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ARITHMETIC DESCENT OF SPECIALIZATIONS
OF GALOIS COVERS

Ryan Eberhart, Hilaf Hasson

Abstract: Given a G-Galois branched cover of the projective line over a number field K,
we study whether there exists a closed point of P1

K with a connected fiber such that the
G-Galois field extension induced by specialization “arithmetically descends” to Q (i.e., there exists
a G-Galois field extension of Q whose compositum with the residue field of the point is equal
to the specialization). We prove that the answer is frequently positive (whenever G is regularly
realizable over Q) if one first allows a base change to a finite extension of K. If one does not allow
base change, we prove that the answer is positive when G is cyclic. Furthermore, we provide
an explicit example of a Galois branched cover of P1

K with no K-rational points of arithmetic
descent.

Keywords: Galois covers, Galois groups, curves, arithmetic descent, specializations, Inverse
Galois Problem.

1. Introduction

In this paper we introduce and study the notion of arithmetic descent (see def-
inition 2.3) of specializations of G-Galois branched covers (see definition 2.1).
Arithmetic descent is closely related to the Inverse Galois Problem (IGP), which
asks whether for every finite group G there exists a G-Galois field extension of Q.

Using Riemann’s Existence Theorem, one can show (see for example [Har03,
Corollary 3.3.5]) that for every finite group G there exists a G-Galois branched
cover of P1

Q̄. By descent, this implies that there is a G-Galois branched cover
over some number field K. By Hilbert’s Irreducibility Theorem ([FJ05, Theorem
13.4.2]) there exist infinitely many G-Galois field extensions of K arising from spe-
cializations of this cover at K-rational points. Most efforts to solve the IGP over Q
have been aimed at producing a G-Galois branched cover of P1

Q̄ that descends to Q
and then specializing. (Especially important is the technique of rigidity, developed
by Belyi, Feit, Fried, Shih, Thompson, Matzat and others; see [Völ96], [Ser08], and
[MM99] for details. There has also been research aimed at understanding how the
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field of moduli depends on the group, as well as on topological data; see for exam-
ple [Bec89], [Flo04], [Wew03], [Obu12], [Obu13], and [Has13].) In this paper we
study an alternative method of attack.

By the above, for every finite group G there exists a G-Galois branched cover
of P1

K for some number field K. We now ask whether a point on P1
K can be chosen

cleverly so that the G-Galois field extension coming from specialization descends
to Q, even if the cover itself does not. For example, consider the cyclic C4-Galois
cover P1

Q(i) → P1
Q(i) given by y4 = x. This cover does not descend (together

with its Galois action) to Q. However, by specializing at x = i we get the C4-
Galois extension Q(ζ16)/Q(i) (where ζ16 is a primitive 16th root of unity), which
does arithmetically descend to the C4-Galois extension Q(ζ16 + ζ−1

16 )/Q (i.e., the
compositum Q(ζ16 + ζ−1

16 )Q(i) is equal to Q(ζ16)).
There are several natural questions concerning arithmetic descent, which we

now discuss. Let G be a finite group, let L/K be a finite extension of Hilbertian
fields (examples of Hilbertian fields include number fields and function fields; see
definition 2.6), and let X → P1

Lbe a G-Galois branched cover. In this situation,
we ask the following questions:

Questions 1.1.

1. Does there exist an L-rational point P of P1
L such that the specialization at

P arithmetically descends to K?
2. Does there exist a closed point P of P1

L, not necessarily L-rational, such that
the specialization at P arithmetically descends to K?

3. Does Question (1) hold after finite base change? In other words, does there
exist a finite field extension E/L and an E-rational point P of P1

E such that
the specialization at P in XE → P1

E arithmetically descends to K?

Note that a positive answer to Question 1.1.1 implies a positive answer to
Question 1.1.2, which implies a positive answer to Question 1.1.3. To illustrate
the difference between Question 1.1.2 and Question 1.1.3, consider the following
example. Let P1

Q → P1
Q be the C2-Galois cover given by y2 = x. The specialization

at x = (1 + i) does not arithmetically descend to Q. However, after base changing
to E = Q(i,

√
2 + 2i), specialization at the (E-rational) point x = (1 + i) does

arithmetically descend to Q, since E(
√

1 + i)/E is isomorphic to E(
√

2)/E.
In the remainder of this paper, we attack all three questions. In Section 2

we introduce the definitions we require. In Section 3 (theorem 3.1) we show that
the answer to Question 1.1.3 is frequently positive–whenever G is regularly realiz-
able over K. While this motivates further investigation, the proof of theorem 3.1
does not lend itself to generalization. In Section 4 (theorem 4.1) we answer Ques-
tion 1.1.2 positively for cyclic groups of order coprime to char(K). In Section 5
(theorem 5.1) we exhibit an explicit cover for which the answer to Question 1.1.1
is negative. Thus, our results seem to suggest that while Question 1.1.3 is the
most likely to have a positive answer, Question 1.1.2 is the most geometrically
interesting of the above questions.
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2. Definitions

Definition 2.1. Let G be a finite group, let K be a field, and let X and Y be
geometrically irreducible varieties over K. A map X → Y of K-varieties is called
a branched cover (sometimes shortened to cover) if it is finite and generically
étale. A branched cover f : X → Y is Galois if Aut(X/Y ), the group of K-auto-
morphisms of X commuting with f , has order equal to the degree of f . A Galois
branched cover is called G-Galois if Aut(X/Y ) is isomorphic to G.

Definition 2.2. Let f : X → Y be a branched cover of curves and P a closed
point of Y . The specialization of f at P is the restriction of f to the fiber above
P . More precisely, it is the map

Spec

 ∏
Q∈f−1(P )

OX,Q/mQ

→ Spec (OY,P /mP ) ,

where OX,Q (resp. OY,P ) is the local ring at the closed point Q (resp. P ), with
maximal ideal mQ (resp. mP ). We say the specialization of f at P is connected if
the domain of this restriction is connected. Note that if f is Galois, and P is an
unramified point of f whose specialization is connected, then this specialization is
a G-Galois extension of residue fields.

Definition 2.3. Let G be a finite group, L/K a field extension, and E/L
a G-Galois extension of fields. We say that E/L arithmetically descends to K if
there exists a G-Galois field extension F/K such that F ⊗K L ∼= E as L-algebras.

If f : X → Y is a branched cover of curves over L then we say that a closed point
P of Y arithmetically descends to K if the specialization of f at P is connected
and the residue field extension arithmetically descends to K.

Definition 2.4. Let V be an irreducible variety over a field K. Following [Ser08],
a subset A of V (K) is of type C1 if there is a closed proper subset W ⊆ V such
that A ⊆ W (K). A subset A of V (K) is of type C2 if there is a geometrically
irreducible variety V ′ of the same dimension as V , and a generically surjective
morphism π : V ′ → V of degree greater than one, such that A ⊆ π(V ′(K)).

A subset A of V (K) is called thin if it is contained in a finite union of sets of
type C1 and C2. The variety V is of Hilbert type if V (K) is non-thin.

Remark 2.5. The definition of sets of type C2 in [Ser08] requires that V ′ is only
irreducible, rather than geometrically irreducible. However, by the remark after
Definition 3.1.3 in [Ser08], the two definitions are equivalent.

While we are primarily interested in number fields, most of our results apply
to a more general type of field called Hilbertian fields. (See [FJ05, Chapters 12
and 13] for a detailed discussion.)

Definition 2.6. A field K is called Hilbertian if P1
K is of Hilbert type.
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Definition 2.7. Let L/K be a field extension and X a K-scheme. The notation
XL will be used for the base change X ×K L of X to L. Let π : XL → X be the
morphism induced by this base change. For the sake of brevity, XL(K) will refer
to the set π−1(X(K)) of L-points of XL coming from K-points of X.

The notation Cn will be used for a cyclic group of order n, and the notation ζn
will refer to a coherent choice of a primitive nth root of unity in a fixed separable
closure of the field in question.

3. Arithmetic descent after finite base change

The following shows that the answer to Question 1.1.3 is often affirmative:

Theorem 3.1. In the situation of Questions 1.1, assume that G is regularly re-
alizable over K. Then the answer to Question 1.1.3 is positive for any L/K and
any G-Galois branched cover X → P1

L. In particular, the Regular Inverse Galois
Problem (RIGP) over K implies an affirmative answer to Question 1.1.3 for any
L/K and any G-Galois branched cover of P1

L.

Proof. Let P be an L-rational point of P1
L whose fiber in X is connected, and

let F/L be the resulting G-Galois field extension. By assumption, there exists
a G-Galois branched cover Y → P1

K . Consider the base change of this cover to F .
The set P1

F (K) is non-thin by [Ser08, Proposition 3.2.1], while the subset of P1
F (F )

of points whose fiber in YF → P1
F is connected is the complement of a thin set by

[Ser08, Proposition 3.3.1]. The intersection of these two sets is non-empty, since
otherwise we would have a non-thin set contained in a thin set. This implies that
there is a point Q ∈ P1

F (K) whose fiber in YF is connected. By specializing at the
corresponding K-point of P1

K in Y → P1
K , the resulting G-Galois field extension

E/K is linearly disjoint with F over K.
Note that (E⊗K F )/L is a Galois extension of fields with group G×G. Let ∆

denote the subgroup {(g, g)|g ∈ G} of G×G and let L′ be the subfield of E⊗K F
fixed by ∆. Let PL′ be the unique L′-point of P1

L′ lying above P . Then PL′ is
a point of arithmetic descent for XL′ → P1

L′ . Indeed, the specialization is the field
extension F ⊗L L′ of L′, which is isomorphic as an L′-algebra to E ⊗K F , which,
in turn, is isomorphic to E ⊗K L′ since ∆ ∩ (G× 1) = ∆ ∩ (1×G) = 1. �

4. Closed points of arithmetic descent for cyclic groups

In this section, our objective is to establish the following answer to Question 1.1.2.

Theorem 4.1. Question 1.1.2 has a positive answer for any G-Galois branched
cover X → P1

L, where G is a cyclic group of order coprime to char(K). In fact,
one can replace P1

L with any smooth curve over L.
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Roughly, our method of proof will be to show (theorem 4.2) that the set of
points of arithmetic descent for a particularly simple Cn-Galois cover is non-thin.
After employing a suitable Cartesian diagram and dealing with issues arising from
the potential lack of a primitive nth root of unity in L, the result will follow for
a general Cn-Galois cover.

Theorem 4.2. Let K be a Hilbertian field, n a positive integer coprime to char(K),
and L = K(ζn). Let P1

L → P1
L be the Cn-Galois cover defined by yn = x. Then

the set of L-rational points which arithmetically descend to K for this cover is
non-thin.

Proof. We first remark that there are infinitely many non-isomorphic Cn-Galois
field extensions of L which arithmetically descend to K. Indeed, assume by con-
tradiction that all such extensions of L are contained in a finite extension E/L.
By [FJ05, Lemma 16.3.4] there exists a Cn-Galois branched cover Z → P1

K .
The subset P1

E(K) of P1
E(E) is non-thin ([Ser08, Proposition 3.2.1]), and the

set of E-rational points whose fiber in ZE → P1
E is connected is the comple-

ment of a thin set ([Ser08, Proposition 3.3.1]). Since the intersection of a non-
thin set and the complement of a thin set is non-empty, it follows that there is
a Cn-Galois extension of E which arithmetically descends to K. In particular
there is a Cn-Galois extension of L that arithmetically descends to K which is not
contained in E, a contradiction.

By the above, let {Li}i∈I be an infinite set of non-isomorphic Cn-Galois field
extensions of L, each of which arithmetically descends to K. For each i in I there
exists an ai in L such that Li = L( n

√
ai). Let fi : P1

L → P1
L be given by x 7→ aix

n.
Note that by Kummer theory fi(P1

L(L) r {0,∞}) is the set of L-rational points
whose specialization in the cover P1

L → P1
L given by yn = x is isomorphic to

L( n
√
ai)/L. Therefore it suffices to show that S =

⋃
fi(P1

L(L)) is non-thin.
Suppose that S is thin. By [FJ05, p. 245 Claim B(f)] any set of type C1 is

contained in a set of type C2, so we have that

S ⊆
n⋃
j=1

gi(Yj(L))

where each Yj is a geometrically irreducible curve over L and each gj : Yj → P1
L

has degree greater than one. Let Y denote the disjoint union of the curves Yj and
g : Y → P1

L the map induced from the gj ’s.
Fix an index i. After taking the reduced structure if necessary, let W denote

the fiber product in the following diagram

W := Y ×P1
L
P1
L

��

π // P1
L

fi

��
Y

g // P1
L .
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Since fi(P1
L(L)) ⊆ g(Y (L)), we have that P1

L(L) ⊆ π(W (L)) and thus π(W (L))
is non-thin. Finiteness is base change invariant, so π is finite, which implies that
W consists of finitely many irreducible components of dimension no greater than
one. These facts collectively imply that there exists an irreducible component W ′
of W such that the restriction of π to W ′ has a section on an open subvariety
U of P1

L. Thus for every index i we have that x 7→ aix
n factors birationally

through one of finitely many maps gj : Yj → P1
L. However, this is impossible since

fi(P1
L(L))

⋂
fi′(P1

L(L)) = {0,∞} for i 6= i′. �

Before proving theorem 4.1, we require one last lemma.

Lemma 4.3. Let L′/L be a finite extension of Hilbertian fields, and let S ⊆
P1
L′(L

′) be a non-thin set. Suppose that S =
⋃
i∈I Si where each Si is equal to

fi(P1
L′(L)) for a cover fi : P1

L′ → P1
L′ . If R is a thin set, then there exists an index

i ∈ I such that Si rR is infinite.

Proof. By [FJ05, p. 245 Claim B(f)] any set of type C1 is contained in a set of
type C2, so we have that

R ⊆
n⋃
j=1

gj(Zj(L
′))

where each Zj is a geometrically irreducible curve over L′ and each gj : Zj → P1
L′

has degree greater than one. Let Yj be the smooth projective model of Zj . The
map gj , considered as a map on the smooth locus of Zj , can be extended to a map
g̃j : Yj → P1

L′ . Let R
′ be the union

⋃
g̃j(Yj(L

′)).
Assume that Si r R′ is finite. We claim that Si is then contained in R′. To

this end, let U be the open subscheme of P1
L′ obtained by removing f−1

i (Si rR′).
Let Y be the disjoint union of the curves Yj and g : Y → P1

L′ the map induced by
the g̃j ’s. Since fi(U ∩ P1

L′(L)) is contained in g(Y (L′)), and since U ∩ P1
L′(L) is a

non-thin set, a similar argument to the one in the proof of theorem 4.2 shows that
there exists a rational map h such that the following commutes:

U

fi
��

h

~~
Y // P1

L′

Since Y is proper, h can be extended to a map defined on all of P1
L′ and the claim

follows.
Since S is non-thin, there must exist an i ∈ I such that Si is not contained

in R′. By the above, Si r R′ is then infinite. Because R′ contains all but finitely
elements of R, Si rR is infinite as well. �
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With the above results, we are now ready to prove theorem 4.1.

Proof of theorem 4.1. Let f : X → Y be a Cn-Galois branched cover of curves
over L. Let L′ = L(ζn) and let fL′ : XL′ → YL′ be the base change of f to L′. By
Kummer theory fL′ is given by tn = g, where g ∈ κ(YL′). Observe the Cartesian
diagram

XL′
//

fL′

��

P1
L′

��
YL′ g

// P1
L′ ,

where the bottom horizontal map is induced by g, the vertical right map is yn = x,
and the vertical left map is fL′ .

Since L′ is Hilbertian, the set D of L′-points of P1
L′ whose fiber in the map

g ◦ fL′ : XL′ → P1
L′ is disconnected is a thin set. Indeed, let Lsep be a separable

closure of L′, let X̄ → P1
Lsep be the base change ofXL′ → P1

L′ to L
sep, let Z̄ → P1

Lsep

be its Galois closure, and let Z → P1
E be a model of this Galois closure over

some finite field extension E of L′. Then by [Ser08, Proposition 3.3.1], the set
of E-points in P1

E whose fiber in Z is disconnected is thin. This implies, using
[Ser08, Proposition 3.2.1], that the subset of points of P1

L′(L
′) whose fiber in Z is

disconnected is thin. In particular, the subset of points in P1
L′(L

′) whose fiber in
XL′ is disconnected is thin.

Let A ⊆ P1
K(ζn)(K(ζn)) be the set of points of arithmetic descent for the cover

yn = x. By theorem 4.2, A is non-thin. By [Ser08, Proposition 3.2.1] A, considered
as a subset of P1

L′(L
′), remains non-thin. Moreover, ArD, withD defined as in the

previous paragraph, is non-thin. For any a ∈ ArD, let b be the unique preimage
of a under g : YL′ → P1

L′ . By our choice of a, the Cn-Galois field extension
L′( n
√
a)/L′ arithmetically descends to K. The specialization of fL′ at b is then

(L′( n
√
a) ⊗L′ κ(b))/κ(b), where κ(b) is the residue field of b. This specialization

is a field extension since the fiber of g ◦ fL′ over b is connected. Therefore, b is
a point of arithmetic descent to K for the cover fL′ .

Note that if L′ is equal to L (i.e., if L already contains a primitive nth root
of unity), then this concludes the proof. We may therefore assume that L′ is
a non-trivial extension of L. Let π : YL′ → YL be the base change map. Let

B = {a ∈ A|ζn /∈ κ(π(z)) for every z such that g(z) = a}.

It suffices to show that Ar(B∪D) is non-empty. Indeed, for any a in Ar(B∪D),
the closed point π(g−1(a)) is then a point of arithmetic descent.

Define an equivalence relation on A by a1 ∼ a2 if and only if a1/a2 is an
nth power in L. We proceed to show that only finitely many elements in each
equivalence class of A are contained in B. Indeed, let a be an element of A, and
let c be an element of L such that cna is in B. Then by the definition of B there
is a z ∈ YL′ such that g(z) = cna and the residue field κ(π(z)) of π(z) does not
contain L′. After fixing an L-embedding of κ(π(z)) into Lsep, this implies that
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κ(π(z)) ∩ L′ is a proper subextension F of L′/L. Note that this subextension is
independent of the embedding, because every subextension of L′/L is Galois over
L. It suffices to show that only finitely many such z can produce the same F .

To this end, we first show that g cannot be of the form g = c · h where c is
in L′ and h is in κ(YF ). Indeed, let yn = h define a cover X ′ → YF of curves
over F . Since this map is a model over F of the cover XLsep → YLsep given by
yn = g, by [Has14, Lemma 4.16] X ′ → YF is a “twist” (in the sense defined in
[Has14]) of XF → YF . Furthermore, since Cn is abelian X ′ → YF must be Galois
by [Has14, Lemma 4.18]. However, yn = h cannot be Galois over F since F does
not contain a primitive nth root of unity. (Note that since we have assumed that
X is geometrically irreducible, it follows that g is not an nth power in κ(YLsep),
and so h is not an nth power in κ(YF ).)

Let k be the degree of L′/F , and write g =
∑k−1
i=0 giζ

i
n and a =

∑k−1
i=0 aiζ

i
n,

where each gi is in κ(YF ) and each ai is in F . Since g is not an L′-multiple of
an element in κ(YF ), there are indices i and j such that gi/gj is a non-constant
function. By assumption κ(π(z)) ∩ L′ = F , and so we have that gi(z) = cnai and
gj(z) = cnaj . Since only finitely many points map via gi/gj to ai/aj , only finitely
many z’s satisfy that κ(π(z)) ∩ L′ is equal to F , as claimed.

Let a be an element of A. Note that the equivalence class of a in A is precisely
the image of P1

L′(L) for the map P1
L′ → P1

L′ defined by x 7→ axn. Therefore,
lemma 4.3 (with A in the role of S, the equivalence classes of A in the role of the
Si’s, and D in the role of R) implies that there is an equivalence class of A which
has infinitely many points not in D. Since each such equivalence class of A has
only finitely many points in B, the set A r (B ∪D) is non-empty, as we wanted
to prove. �

5. A cover with no rational points of arithmetic descent

The objective of this section is to provide an example of a cover for which the
answer to Question 1.1.1 is negative. To be precise, in this section we prove the
following.

Theorem 5.1. Let z be a parameter for P1
Q(ζ3). Then the C3-Galois cover of

P1
Q(ζ3) defined by t3 = 3(z3 + 2) has no Q(ζ3)-rational points that arithmetically

descend to Q.

In order to prove this theorem, we first give a complete characterization of the
points of arithmetic descent of a particularly simple C3-Galois cover.

Proposition 5.2. Let T be the set of Q(ζ3)-rational points which arithmetically
descend to Q for the C3-Galois cover P1

Q(ζ3) → P1
Q(ζ3) given by t3 = z. Let C be

the set of cubes in Q(ζ3). Then T = {(x+ ζ3y)2(x+ ζ2
3y)|x, y ∈ Q}r C.

Proof. Let a = (x+ζ3y)2(x+ζ2
3y) where x, y ∈ Q, and let 3

√
a be a third root of a

in the specialization at z = a. Note that the specialization at z = a is disconnected
precisely when a ∈ C. Let σ ∈ Gal(Q(ζ3, 3

√
a)/Q(ζ3)) be such that σ( 3

√
a) = ζ3 3

√
a,
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and let τ be the generator of Gal(Q(ζ3)/Q). Note that
3
√
a2

x+ζ3y
is a third root of

τ(a). Indeed,(
3
√
a

2

x+ ζ3y

)3

=
a2

(x+ ζ3y)3
= (x+ ζ2

3y)2(x+ ζ3y) = τ(a).

Therefore, τ extends to an element in Gal(Q(ζ3, 3
√
a)/Q) by taking 3

√
a to

3
√
a2

x+ζ3y
.

In order to show that z = a is a point of arithmetic descent, we wish to show that
σ and τ commute. It suffices to check this on 3

√
a:

σ(τ( 3
√
a)) = σ

(
3
√
a

2

x+ ζ3y

)
= ζ2

3

3
√
a

2

x+ ζ3y
= τ(ζ3)

3
√
a

2

x+ ζ3y
= τ(ζ3

3
√
a) = τ(σ( 3

√
a)).

We now show the reverse direction. Let a be in T , and let 3
√
a be a third

root of a in the specialization at z = a. As before, let σ ∈ Gal(Q(ζ3, 3
√
a)/Q(ζ3))

be such that σ( 3
√
a) = ζ3 3

√
a, and let τ be the generator of Gal(Q(ζ3)/Q). Since

z = a is a point of arithmetic descent, the automorphism τ extends to an element
in Gal(Q(ζ3, 3

√
a)/Q) that commutes with σ. Therefore,

σ(τ( 3
√
a)) = τ(σ( 3

√
a)) = τ(ζ3

3
√
a) = ζ2

3τ( 3
√
a).

Since σ( 3
√
a

2
) = ζ2

3
3
√
a, it follows that σ( τ( 3

√
a)

3
√
a2

) = τ( 3
√
a)

3
√
a2

. Therefore τ( 3
√
a)

3
√
a2

is equal
to an element b in Q(ζ3). Since τ is an involution, it follows that

3
√
a = τ2( 3

√
a) = τ(b 3

√
a) = τ(b)τ( 3

√
a

2
) = τ(b)b2 3

√
a

4
= τ(b)b2a 3

√
a.

Therefore a = 1
τ(b)b2 = τ( 1

b )( 1
b )2. Taking x, y ∈ Q so that 1

b = x+ ζ3y, we see that
a = (x+ ζ3y)2(x+ ζ2

3y). �

Remark 5.3. That every point in T is a point of arithmetic descent is a rephras-
ing of an observation in [Alb37], which, together with its generalization in [Mik78],
applies to every power of an odd prime. Those results, together with an analo-
gous result for powers of 2 (first appearing in [Sue81]), are summarized neatly in
Section 2 of [Sal82] (and in particular Theorems 2.3 and 2.4).

The reverse direction does not appear in these papers, but is most closely
related to Theorem 2.3.b in [Sal82]. Indeed, following the proof one sees that
Saltman proves a slightly stronger statement than Theorem 2.3.b. Namely, in his
notation, he proves that ak is in the image ofMτ . In the situation of Theorem 2.3,
if q = 3 then it’s possible to choosem = 2, in which case k = 1, and the proposition
above follows.

Throughout this section, we let g(x, y) = (x + ζ3y)2(x + ζ2
3y). By proposi-

tion 5.2, if g(x, y) = 3(z3 + 2) has no solution where x, y ∈ Q and z ∈ Q(ζ3),
then the cover t3 = 3(z3 + 2) has no Q(ζ3)-rational point of arithmetic descent,
except possibly at infinity. We shall prove that this is the case by showing that
this equation has no solution in the completion at the unique prime (π) above (3)
in Q(ζ3), where π = 1 + 2ζ3.
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We first collect the requisite technical lemmas.

Lemma 5.4. Let x and y be elements in Z such that π divides g(x, y) = (x +
ζ3y)2(x+ ζ2

3y). Then π divides both (x+ ζ3y) and (x+ ζ2
3y). Moreover, there exist

x′, y′ ∈ Z such that g(x′, y′) = g(x, y)/π3.

Proof. The first part of the lemma follows easily from the fact that Z[ζ3] is a PID,
and that x+ ζ2

3y is the Galois conjugate of x+ ζ3y.
Let N : Q(ζ3) → Q denote the field norm. For any a, b ∈ Z, we have that

g(a, b) = (a + ζ3b)N(a + ζ3b). Since π divides g(x, y), by the first part of this
lemma π divides (x+ ζ3y). Therefore, there exist x′, y′ ∈ Z such that (x′+ ζ3y

′) =
−(x+ ζ3y)/π. We have that

g(x′, y′) = (x′ + ζ3y
′)N(x′ + ζ3y

′) =
−(x+ ζ3y)

π
· N(−1)N(x+ ζ3y)

N(π)

=
−(x+ ζ3y)N(x+ ζ3y)

−π3
=
g(x, y)

π3
,

proving the second part of the lemma. �

A key step in the proof of theorem 5.1 is reducing the question of finding
solutions to g(x, y) = 3(z3 + 2) to finding solutions in the finite ring Z[ζ3]/(81).
After this reduction, we shall make use of the following two lemmas.

Lemma 5.5. Consider g(x, y) as a polynomial in (Z[ζ3]/(81))[x, y] and fix c ∈
Z[ζ3]/(81). Then the set {c3 · g(x, y)|x, y ∈ Z/(81)} is contained in {g(x, y)|x, y ∈
Z/(81)}.

Proof. This is a finite checking problem. We implemented an algorithm in SAGE
[S+14] which verifies this result. The interested reader may consult [EH14] for the
code. �

Lemma 5.6. The equation g(x, y) = 3(z3 + 2) has no solution with x, y ∈ Z/(81)
and z ∈ Z[ζ3]/(81).

Proof. This is also a finite checking problem, which we again verify using SAGE
[S+14]. The interested reader may consult [EH14] for the code. �

We remark that we reduce modulo 81 since it is the first power of 3 for which
lemma 5.6 holds. Equipped with the above lemmas, we can now prove the main
result of this section.

Proof of theorem 5.1. By the discussion at the beginning of this section, we
need to show that there is no solution to g(x, y) = 3(z3 + 2) where x, y ∈ Q and
z ∈ Q(ζ3), and in addition we need to show that the point at infinity does not
arithmetically descend to Q.
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Assume by contradiction that we have such a solution to g(x, y) = 3(z3 + 2).
Let x = x0/x1, y = y0/y1, and z = z0/z1, where xi, yi ∈ Z and zi ∈ Z[ζ3]. Clear-
ing denominators, we have that (z1)3g(x0y1, y0x1) = 3((z0x1y1)3 + 2(x1y1z1)3).
Therefore it suffices to show that there is no solution to the equation

a3g(x, y) = 3(z3 + 2c3) (5.1)

with x, y ∈ Z, z ∈ Z[ζ3], and non-zero a, c ∈ Z[ζ3].
Case 1: π does not divide c. Reduce eq. (5.1) modulo (81) = (π)8. We

denote the reduction by the use of bars over the elements. Since π does not divide
c, c̄3 is a unit in Z/(81) and so we may divide by it. Letting z′ = z̄/c̄, the
resulting equation may be written as (ā/c̄)3g(x̄, ȳ) = 3((z′)3 + 2). Since (ā/c̄)3 is
a cube, there are x′, y′ ∈ Z/(81) such that g(x′, y′) = (ā/c̄)3g(x̄, ȳ) by lemma 5.5.
Therefore g(x′, y′) = 3((z′)3 + 2), in contradiction to lemma 5.6.

Case 2: π divides c. From this solution we shall produce a solution where π
does not divide c, which we have shown is impossible in Case 1 of the proof. Since
π divides the right hand side of eq. (5.1) (because π divides 3), it must divide
either a or g(x, y). Due to lemma 5.4, it follows that π3 must divide the left hand
side of eq. (5.1). Since π3 does not divide 3, π must divide z3 + 2c3. Since π
divides z3 + 2c3 and c, it must also divide z3, and therefore z.

As mentioned, π divides either a or g(x, y). Assume first that π divides a.
In this case, we may divide eq. (5.1) by π3 and get (a/π)3g(x, y) = 3((z/π)3 +
2(c/π)3). Iterating this process yields a solution where either π does not divide c
(in which case we are done by Case 1 of the proof), or π divides c but not a.

Therefore, we are left with the case where π divides g(x, y) but not a. By
lemma 5.4, there are then x′, y′ ∈ Z such that g(x′, y′) = g(x, y)/π3. Dividing
both sides of eq. (5.1) by π3 yields the equation a3g(x′, y′) = 3((z/π)3 + (c/π)3).
By iterating this process, we reduce to the case where π does not divide c, as
desired.

It remains to check that infinity does not arithmetically descend to Q. Ho-
mogenizing t3 = 3(z3 + 2) with respect to w gives us t3 = 3(z3 + 2w3). This
equation defines a smooth curve in P2

Q(ζ3), giving a projective model for the cover.
Above infinity (when w = 0), the fiber is connected with residue field extension
Q(ζ3,

3
√

3)/Q(ζ3). If the equation g(x, y) = 3 has no solution where x, y ∈ Q,
this field extension does not arithmetically descend to Q by proposition 5.2. One
checks that g(x, y) ∈ Q precisely when y = 0. Since g(x, 0) = x3, there is no
solution to g(x, y) = 3 because 3 is not a cube in Q. �

Remark 5.7. theorem 4.1 states that, although this cover has no Q(ζ3)-rational
points of arithmetic descent, there are infinitely many closed points which arith-
metically descend to Q.
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