of V is at most n− l since Q has degree at most n and
P has degree precisely l. Moreover from Wirsing’s estimate (12) we infer

H(V )�n
H(Q)

H(P )
6

Xδ

H(P )
= H(P )θ−1−δ.

Let ε̃ > 0 be small. By definition of wn−l, for ε > 0 a variation of ε̃ (that tends to
0 as ε̃ does) and for sufficiently large H(P ), all but finitely many V satisfy

|V (ζ)| > H(V )−wn−l(ζ)−ε̃ > H(P )−wn−l(ζ)(θ−1−δ)−ε. (17)

We briefly discuss the possible exceptions V ∈ {V1, . . . , Vh} for the given ε̃.
By the finiteness and transcendence of ζ we infer an absolute lower bound
max16j6h |Vj(ζ)| � 1. Thus for V ∈ {V1, . . . , Vh} we have |Q(ζ)| = |P (ζ)| ·
|V (ζ)| � |P (ζ)|. The bound nwn(ζ)/(wn(ζ) − l + 1) follows similarly to (15)
as H(P ) → ∞ and ε̃ → 0. Now we treat the main case of V that satisfy (17).
Together with (13) and Wirsing’s estimate we obtain

|Q(ζ)| = |P (ζ)| · |V (ζ)| > H(P )−wn(ζ)−wn−l(ζ)(θ−1−δ)−(ε+ε).

We conclude

− log |Q(ζ)|
logXδ

6
wn(ζ) + wn−l(ζ)(θ − 1− δ)

θ − δ
+
ε+ ε

θ − δ
.

As we may choose δ and ε, ε arbitrarily small, we obtain

− log |Q(ζ)|
logXδ

6
wn(ζ) + wn−l(ζ)(θ − 1)

θ
+ ε′,

for arbitrarily small ε′ > 0. Inserting the value of θ from (14) we obtain

− log |Q(ζ)|
logXδ

6
nwn(ζ)

wn(ζ)− l + 1
+ wn−l(ζ) ·

wn(ζ)− n− l + 1

wn(ζ)− l + 1
+ ε′.

The right bound in (10) follows with elementary rearrangements. Since this holds
for any polynomial multiple Q of P of height H(Q) 6 Xδ, the proof of case 2 is
finished as well. �
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