Functiones et Approximatio 57.1 (2017), 39-46 doi: 10.7169/facm/1612

REMARKS ON THE DISTRIBUTION OF THE PRIMITIVE ROOTS OF A PRIME

SHANE CHERN

Abstract: Let \mathbb{F}_p be a finite field of size p where p is an odd prime. Let $f(x) \in \mathbb{F}_p[x]$ be a polynomial of positive degree k that is not a d-th power in $\mathbb{F}_p[x]$ for all $d \mid p-1$. Furthermore, we require that f(x) and x are coprime. The main purpose of this paper is to give an estimate of the number of pairs $(\xi, \xi^{\alpha}f(\xi))$ such that both ξ and $\xi^{\alpha}f(\xi)$ are primitive roots of p where α is a given integer. This answers a question of Han and Zhang.

Keywords: primitive root, character sum, Weil bound.

1. Introduction

Let a and q be relatively prime integers, with $q \ge 1$. We know from the Euler-Fermat theorem that $a^{\phi(q)} \equiv 1 \mod q$, where $\phi(q)$ is the Euler totient function. We say an integer f is the exponent of a modulo q if f is smallest positive integer such that $a^f \equiv 1 \mod q$. If $f = \phi(q)$, then a is called a primitive root of q. If q has a primitive root a, then the group of the reduced residue classes mod q is the cyclic group generated by the residue class \hat{a} . It is well-known that primitive roots exist only for the following moduli:

$$q = 1, 2, 4, p^{\alpha}, \text{ and } 2p^{\alpha},$$

where p is an odd prime and $\alpha \ge 1$. The reader may refer to Chapter 10 of T.M. Apostol's book [1] for detailed contents.

There has been a long history studying the distribution of the primitive roots of a prime. In a recent paper, D. Han and W. Zhang [3] considered the number of pairs $(\xi, m\xi^k + n\xi)$ such that both ξ and $m\xi^k + n\xi$ are primitive roots of an odd prime p where m, n and k are given integers with $k \neq 1$ and (mn, p) = 1. The reader may also find some descriptions of other interesting problems on primitive roots such as the Golomb's conjecture in [3] and references therein. After presenting their main results, Han and Zhang proposed the following

²⁰¹⁰ Mathematics Subject Classification: primary: 11A07; secondary: 11L40

40 Shane Chern

Question 1.1. Let \mathbb{F}_p be a finite field of size p and f(x) be an irreducible polynomial in $\mathbb{F}_p[x]$. Whether there exists a primitive element $\xi \in \mathbb{F}_p$ such that $f(\xi)$ is also a primitive element in \mathbb{F}_p ?

In this paper, we let $f(x) \in \mathbb{F}_p[x]$ be a polynomial of positive degree k that is not a d-th power in $\mathbb{F}_p[x]$ for all $d \mid p-1$ with d > 1. Furthermore, we require that x does not divide f(x). Let α be a given integer, we denote by $N(\alpha, f; p)$ the number of pairs $(\xi, \xi^{\alpha} f(\xi))$ such that both ξ and $\xi^{\alpha} f(\xi)$ are primitive roots of p. Our result is

Theorem 1.1. It holds that

$$N(\alpha, f; p) = (p - 1 - R(f)) \left(\frac{\phi(p - 1)}{p - 1}\right)^2 + \theta k 4^{\omega(p - 1)} \sqrt{p} \left(\frac{\phi(p - 1)}{p - 1}\right)^2, \quad (1.1)$$

where $|\theta| < 1$, $\omega(n)$ denotes the number of distinct prime divisors of n, R(f) denotes the number of distinct zeros of f(x) in \mathbb{F}_p , and $k = \deg f$.

Now if we take $\alpha = 0$ and f(x) = x + 1, then we get the famous result on consecutive primitive roots obtained by J. Johnsen [4] and M. Szalay [5]. If we take

$$\begin{cases} \alpha = 1 \text{ and } f(x) = mx^{k-1} + n & \text{if } k > 1, \\ \alpha = k \text{ and } f(x) = nx^{1-k} + m & \text{if } k < 1, \end{cases}$$

where (mn, p) = 1, then we have deg f = |k - 1| and $\xi^{\alpha} f(\xi) = m\xi^k + n\xi$. It follows from Theorem 1.1 that the asymptotic formula for the number of pairs $(\xi, m\xi^k + n\xi) \in \mathbb{F}_p^2$ such that both ξ and $m\xi^k + n\xi$ are primitive roots of p is

$$(p-1-R(f))\left(\frac{\phi(p-1)}{p-1}\right)^2 + \theta|k-1|4^{\omega(p-1)}\sqrt{p}\left(\frac{\phi(p-1)}{p-1}\right)^2.$$

We should mention that there is a minor mistake in Han and Zhang's result. (However, this does not affect the existence of such pairs; see our Corollary 1.2.) In fact, they forgot to consider the zeros of f(x) in \mathbb{F}_p . For example, if we choose $f(x) = x^{-1} + x = x^{-1}(x^2 + 1)$, then there are 1 + (-1|p) distinct zeros of $x^2 + 1$ in \mathbb{F}_p where (*|p) is the Legendre symbol. In this sense, the main term of $N(-1, x^2 + 1; p)$ (or their N(-1, 1, 1, p)) should be

$$(p-2-(-1|p))\left(\frac{\phi(p-1)}{p-1}\right)^2,$$

while not $\phi^2(p-1)/(p-1)$.

From Theorem 1.1 we also immediately deduce the existence of pairs $(\xi, \xi^{\alpha} f(\xi))$ such that both ξ and $\xi^{\alpha} f(\xi)$ are primitive roots of p. Again, we write $k = \deg f$ where $f(x) \in \mathbb{F}_p[x]$ is a polynomial that is not a *d*-th power in $\mathbb{F}_p[x]$ for all $d \mid p-1$.

Corollary 1.2. Let p be an odd prime large enough, then for any given integers k > 0 and α , there exists a primitive root ξ of p such that $\xi^{\alpha} f(\xi)$ is also a primitive root of p. Moreover, as p goes to infinity, the number of such ξ also goes to infinity.

2. Preliminary lemmas

We first introduce the indicator function of primitive roots.

Lemma 2.1 (L. Carlitz [2, Lemma 2]). We have

$$\frac{\phi(p-1)}{p-1} \sum_{d|p-1} \frac{\mu(d)}{\phi(d)} \sum_{\substack{\chi \bmod p \\ \text{ord}\chi = d}} \chi(n) = \begin{cases} 1 & \text{if } n \text{ is a primitive root of } p, \\ 0 & \text{otherwise.} \end{cases}$$
(2.1)

Here μ is the Möbius function, and $\operatorname{ord} \chi$ denotes the order of a Dirichlet character $\chi \mod p$, that is, the smallest positive integer f such that $\chi^f = \chi_0$, the principal character modulo p.

Remark 2.1. We should mention that Carlitz proved more than Lemma 2.1. In fact, for an arbitrary finite field \mathbb{F}_q , where $q = p^{\alpha}$, Carlitz obtained the indicator function of numbers belonging to an exponent e, where $e \mid q - 1$. Let q - 1 = ee'. It follows that

$$\frac{\phi(e)}{q-1} \sum_{d|q-1} \frac{\mu(d')}{\phi(d')} \sum_{\substack{\chi \bmod q \\ \text{ord}\chi = d}} \chi(n) = \begin{cases} 1 & \text{if } n \text{ belongs to the exponent } e, \\ 0 & \text{otherwise,} \end{cases}$$

where $d' = d/\gcd(d, e')$. To get Lemma 2.1, we only need to take q = p and e = p - 1.

The following famous Weil bound for character sums plays an important role in our proof.

Lemma 2.2 (A. Weil [7]). Let χ be a non-principal Dirichlet character modulo p of order d. Suppose $f(x) \in \mathbb{F}_p[x]$ is a polynomial of positive degree k that is not a d-th power in $\mathbb{F}_p[x]$. Then we have

$$\left|\sum_{n=1}^{p-1} \chi(f(n))\right| \leqslant (k-1)\sqrt{p}.$$
(2.2)

We also need the less-known extension of Weil bound obtained by D. Wan.

Lemma 2.3 (D. Wan [6, Corollary 2.3]). Let $\chi_1, \chi_2, \ldots, \chi_m$ be non-principal Dirichlet characters modulo p of orders d_1, d_2, \ldots, d_m , respectively. Suppose $f_1(x)$, $f_2(x), \ldots, f_m(x) \in \mathbb{F}_p[x]$ are pairwise coprime polynomials of positive degrees k_1, k_2, \ldots, k_m . Suppose also that $f_i(x)$ is not a d_i -th power in $\mathbb{F}_p[x]$ for all $i = 1, 2, \ldots, m$. Then we have

$$\sum_{n=1}^{p-1} \chi_1(f_1(n))\chi_2(f_2(n))\cdots\chi_m(f_m(n)) \bigg| \leqslant \left(\sum_{i=1}^m k_i - 1\right)\sqrt{p}.$$
 (2.3)

From Lemmas 2.2 and 2.3, we have

42 Shane Chern

Lemma 2.4. Let χ_1 be a Dirichlet character modulo p, and χ_2 be a non-principal Dirichlet character modulo p of order d. Suppose $f(x) \in \mathbb{F}_p[x]$ is a polynomial of positive degree k that is not a d-th power in $\mathbb{F}_p[x]$. We also require that x does not divide f(x). Furthermore, let α be a given integer. Then we have

$$\left|\sum_{n=1}^{p-1} \chi_1(n^{\alpha}) \chi_2(f(n))\right| \leqslant \begin{cases} (k-1)\sqrt{p} & \text{if } \chi_1^{\alpha} \text{ is the principal character,} \\ k\sqrt{p} & \text{otherwise.} \end{cases}$$
(2.4)

Proof. Note that

$$\sum_{n=1}^{p-1} \chi_1(n^{\alpha}) \chi_2(f(n)) = \sum_{n=1}^{p-1} \chi_1^{\alpha}(n) \chi_2(f(n)).$$

Now if χ_1^α is the principal character, then it follows that

$$\sum_{n=1}^{p-1} \chi_1(n^{\alpha}) \chi_2(f(n)) = \sum_{n=1}^{p-1} \chi_2(f(n)),$$

and we get the bound from Lemma 2.2. If χ_1^{α} is not the principal character, then the bound is obtained through a direct application of Lemma 2.3.

3. Proofs

Proof of Theorem 1.1. It follows by Lemma 2.1 that

$$\begin{split} N(\alpha, f; p) \\ &= \sum_{n=1}^{p-1} \left(\frac{\phi(p-1)}{p-1} \right)^2 \sum_{d_1 \mid p=1} \sum_{d_2 \mid p=1} \frac{\mu(d_1)}{\phi(d_1)} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_1 \bmod p \\ \operatorname{ord}\chi_1 = d_1 \end{array}} \sum_{\substack{\chi_2 \bmod p \\ \operatorname{ord}\chi_2 = d_2}} \chi_1(n) \chi_2(n^{\alpha} f(n)) \\ &= (p-1-R(f)) \left(\frac{\phi(p-1)}{p-1} \right)^2 \\ &+ \left(\frac{\phi(p-1)}{p-1} \right)^2 \sum_{\substack{d_1 \mid p=1 \\ d_1 > 1}} \frac{\mu(d_1)}{\phi(d_1)} \sum_{\substack{\chi_1 \bmod p \\ \operatorname{ord}\chi_1 = d_1}} \sum_{\substack{n=1 \\ p=1}}^{p-1} \chi_1(n) \\ &+ \left(\frac{\phi(p-1)}{p-1} \right)^2 \sum_{\substack{d_2 \mid p=1 \\ d_2 > 1}} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_2 \bmod p \\ \operatorname{ord}\chi_2 = d_2}} \sum_{\substack{p=1 \\ p=1}}^{p-1} \chi_2(n^{\alpha} f(n)) \\ &+ \left(\frac{\phi(p-1)}{p-1} \right)^2 \sum_{\substack{d_1 \mid p=1 \\ d_2 > 1}} \sum_{\substack{d_2 \mid p=1 \\ d_2 > 1}} \frac{\mu(d_1)}{\phi(d_1)} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_1 \bmod p \\ \chi_1 \bmod p}} \sum_{\substack{\chi_2 \bmod p \\ \chi_2 \bmod p}} \sum_{\substack{p=1 \\ \chi_1(n)\chi_2(n^{\alpha} f(n))}} \\ \end{split}$$

Claim 3.1. We have

$$\sum_{\substack{d_1|p-1\\d_1>1}} \frac{\mu(d_1)}{\phi(d_1)} \sum_{\substack{\chi_1 \text{ mod } p \\ \text{ord}\chi_1 = d_1}} \sum_{n-1}^{p-1} \chi_1(n) = 0.$$

Proof. We deduce it directly from

$$\sum_{n=1}^{p-1} \chi(n) = 0,$$

if χ is not the principal character modulo p.

Claim 3.2. We have

$$\left| \sum_{\substack{d_2 \mid p-1 \\ d_2 > 1}} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_2 \bmod p \\ \text{ord}\chi_2 = d_2}} \sum_{n-1}^{p-1} \chi_2(n^{\alpha} f(n)) \right| \leq (2^{\omega(p-1)} - 1) k \sqrt{p}.$$

Proof. Note that

$$\sum_{n=1}^{p-1} \chi_2(n^{\alpha} f(n)) = \sum_{n=1}^{p-1} \chi_2(n^{\alpha}) \chi_2(f(n)).$$

Now by Lemma 2.4, we have

$$\left|\sum_{n=1}^{p-1} \chi_2(n^{\alpha} f(n))\right| \leqslant k\sqrt{p}.$$

Note also that

$$\sum_{\substack{d|p-1\\d>1}} |\mu(d)| = 2^{\omega(p-1)} - 1.$$

We therefore have

$$\begin{aligned} \left| \sum_{\substack{d_2 \mid p-1 \\ d_2 > 1}} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_2 \bmod p \\ \operatorname{ord}\chi_2 = d_2}} \sum_{n-1}^{p-1} \chi_2(n^{\alpha} f(n)) \right| &\leq \sum_{\substack{d_2 \mid p-1 \\ d_2 > 1}} \left| \frac{\mu(d_2)}{\phi(d_2)} \right| \sum_{\substack{\chi_2 \bmod p \\ \operatorname{ord}\chi_2 = d_2}} \left| \sum_{n-1}^{p-1} \chi_2(n^{\alpha} f(n)) \right| \\ &\leq \sum_{\substack{d_2 \mid p-1 \\ d_2 > 1}} \left| \frac{\mu(d_2)}{\phi(d_2)} \right| \phi(d_2) k \sqrt{p} \\ &= (2^{\omega(p-1)} - 1) k \sqrt{p}. \end{aligned}$$

Claim 3.3. We have

$$\left| \sum_{\substack{d_1|p-1\\d_1>1}} \sum_{\substack{d_2|p-1\\d_2>1}} \frac{\mu(d_1)}{\phi(d_1)} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\substack{\chi_1 \bmod p\\ \operatorname{ord}\chi_1=d_1 \operatorname{ord}\chi_2=d_2}} \sum_{n=1}^{p-1} \chi_1(n) \chi_2(n^{\alpha} f(n)) \right| \leq (2^{\omega(p-1)} - 1)^2 k \sqrt{p}.$$

Proof. Note that

$$\sum_{n=1}^{p-1} \chi_1(n) \chi_2(n^{\alpha} f(n)) = \sum_{n=1}^{p-1} \chi_1 \chi_2^{\alpha}(n) \chi_2(f(n)).$$

Again by Lemma 2.4, we get

$$\left|\sum_{n=1}^{p-1} \chi_1(n) \chi_2(n^{\alpha} f(n))\right| \leqslant k \sqrt{p}.$$

We therefore have

We conclude by combining Claims 3.1–3.3 that

$$\begin{split} \left| N(\alpha, f; p) - (p - 1 - R(f)) \left(\frac{\phi(p - 1)}{p - 1}\right)^2 \right| \\ & \leq \left((2^{\omega(p-1)} - 1) + (2^{\omega(p-1)} - 1)^2 \right) k \sqrt{p} \left(\frac{\phi(p - 1)}{p - 1}\right)^2 \\ & < k 4^{\omega(p-1)} \sqrt{p} \left(\frac{\phi(p - 1)}{p - 1}\right)^2. \end{split}$$

This completes our proof.

Proof of Corollary 1.2. We first estimate $4^{\omega(p-1)}$. In fact, we have the following

Proposition 3.4. Let A and ϵ be given positive real numbers, then we have

$$A^{\omega(n)} = o(n^{\epsilon})$$

as $n \to \infty$.

Proof. Let p_n denote the *n*-th prime, then we have

$$\log n \geqslant \log \prod_{i=1}^{\omega(n)} p_i \gg \omega(n) \log \omega(n).$$

This leads to $\omega(n) = o(\log n)$ as $n \to \infty$ and thus the desired estimate follows immediately.

Now taking A = 4 and $\epsilon = 1/2$, then

$$\theta k 4^{\omega(p-1)} \sqrt{p} \left(\frac{\phi(p-1)}{p-1}\right)^2 = o\left(\frac{\phi^2(p-1)}{p-1}\right).$$

On the other hand, we have $R(f) \leq k$. Thus

$$R(f)\left(\frac{\phi(p-1)}{p-1}\right)^2 = o\left(\frac{\phi^2(p-1)}{p-1}\right).$$

We therefore conclude

$$N(\alpha, f; p) = \frac{\phi^2(p-1)}{p-1} + o\left(\frac{\phi^2(p-1)}{p-1}\right).$$

At last, to show $N(\alpha, f; p) \to \infty$ as $p \to \infty$, we only need to estimate $\phi^2(n)/n$. Let $p_{\max}(n)$ be the largest prime factor of n and $\operatorname{ord}_{\max}(n)$ be the largest positive integer α such that $p^{\alpha} \mid n$ and $p^{\alpha+1} \nmid n$ for some prime factor p of n. As $n \to \infty$, either $p_{\max}(n)$ or $\operatorname{ord}_{\max}(n)$ goes to infinity. Finally, we note that $\phi^2(n)/n$ is multiplicative. Since

$$\frac{\phi^2(p^{\alpha})}{p^{\alpha}} = p^{\alpha - 2}(p - 1)^2,$$

we conclude that $\phi^2(n)/n \to \infty$ as $n \to \infty$. This ends the proof of Corollary 1.2.

Acknowledgments. The author is grateful to the referee for some helpful comments that improve this paper.

46 Shane Chern

References

- T.M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. xii+338 pp.
- [2] L. Carlitz, Sets of primitive roots, Compositio Math. 13 (1956), 65–70.
- [3] D. Han and W. Zhang, On the existence of some special primitive roots mod p, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 1, 59–66.
- [4] J. Johnsen, On the distribution of powers in finite fields, J. Reine Angew. Math. 251 (1971), 10–19.
- [5] M. Szalay, On the distribution of the primitive roots of a prime, J. Number Theory 7 (1975), 184–188.
- [6] D. Wan, Generators and irreducible polynomials over finite fields, Math. Comp. 66 (1997), no. 219, 1195–1212.
- [7] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207.

Address: Shane Chern: Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.

E-mail: shanechern@psu.edu; chenxiaohang92@gmail.com Received: 2 July 2016; revised: 28 December 2016