A NOTE ON A TOWER BY BASSA, GARCIA AND STICHTENOTH

Nurdagül Anbar, Peter Beelen

Abstract

In this note, we prove that the tower given by Bassa, Garcia and Stichtenoth in [4] is a subtower of the one given by Anbar, Beelen and Nguyen in [2]. This completes the study initiated in $[16,2]$ to relate all known towers over cubic finite fields meeting Zink's bound with each other.

Keywords: tower of function fields, number of rational places, Zink's bound.

1. Introduction

Let \mathbb{F}_{q} be the finite field with q elements, and let F be a function field with (full) constant field \mathbb{F}_{q}. The number $N(F)$ of \mathbb{F}_{q}-rational places of F is bounded in terms of the genus $g(F)$ and the cardinality of the finite field; namely

$$
N(F) \leqslant 1+q+2 g(F) \sqrt{q},
$$

which is a well-known Hasse-Weil bound. It was noticed by Ihara [10] and Manin [12] that this bound is not optimal when $g(F)$ is large compared with the cardinality of the finite field. This initiated the study of asymptotic behaviour of the number of rational places of a function field over its genus as genus goes to infinity, and resulted in Ihara's constant:

$$
A(q):=\limsup _{g(F) \rightarrow \infty} \frac{N(F)}{g(F)},
$$

where "lim sup" runs over function fields with constant field \mathbb{F}_{q}. To investigate this constant, one considers towers of function fields. A (recursive) tower $\mathcal{F} / \mathbb{F}_{q}=$ $\left(F_{1} \subset F_{2} \subset \cdots\right)$ over \mathbb{F}_{q} is a sequence of function fields with constant field \mathbb{F}_{q} such that
(i) $F_{1}=\mathbb{F}_{q}\left(x_{1}\right)$ for some $x_{1} \in F_{1}$, which is transcendental over \mathbb{F}_{q},
(ii) for each $i \geqslant 1$, we have $F_{i+1}=F_{i}\left(x_{i+1}\right)$ with $\left[F_{i+1}: F_{i}\right]>1$ and $\varphi\left(x_{i}, x_{i+1}\right)=$ 0 for some separable polynomial $\varphi\left(x_{i}, T\right) \in \mathbb{F}_{q}\left(x_{i}\right)[T]$, and
(iii) $g\left(F_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

One says that the tower satisfies the recursion $\varphi\left(x_{i}, x_{i+1}\right)=0$. For a tower $\mathcal{F} / \mathbb{F}_{q}$ satisfying the recursion $\varphi\left(x_{i}, x_{i+1}\right)=0$, we call a tower $\mathcal{G} / \mathbb{F}_{q}$ the dual tower of $\mathcal{F} / \mathbb{F}_{q}$ if $\mathcal{G} / \mathbb{F}_{q}$ satisfies the recursion $\varphi\left(x_{i+1}, x_{i}\right)=0$. Note that we do not assume that $\varphi\left(x_{i}, T\right)$ is irreducible over F_{i} for all i. As a result, a full characterization of the function fields in the tower may require further information. A tower $\mathcal{F} / \mathbb{F}_{q}$ is called good if its limit

$$
\lambda\left(\mathcal{F} / \mathbb{F}_{q}\right):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{g\left(F_{i}\right)}
$$

is a positive real number. As the value of $\lambda\left(\mathcal{F} / \mathbb{F}_{q}\right)$ gives a lower bound for Ihara's constant $A(q)$, we are interested in towers having a limit as large as possible.

Drinfeld and Vladut [15] showed that $A(q) \leqslant \sqrt{q}-1$ for any finite field \mathbb{F}_{q}. Therefore, this inequality is called the Drinfeld-Vladut bound. On the other hand, Ihara [9], Tsfasman, Vladut and Zink [14] used modular curves to show that $A(q) \geqslant \sqrt{q}-1$ for square q. As a result, they proved that $A(q)=\sqrt{q}-1$ if q is square. Then Garcia and Stichtenoth [7] gave another proof for the exact value of $A(q)$ for square q by constructing explicitly defined recursive tower.

Even though the exact value of $A(q)$ is still an open problem for non-square q, there are many lower bounds for it. Zink [17] used degenerations of Shimura surfaces to show

$$
A\left(p^{3}\right) \geqslant 2\left(p^{2}-1\right) /(p+2)
$$

for p prime. Then van der Geer and van der Vlugt [8] gave an example of an explicitly defined tower over \mathbb{F}_{8} whose limit is $3 / 2$; i.e. they gave an example of a tower meeting Zink's bound for the case $p=2$. The bound was generalized for any cubic fields $\mathbb{F}_{q^{3}}$ as

$$
\begin{equation*}
A\left(q^{3}\right) \geqslant 2\left(q^{2}-1\right) /(q+2) \tag{1}
\end{equation*}
$$

by Bezerra, Garcia and Stichtenoth [5] by constructing an explicitly defined tower $\mathcal{A} / \mathbb{F}_{q^{3}}$ meeting Zink's bound. After that, a simpler proof for the bound (1) was given by Bassa, Garcia and Stichtenoth [4] with another explicitly defined tower $\mathcal{C} / \mathbb{F}_{q^{3}}$. Then it was shown by Zieve in [16] that $\mathcal{C} / \mathbb{F}_{q^{3}}$ is a partial Galois closure of $\mathcal{A} / \mathbb{F}_{q^{3}}$.

For any non-prime finite field $\mathbb{F}_{q^{n}}$, a new explicit tower BBGS was introduced by Bassa, Beelen, Garcia and Stichtenoth [3]. The tower's limit gave the following lower bound for $A\left(q^{n}\right)$:

$$
A\left(q^{n}\right) \geqslant 2\left(\frac{1}{q^{j}-1}+\frac{1}{q^{n-j}-1}\right)^{-1}
$$

where $1 \leqslant j \leqslant n-1$. In fact, this resulted in the currently best known lower bound for $A\left(q^{n}\right)$ in the case $j=\lfloor n / 2\rfloor$, where $\lfloor x\rfloor$ denotes the integer part of x. Note that for $n=3$, the bound coincides with Zink's bound.

In [1], another tower \mathcal{X} was introduced over cubic fields resulting in Zink's bound. It was noticed that all steps in $\mathcal{X} / \mathbb{F}_{q^{3}}$ are Galois except the first one and that $\mathcal{X} / \mathbb{F}_{q^{3}}$ contains $\mathcal{A} / \mathbb{F}_{q^{3}}$ as a subtower. In this article, we show that $\mathcal{C} / \mathbb{F}_{q^{3}}$ is also a subtower of $\mathcal{X} / \mathbb{F}_{q^{3}}$. This completes the work started in [16] to relate the various towers over $\mathbb{F}_{q^{3}}$ to each other. The article is organised as follows: In Section 2, we give recursive equations of several towers over $\mathbb{F}_{q^{3}}$ and discuss the relationship between them. In Section 3 we prove our main result that $\mathcal{C} / \mathbb{F}_{q^{3}}$ is a subtower of $\mathcal{X} / \mathbb{F}_{q^{3}}$.

2. Relationship between some cubic towers

In this section we formulate the defining equations of previously introduced towers over cubic fields and the relationship between them. For convenience, we set $\mathbb{F}:=\mathbb{F}_{q^{3}}$. Recently in [1], the authors introduced a tower \mathcal{X} / \mathbb{F} satisfying the same reducible recursive equation as the BBGS Tower for $n=3$, but arising from a different factor. More precisely, the reducible recursive equation and its factorization are given as follows.

$$
\begin{aligned}
x_{1}^{q^{3}-q}\left(x_{2}^{q^{3}}-x_{2}\right)-\left(x_{1}^{q^{3}-1}-1\right) x_{2}^{q^{2}}= & x_{2}\left(x_{1}^{q^{2}-1} x_{2}^{q^{2}-1}+x_{2}^{q-1}+x_{1}^{q^{2}-q}\right) . \\
& \times \prod_{\alpha \in \mathbb{F}_{q} \backslash\{0\}}\left(x_{1}^{q^{2}-1} x_{2}^{q^{2}}+x_{2}^{q}+x_{1}^{q^{2}-q} x_{2}-\alpha x_{1}^{q^{2}}\right) .
\end{aligned}
$$

While the factor $x_{1}^{q^{2}-1} x_{2}^{q^{2}}+x_{2}^{q}+x_{1}^{q^{2}-q} x_{2}-\alpha x_{1}^{q^{2}}$ is used as the defining equation of BBGS/ \mathbb{F} for some $\alpha \in \mathbb{F}_{q} \backslash\{0\}$, the tower

$$
\mathcal{X} / \mathbb{F}=\left(X_{1}=\mathbb{F}\left(x_{1}\right) \subset X_{2}=\mathbb{F}\left(x_{1}, x_{2}\right) \subset \cdots\right)
$$

is defined by the following equations:
$x_{1}^{q^{2}-1} x_{2}^{q^{2}-1}+x_{2}^{q-1}+x_{1}^{q^{2}-q}=0 \quad$ and $\quad x_{n+1}^{q}-\frac{x_{n+1}}{\left(x_{n-1} x_{n}\right)^{q-1}}=x_{n-1} \quad$ for $n \geqslant 2$.
Tower \mathcal{X} / \mathbb{F} is investigated through its subtower

$$
\mathcal{Z} / \mathbb{F}=\left(Z_{1}=\mathbb{F}\left(z_{1}\right) \subset Z_{2}=\mathbb{F}\left(z_{1}, z_{2}\right) \subset \cdots\right),
$$

where $z_{i}:=x_{i}^{q^{3}-1}$. This is the same tower investigated in [2]. Tower \mathcal{Z} / \mathbb{F} is defined by the following equations:

$$
\begin{gathered}
\left(z_{2}-1\right)^{q+1}+\frac{z_{1}-1}{z_{1}}\left(z_{2}-1\right)^{q}-\left(\frac{z_{1}-1}{z_{1}}\right)^{q+1} z_{2}=0 \quad \text { and } \\
\left(z_{n} z_{n+1}-1\right)\left(z_{n} z_{n+1}+\frac{1}{z_{n-1}}\right)^{q-1}-\frac{\left(z_{n}+1\right)^{q}}{z_{n}}-\left(\frac{z_{n-1}+1}{z_{n-1}}\right)^{q}=0 \quad \text { for } n \geqslant 2 .
\end{gathered}
$$

Moreover, it is shown in [2] that there exists an element $\alpha_{n} \in \mathbb{F}\left(z_{n}, z_{n+1}\right)$ such that

$$
z_{n}=-\frac{1+\alpha_{n}}{\alpha_{n}^{q+1}} \quad \text { and } \quad z_{n+1}=-\left(\alpha_{n}+\alpha_{n}^{q+1}\right) \quad \text { for } n \geqslant 1
$$

that is, $\mathbb{F}\left(\alpha_{n}\right)=\mathbb{F}\left(z_{n}, z_{n+1}\right)$ for all $n \geqslant 1$. This implies that by deleting the first function field Z_{1} of \mathcal{Z} we obtain the dual tower of Caro-Garcia ([6])

$$
\mathcal{B} / \mathbb{F}=\left(B_{1}=\mathbb{F}\left(b_{1}\right) \subset B_{2}=\mathbb{F}\left(b_{1}, b_{2}\right) \subset \cdots\right),
$$

which is the same as the one given by Ihara ([11])

$$
\mathcal{Y} / \mathbb{F}=\left(Y_{1}=\mathbb{F}\left(y_{1}\right) \subset Y_{2}=\mathbb{F}\left(y_{1}, y_{2}\right) \subset \cdots\right)
$$

with the change of variable $y_{n}:=1 /\left(1+b_{n}\right)$ for all $n \geqslant 1$, and its reducible recursive equation is

$$
\frac{y_{n+1}-1}{y_{n+1}^{q+1}}=-\frac{y_{n}^{q}}{\left(1-y_{n}\right)^{q+1}} \quad \text { for } n \geqslant 1
$$

In [11] the author shows that the tower given by Bezerra, Garcia and Stichtenoth ([5])

$$
\mathcal{A} / \mathbb{F}=\left(A_{1}=\mathbb{F}\left(a_{1}\right) \subset A_{2}=\mathbb{F}\left(a_{1}, a_{2}\right) \subset \cdots\right)
$$

is a subtower of \mathcal{Y} / \mathbb{F}. In fact, $Y_{2}=\mathbb{F}\left(y_{1}, y_{2}\right)=\mathbb{F}\left(a_{2}\right)$ with

$$
y_{1}=\frac{1-a_{2}}{a_{2}^{q}}, \quad y_{2}=\frac{a_{2}^{q}+a_{2}-1}{a_{2}} \quad \text { and } \quad a_{2}=\frac{1-y_{1}}{y_{1} y_{2}-y_{1}+1}
$$

In order to give a simple proof for the fact that Zink's bound holds for any cubic fields, Bassa, Garcia and Stichtenoth investigate the tower

$$
\mathcal{C} / \mathbb{F}=\left(C_{1}=\mathbb{F}\left(c_{1}\right) \subset C_{2}=\mathbb{F}\left(c_{1}, c_{2}\right) \subset \cdots\right)
$$

whose recursive equation is given by

$$
\begin{equation*}
\left(c_{n+1}^{q}-c_{n+1}\right)^{q-1}+1=-\frac{c_{n}^{q(q-1)}}{\left(c_{n}^{q-1}-1\right)^{q-1}} \tag{3}
\end{equation*}
$$

The complete picture for towers \mathcal{X}, \mathcal{Z} and \mathcal{C} can be seen in Figure 4.1. We refer to [1] for the investigation of \mathcal{Z} / \mathbb{F} as a subtower of \mathcal{X} / \mathbb{F} and to [16] for the investigation of \mathcal{A} / \mathbb{F} as a subtower of \mathcal{C} / \mathbb{F}. In particular, the extension degrees stated in Figure 4.1 have been determined there.

We finish this section by giving the ramification structure of the extension $X_{3} / \mathbb{F}\left(a_{2}\right)$. For details we refer to Section 2.1 in [2] and Proposition 2 in [1]. A place P of $\mathbb{F}\left(a_{2}\right)$ is ramified in the extension $X_{3} / \mathbb{F}\left(a_{2}\right)$ only if $P \cap \mathbb{F}\left(z_{1}\right)$ is $\left(z_{1}=\infty\right)$ or $\left(z_{1}=0\right)$. Hence we give the ramification into two cases (see also Figure 4.4).

Figure 4.1. Relationship between Towers \mathcal{X}, \mathcal{Z} and \mathcal{C}

- The place $\left(a_{2}=1\right)$ is the unique place lying over $\left(z_{1}=\infty\right)$; i.e. $e\left(\left(a_{2}=1\right) \mid\left(z_{1}=\infty\right)\right)=q(q+1)$. Hence there are $q-1$ places of X_{3} lying over $\left(a_{2}=1\right)$, and each of them has ramification index $q^{3}-1$.
- The places of $\mathbb{F}\left(a_{2}\right)$ lying over $\left(z_{1}=0\right)$ are $\left(a_{2}=0\right),\left(a_{2}=\infty\right)$ and $\left(a_{2}=\beta_{i}\right)$, where β_{i} 's are distinct roots of the polynomial $T^{q}+T-1$ for $i \in\{1, \ldots, q\}$. They have the following ramification in $\mathbb{F}\left(a_{2}\right) / \mathbb{F}\left(z_{1}\right)$.

$$
\begin{aligned}
& e\left(\left(a_{2}=0\right) \mid\left(z_{1}=0\right)\right)=q-1, \quad e\left(\left(a_{2}=\infty\right) \mid\left(z_{1}=0\right)\right)=1 \quad \text { and } \\
& e\left(\left(a_{2}=\beta_{i}\right) \mid\left(z_{1}=0\right)\right)=q \quad \text { for all } i \in\{1, \ldots, q\} .
\end{aligned}
$$

Hence X_{3} has $q-1$ many places lying over $\left(a_{2}=\infty\right),\left(a_{2}=\beta_{i}\right)$, and it has $(q-1)^{2}$ many places lying over $\left(a_{2}=0\right)$.

3. Main result

In this section we prove that Tower \mathcal{X} / \mathbb{F} has a subtower which is essentially the same as Tower \mathcal{C} / \mathbb{F}. To prove this, we use the fact that a divisor of a nonzero element f of a function field is zero if and only if f belongs to the constant field. Then our strategy is to show that the divisor of $c_{2} x_{1} x_{2} x_{3}$ is zero in the compositum $X_{3} \cdot \mathbb{F}\left(c_{2}\right)$ of the function fields X_{3} and $\mathbb{F}\left(c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$. In other words, the element $c_{2} x_{1} x_{2} x_{3}$ belongs to the constant field of $X_{3} \cdot \mathbb{F}\left(c_{2}\right)$. Then the argument that the constant field of $X_{3} \cdot \mathbb{F}\left(c_{2}\right)$ is $\mathbb{F}_{q^{3}}$ implies that $c_{2} \in X_{3}$, and hence $\mathbb{F}\left(c_{2}\right) \subseteq X_{3}$. This gives the desired result.

For the convenience of reader we first fix some notation. Let F be a function field with a constant field \mathbb{F} and let E / F be a finite separable extension. We denote by

- \mathbb{P}_{F} the set of places of F,
- $\operatorname{Div}(\mathrm{F})$ the divisor group of F
- $P \mid Q$ for a place $P \in \mathbb{P}_{E}$ lying over a place $Q \in \mathbb{P}_{F}$,
- $e(P \mid Q)$ the ramification index of $P \mid Q$,
- $d(P \mid Q)$ the different exponent of $P \mid Q$,
- $(f)^{F}$ the divisor of a nonzero $f \in F$ in F, and
- $\operatorname{Con}_{E / F}(D) \in \operatorname{Div}(E)$ the conorm of a divisor $D \in \operatorname{Div}(\mathrm{~F})$.

For finite separable extensions $F \subseteq E \subseteq H$ and $D \in \operatorname{Div}(\mathrm{~F})$ we have

$$
\operatorname{Con}_{H / F}(D)=\operatorname{Con}_{H / E}\left(\operatorname{Con}_{E / F}(D)\right) ;
$$

i.e., "Con" has the transitivity property. For a rational function field $\mathbb{F}(x)$ and $\gamma \in \mathbb{F}$, we denote by $(x=\gamma)$ and $(x=\infty)$ the places corresponding to the unique zero and the pole of $x-\gamma$, respectively.

Since we mainly use Abhyankar's Lemma in our proofs, we state the lemma below.

Lemma 1 (Abhyankar's Lemma ([13],Theorem 3.9.1)). Let E / F be a finite separable extension. Suppose that $E=F_{1} \cdot F_{2}$ is the compositum of the intermediate
fields $F \subseteq F_{1}, F_{2} \subseteq E$. Let $P \in \mathbb{P}_{E}$ lying over $Q \in \mathbb{P}_{F}$. We set $P_{i}:=P \cap F_{i}$ for $i=1,2$. If one of $P_{i} \mid Q$ is tame, then

$$
e(P \mid Q)=\operatorname{lcm}\left\{e\left(P_{1} \mid Q\right), e\left(P_{2} \mid Q\right)\right\}
$$

where 1 cm denotes the least common multiple.
In our cases, one of the extensions is always tame, say F_{1} / F. Then Abhyankar's Lemma implies:

$$
e\left(P \mid P_{1}\right)=\frac{e\left(P_{2} \mid Q\right)}{\operatorname{gcd}\left\{e\left(P_{1} \mid Q\right), e\left(P_{2} \mid Q\right)\right\}},
$$

where gcd denotes the greatest common divisor.
As mentioned above, our strategy is to investigate the compositum of $X_{3}=$ $\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbb{F}\left(c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$, which is equivalent to the compositum of X_{3} and $\mathbb{F}\left(x_{1}, c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$ (see Figure 4.2). We know the exact ramification in $\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right) / \mathbb{F}\left(a_{2}\right)$ as stated at the end of Section 2. Hence we only need to find out the ramification in $\mathbb{F}\left(x_{1}, c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$. During the ramification investigation, we assume without loss of generality that \mathbb{F} is the algebraic closure of $\mathbb{F}_{q^{3}}$. We first consider $\mathbb{F}\left(x_{1}, c_{2}\right)$ over $\mathbb{F}\left(z_{1}\right)$. For this, we investigate the ramification structure of the rational function field extension $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$.

Figure 4.2. The compositum of $\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbb{F}\left(x_{1}, c_{2}\right)$

The ramification structure of $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$
By using the relations between the towers in Section 2; i.e.,

$$
z_{1}=-\frac{1+\alpha_{1}}{\alpha_{1}^{q+1}}, \quad \alpha_{1}=b_{2} \quad \text { and } \quad b_{2}=\frac{1}{y_{2}}-1
$$

we can express z_{1} in terms of y_{2} as follows:

$$
z_{1}=-\frac{y_{2}^{q}}{\left(1-y_{2}\right)^{q+1}}
$$

As a result, we have extensions of rational function fields

$$
\mathbb{F}\left(z_{1}\right) \subseteq \mathbb{F}\left(y_{2}\right) \subseteq \mathbb{F}\left(a_{2}\right) \subseteq \mathbb{F}\left(c_{2}\right)
$$

whose defining equations are given in Figure 4.3. From the defining equations of the extensions, we have the following conclusions.

Figure 4.3. Subfields of $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$

- In the extension $\mathbb{F}\left(y_{2}\right) / \mathbb{F}\left(z_{1}\right)$, the ramified places are $\left(z_{1}=0\right)$ and $\left(z_{1}=\infty\right)$. More precisely, there are two places of $\mathbb{F}\left(y_{2}\right)$ lying over $\left(z_{1}=0\right)$, namely
$\left(y_{2}=0\right)$ and $\left(y_{2}=\infty\right)$ with $e\left(\left(y_{2}=0\right) \mid\left(z_{1}=0\right)\right)=d\left(\left(y_{2}=0\right) \mid\left(z_{1}=0\right)\right)=q$ and $e\left(\left(y_{2}=\infty\right) \mid\left(z_{1}=0\right)\right)=1$. The place $\left(y_{2}=1\right)$ is the unique place lying over $\left(z_{1}=\infty\right)$; i.e., it is totally ramified in $\mathbb{F}\left(y_{2}\right)$.
- In the extension $\mathbb{F}\left(a_{2}\right) / \mathbb{F}\left(y_{2}\right)$, the ramified places are $\left(y_{2}=1\right)$ and $\left(y_{2}=\infty\right)$. More precisely, there are two places of $\mathbb{F}\left(a_{2}\right)$ lying over $\left(y_{2}=\infty\right)$; namely $\left(a_{2}=0\right)$ and $\left(a_{2}=\infty\right)$ with $e\left(\left(a_{2}=0\right) \mid\left(y_{2}=\infty\right)\right)=1$ and $e\left(\left(a_{2}=\infty\right) \mid\left(y_{2}=\right.\right.$ $\infty))=q-1$. The place $\left(y_{2}=1\right)$ totally ramifies in $\mathbb{F}\left(a_{2}\right)$, and $\left(a_{2}=1\right)$ is the unique place lying over it.
- It can be easily seen that $\left(c_{2}=\infty\right)$ and $\left(c_{2}=0\right)$ are the unique places lying over $\left(a_{2}=0\right)$ and $\left(a_{2}=1\right)$, respectively. There is no other ramification.
In particular, we conclude that $\left(z_{1}=0\right)$ and $\left(z_{1}=\infty\right)$ are the only ramified places of $\mathbb{F}\left(z_{1}\right)$ in the extension $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$. The exact ramification structure of $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$ is given in Figure 4.4.
Corollary 1. The extension degree of $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(c_{2}\right)$ is equal to $q^{3}-1$, and hence the extension degree of $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(a_{2}\right)$ is $(q-1)\left(q^{3}-1\right)$.
Proof. We consider $\mathbb{F}\left(x_{1}, c_{2}\right)$ as a compositum of $\mathbb{F}\left(x_{1}\right)$ and $\mathbb{F}\left(c_{2}\right)$ over $\mathbb{F}\left(z_{1}\right)$ (see Figure 4.2). Let R be a place of $\mathbb{F}\left(x_{1}, c_{2}\right)$ lying over $R_{i, j}$ for some $i \in\{1, \ldots, q\}$ and $j \in\{1, \ldots, q-1\}$ (see Figure 4.4). Note that we have $R\left|R_{i, j}\right|\left(z_{1}=0\right)$ and $R\left|\left(x_{1}=0\right)\right|\left(z_{1}=0\right)$. Since $z_{1}=x_{1}^{q^{3}-1}$, the ramification index $e\left(\left(x_{1}=0\right) \mid\left(z_{1}=\right.\right.$ $0)=q^{3}-1$, which is relatively prime to the ramification index $e\left(R_{i, j} \mid\left(z_{1}=0\right)\right)=q$. By Abhyankar's Lemma we conclude that $e\left(R \mid R_{i}\right)=q^{3}-1$. This implies that the extension degree of $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(c_{2}\right)$ is at least $q^{3}-1$, which gives the desired result.

Note that by Corollary 1 we conclude that $\left[\mathbb{F}\left(x_{1}, c_{2}\right): \mathbb{F}\left(a_{2}\right)\right]=\left[\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.\mathbb{F}\left(a_{2}\right)\right]$. As a result, we have $\left[E: \mathbb{F}\left(x_{1}, x_{2}, x_{3}\right)\right]=\left[E: \mathbb{F}\left(x_{1}, c_{2}\right)\right]$.

The ramification structure of $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(c_{2}\right)$

We have seen that $\left(z_{1}=0\right)$ and $\left(z_{1}=\infty\right)$ are the only places of $\mathbb{F}\left(z_{1}\right)$ ramified in the extensions $\mathbb{F}\left(x_{1}\right) / \mathbb{F}\left(z_{1}\right)$ and $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$. Hence a place of $\mathbb{F}\left(x_{1}, c_{2}\right)$ is ramified only if it lies over $\left(z_{1}=0\right)$ or $\left(z_{1}=\infty\right)$. Hence, we investigate the ramification $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(c_{2}\right)$ into two cases.

- Let T be a place of $\mathbb{F}\left(x_{1}, c_{2}\right)$ lying over $\left(z_{1}=\infty\right)$. Since $\left(z_{1}=\infty\right)$ is totally ramified in both extensions $\mathbb{F}\left(x_{1}\right)$ and $\mathbb{F}\left(c_{2}\right)$, we have $T\left|\left(x_{1}=\infty\right)\right|\left(z_{1}=\infty\right)$ and $T\left|\left(c_{2}=0\right)\right|\left(z_{1}=\infty\right)$. Then we conclude that $e\left(T \mid\left(c_{2}=0\right)\right)=q^{2}+q+1$.
- Let S be a place of $\mathbb{F}\left(x_{1}, c_{2}\right)$ lying over $\left(z_{1}=0\right)$. Then there are two cases.
(i) If S is a place lying over $R_{i, j}$ for some $i \in\{1, \ldots, q\}$ and $j \in\{1, \ldots, q-$ 1\} (see Figure 4.4), then we have $S\left|\left(x_{1}=0\right)\right|\left(z_{1}=0\right)$ and $S\left|R_{i, j}\right|\left(z_{1}=\right.$ 0). By Abhyankar's Lemma, we conclude that $e\left(S \mid R_{i, j}\right)=q^{3}-1$; i.e. $\quad R_{i, j}$ is totally ramified $\mathbb{F}\left(x_{1}, c_{2}\right)$ for each $i \in\{1, \ldots, q\}$ and $j \in$ $\{1, \ldots, q-1\}$.
(ii) If S is a place lying over $\left(c_{2}=\infty\right)$ or P_{i} for some $i \in\{1, \ldots, q-1\}$, then we have $e\left(S \mid\left(c_{2}=\infty\right)\right)=e\left(S \mid P_{i}\right)=q^{2}+q+1$.

Figure 4.4. The ramification structure in $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$

Now we can explicitly state the ramification structure of the extension $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(a_{2}\right)$. We first note that $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(a_{2}\right)$ is a Galois extension of degree $(q-1)\left(q^{3}-1\right)$ since it is the compositum of two Kummer extensions $\mathbb{F}\left(x_{1}, a_{1}\right)$ and $\mathbb{F}\left(c_{2}\right)$ of $\mathbb{F}\left(a_{2}\right)$. From the above discussions on the ramification structures of the extensions $\mathbb{F}\left(c_{2}\right) / \mathbb{F}\left(z_{1}\right)$ and $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(c_{2}\right)$, we conclude the following ramification structure of $\mathbb{F}\left(x_{1}, c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$: The ramified places of $\mathbb{F}\left(a_{2}\right)$ are $\left(a_{2}=1\right)$, $\left(a_{2}=0\right),\left(a_{2}=\infty\right)$ and $\left(a_{2}=\beta_{i}\right)$ for $i=1, \ldots, q$, where β_{i} 's are distinct roots of the polynomial $T^{q}+T-1$. More precisely, there are $q-1$ many places of $\mathbb{F}\left(x_{1}, c_{2}\right)$ lying over each of the places $\left(a_{2}=1\right),\left(a_{2}=0\right)$ and $\left(a_{2}=\beta_{i}\right)$ for $i=1, \ldots, q$, and hence each of them has ramification index $q^{3}-1$. Furthermore, there are $(q-1)^{2}$ places lying over $\left(a_{2}=\infty\right)$ each of which has a ramification index $q^{2}+q+1$. On the other hand, we know that the same tame ramification structure holds in $\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right) / \mathbb{F}\left(a_{2}\right)$. We consider the compositum $E:=X_{3} \cdot \mathbb{F}\left(x_{1}, c_{2}\right)$ of the fields X_{3} and $\mathbb{F}\left(x_{1}, c_{2}\right)$ over $\mathbb{F}\left(a_{2}\right)$. The same ramification structure of $\mathbb{F}\left(x_{1}, c_{2}\right) / \mathbb{F}\left(a_{2}\right)$ and $X_{3} / \mathbb{F}\left(a_{2}\right)$ implies that E is an unramified extension of both X_{3} and $\mathbb{F}\left(x_{1}, c_{2}\right)$ of the same degree.

We denote by Q_{1}, \ldots, Q_{q-1} the places of X_{3} lying over $\left(a_{2}=1\right)$, by A_{1}, \ldots, A_{q-1} the ones lying over ($a_{2}=0$), by $S_{i, 1}, \ldots, S_{i, q-1}$ the ones lying over ($a_{2}=\beta_{i}$) for each $i \in\{1, \ldots, q\}$ and $B_{1}, \ldots, B_{(q-1)^{2}}$ the ones lying over $\left(a_{2}=\infty\right)$. Moreover, for convenience we define the divisors $\mathcal{Q}, \mathcal{A}, \mathcal{S}$ and \mathcal{B} as follows:

$$
\mathcal{Q}:=\sum_{i=1}^{q-1} Q_{i}, \quad \mathcal{A}:=\sum_{i=1}^{q-1} A_{i}, \quad \mathcal{S}:=\sum_{j=1}^{q} \sum_{i=1}^{q-1} S_{i, j} \quad \text { and } \quad \mathcal{B}:=\sum_{i=1}^{(q-1)^{2}} B_{i}
$$

Now we compute the divisors of x_{1}, x_{2} and x_{3} in X_{3} with this convention.

- The divisor of \boldsymbol{x}_{1} : We have seen that $z_{1}=-y_{2}^{q} /\left(1-y_{2}\right)^{q+1}$, and hence the divisor of z_{1} in $\mathbb{F}\left(y_{2}\right)$ is given by

$$
\left(z_{1}\right)^{\mathbb{F}\left(y_{2}\right)}=q\left(y_{2}=0\right)+\left(y_{2}=\infty\right)-(q+1)\left(y_{2}=1\right)
$$

By using Figure 4.4 and the transitivity of the Con mapping, we conclude the following equalities.

$$
\begin{align*}
\operatorname{Con}_{X_{3} / \mathbb{F}\left(y_{2}\right)}\left(\left(y_{2}=0\right)\right)= & \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\operatorname{Con}_{\mathbb{F}\left(a_{2}\right) / \mathbb{F}\left(y_{2}\right)}\left(y_{2}=0\right)\right) \tag{4}\\
= & \sum_{j=1}^{q} \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\left(a_{2}=\beta_{j}\right)\right) \\
= & \left(q^{3}-1\right) \mathcal{S} . \\
\operatorname{Con}_{X_{3} / \mathbb{F}\left(y_{2}\right)}\left(\left(y_{2}=\infty\right)\right)= & \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\operatorname{Con}_{\mathbb{F}\left(a_{2}\right) / \mathbb{F}\left(y_{2}\right)}\left(y_{2}=\infty\right)\right) \\
= & \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\left(a_{2}=0\right)\right) \\
& +(q-1) \operatorname{Con}_{F / \mathbb{F}\left(a_{2}\right)}\left(\left(a_{2}=\infty\right)\right) \\
= & \left(q^{3}-1\right) \mathcal{A}+\left(q^{3}-1\right) \mathcal{B} \\
\operatorname{Con}_{X_{3} / \mathbb{F}\left(y_{2}\right)}\left(\left(y_{2}=1\right)\right)= & \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\operatorname{Con}_{\mathbb{F}\left(a_{2}\right) / \mathbb{F}\left(y_{2}\right)}\left(y_{2}=1\right)\right) \\
= & q \operatorname{Con}_{X_{3} / \mathbb{F}\left(a_{2}\right)}\left(\left(a_{2}=1\right)\right) \\
= & q\left(q^{3}-1\right) \mathcal{Q}
\end{align*}
$$

As a result, we conclude that

$$
\left(z_{1}\right)^{X_{3}}=\left(q^{3}-1\right)(q \mathcal{S}+\mathcal{A}+\mathcal{B}-q(q+1) \mathcal{Q}) .
$$

Since $z_{1}=x_{1}^{q^{3}-1}$, this implies that $\left(x_{1}\right)^{X_{3}}=q \mathcal{S}+\mathcal{A}+\mathcal{B}-q(q+1) \mathcal{Q}$.

- The divisor of $\boldsymbol{x}_{\mathbf{2}}$: Similarly we can compute z_{2} in terms of y_{2} by using the relations given in Section 2 as follows.

$$
z_{2}=-\left(\alpha_{1}+\alpha_{1}^{q+1}\right)=-\left(b_{2}+b_{2}^{q+1}\right)=\frac{y_{2}-1}{y_{2}^{q+1}}
$$

Hence, the divisor of z_{2} in $\mathbb{F}\left(y_{2}\right)$ is given by

$$
\left(z_{2}\right)^{\mathbb{F}\left(y_{2}\right)}=\left(y_{2}=1\right)+q\left(y_{2}=\infty\right)-(q+1)\left(y_{2}=0\right) .
$$

By Equations (4), we conclude that

$$
\left(z_{2}\right)^{X_{3}}=\left(q^{3}-1\right)(q \mathcal{Q}+q \mathcal{A}+q \mathcal{B}-(q+1) \mathcal{S}),
$$

which implies that $\left(x_{2}\right)^{X_{3}}=q \mathcal{Q}+q \mathcal{A}+q \mathcal{B}-(q+1) \mathcal{S}$.

- The divisor of x_{3} : By the fact that $y_{1}=\left(1-a_{2}\right) / a_{2}^{q}$, we have

$$
z_{3}=\frac{y_{1}-1}{y_{1}^{q+1}}=\frac{a_{2}^{q^{2}}\left(a_{2}^{q}+a_{2}-1\right)}{\left(a_{2}-1\right)^{q+1}}
$$

In other words, the divisor of z_{3} in $\mathbb{F}\left(a_{2}\right)$ is

$$
\left(z_{3}\right)^{\mathbb{F}\left(a_{2}\right)}=q^{2}\left(a_{2}=0\right)+\sum_{j=1}^{q}\left(a_{2}=\beta_{j}\right)-(q+1)\left(a_{2}=1\right)-\left(q^{2}-1\right)\left(a_{2}=\infty\right),
$$

where β_{j} 's are distinct roots of $T^{q}+T-1$ as before. As a result, we conclude that

$$
\left(z_{3}\right)^{X_{3}}=\left(q^{3}-1\right)\left(q^{2} \mathcal{A}+\mathcal{S}-(q+1) \mathcal{Q}-(q+1) \mathcal{B}\right),
$$

or equivalently this means that $\left(x_{3}\right)^{X_{3}}=q^{2} \mathcal{A}+\mathcal{S}-(q+1) \mathcal{Q}-(q+1) \mathcal{B}$.
Now we can state our main result.
Theorem 1. Let $\mathcal{X} / \mathbb{F}_{q^{3}}=\left(X_{1}=\mathbb{F}\left(x_{1}\right) \subset X_{2}=\mathbb{F}\left(x_{1}, x_{2}\right) \subset \cdots\right)$ be the tower defined by Equation (2). Then $\mathcal{X} / \mathbb{F}_{q^{3}}$ contains a tower, which is essentially the same as the tower $\mathcal{C} / \mathbb{F}_{q^{3}}=\left(C_{1}=\mathbb{F}\left(c_{1}\right) \subset C_{2}=\mathbb{F}\left(c_{1}, c_{2}\right) \subset \cdots\right)$ given by Equation (3). In other words, the Bassa-Garcia-Stichtenoth Tower is a subtower of $\mathcal{X} / \mathbb{F}_{q^{3}}$.

Proof. We know that $c_{2}^{q-1}=\left(a_{2}-1\right) / a_{2}$; i.e. the divisor of c_{2}^{q-1} in $\mathbb{F}\left(a_{2}\right)$ is given by

$$
\left(c_{2}^{q-1}\right)^{\mathbb{F}\left(a_{2}\right)}=\left(a_{2}=1\right)-\left(a_{2}=0\right)
$$

Hence we conclude that

$$
\left(c_{2}^{q-1}\right)^{X_{3}}=\left(q^{3}-1\right)(\mathcal{Q}-\mathcal{A})
$$

On the other hand, we have computed the divisors of x_{1}, x_{2}, x_{3} in X_{3}. With these computations we conclude that

$$
\left(x_{1} x_{2} x_{3}\right)^{X_{3}}=\left(x_{1}\right)^{X_{3}}+\left(x_{2}\right)^{X_{3}}+\left(x_{3}\right)^{X_{3}}=\left(q^{2}+q+1\right) \mathcal{A}-\left(q^{2}+q+1\right) \mathcal{Q}
$$

Since the compositum E of $X_{3}=\mathbb{F}\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbb{F}\left(x_{1}, c_{2}\right)$ is an unramified extension of X_{3}, we conclude that $\left(x_{1} x_{2} x_{3}\right)^{E}+\left(c_{2}\right)^{E}=0$. This holds if and only if $x_{1} x_{2} x_{3} c_{2}=\gamma$ for some nonzero $\gamma \in \mathbb{F}$. Note that the place $\left(z_{1}=1\right)$ of $\mathbb{F}\left(z_{1}\right)$ splits in both extension X_{3} and $\mathbb{F}\left(c_{2}\right)$. Hence $\left(z_{1}=1\right)$ splits in the compositum $X_{3} \cdot \mathbb{F}\left(c_{2}\right)=E$. This implies that the full constant field of E is $\mathbb{F}_{q^{3}}$. Similarly, for all $i>2$ we can show that

$$
c_{i} x_{i-1} x_{i} x_{i+1}=\gamma_{i} \quad \text { for some nonzero } \gamma_{i} \in \mathbb{F}_{q^{3}}
$$

which shows that \mathcal{C} / \mathbb{F} is contained in \mathcal{X} / \mathbb{F}.
Acknowledgment. Nurdagül Anbar and Peter Beelen gratefully acknowledge the support from The Danish Council for Independent Research (Grant No. DFF-4002-00367). Nurdagül Anbar is also supported by H.C. Ørsted COFUND Postdoc Fellowship from the project "Algebraic curves with many rational points".

References

[1] N. Anbar, P. Beelen, N. Nguyen, A new tower meeting Zink's bound with good p-rank, appeared online 18 January 2017 in Acta Arithmetica.
[2] N. Anbar, P. Beelen, N. Nguyen, The exact limit of some cubic towers, to appear in Contemporary Mathematics, proceedings of AGCT-15.
[3] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, Towers of function fields over non-prime finite fields, Mosc. Math. J. 15(1) (2015), 1-29.
[4] A. Bassa, A. Garcia, H. Stichtenoth, A new tower over cubic finite fields, Mosc. Math. J. 8 (2008), 401-418.
[5] J. Bezerra, A. Garcia and H. Stichtenoth, An explicit tower of function fields over cubic finite fields and Zink's lower bound, J. Reine Angew. Math. 589 (2005), 159-199.
[6] N. Caro, A. Garcia, On a tower of Ihara and its limit, Acta Arith. 151 (2012), 191-200.
[7] A. Garcia, H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211222.
[8] G. van der Geer, M. van der Vlugt, An asymptotically good tower of curves over the field with eight elements, Bull. London Math. Soc. 34 (2002), 291300.
[9] Y. Ihara, Congruence relations and Shimūra curves. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25(3) (1979), 301-361.
[10] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1982), 721724.
[11] Y. Ihara, Some remarks on the BGS tower over finite cubic fields, Proceedings of the workshop "Arithmetic Geometry, Related Areas and Applications", Chuo University, (2007), 127-131.
[12] J.I. Manin, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Transl. 45 (1965), 245-264.
[13] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, 2009.
[14] M.A. Tsfasman, S.G. Vladut, Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Mathematische Nachrichten 109(1) (1982), 21-28.
[15] S.G. Vladut and V.G. Drinfel'd, Number of points of an algebraic curve, Functional analysis and its applications 17(1) (1983), 53-54.
[16] M.E. Zieve, An equality between two towers over cubic fields, to appear in Bull. Braz. Math. Soc., arXiv:0905.4921.
[17] Th. Zink, Degeneration of Shimura surfaces and a problem in coding theory, In: Fundamentals of computation theory (Cottbus, 1985), Lecture Notes in Comput. Sci. 199 (1985), 503-511.

Address: Nurdagül Anbar and Peter Beelen: Department for Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet 303B, 2800 Kongens Lyngby, Denmark.
E-mail: nurdagulanbar2@gmail.com, pabe@dtu.dk
Received: 4 May 2016; revised: 15 July 2016

