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REMARKS ON THE DISTRIBUTION OF THE PRIMITIVE
ROOTS OF A PRIME

Shane Chern

Abstract: Let Fp be a finite field of size p where p is an odd prime. Let f(x) ∈ Fp[x] be
a polynomial of positive degree k that is not a d-th power in Fp[x] for all d | p− 1. Furthermore,
we require that f(x) and x are coprime. The main purpose of this paper is to give an estimate
of the number of pairs (ξ, ξαf(ξ)) such that both ξ and ξαf(ξ) are primitive roots of p where α
is a given integer. This answers a question of Han and Zhang.
Keywords: primitive root, character sum, Weil bound.

1. Introduction

Let a and q be relatively prime integers, with q > 1. We know from the Euler–
Fermat theorem that aφ(q) ≡ 1 mod q, where φ(q) is the Euler totient function.
We say an integer f is the exponent of a modulo q if f is smallest positive integer
such that af ≡ 1 mod q. If f = φ(q), then a is called a primitive root of q. If q
has a primitive root a, then the group of the reduced residue classes mod q is the
cyclic group generated by the residue class â. It is well-known that primitive roots
exist only for the following moduli:

q = 1, 2, 4, pα, and 2pα,

where p is an odd prime and α > 1. The reader may refer to Chapter 10 of
T.M. Apostol’s book [1] for detailed contents.

There has been a long history studying the distribution of the primitive roots
of a prime. In a recent paper, D. Han and W. Zhang [3] considered the num-
ber of pairs (ξ,mξk + nξ) such that both ξ and mξk + nξ are primitive roots
of an odd prime p where m, n and k are given integers with k 6= 1 and
(mn, p) = 1. The reader may also find some descriptions of other interesting
problems on primitive roots such as the Golomb’s conjecture in [3] and refer-
ences therein. After presenting their main results, Han and Zhang proposed the
following
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Question 1.1. Let Fp be a finite field of size p and f(x) be an irreducible poly-
nomial in Fp[x]. Whether there exists a primitive element ξ ∈ Fp such that f(ξ)
is also a primitive element in Fp?

In this paper, we let f(x) ∈ Fp[x] be a polynomial of positive degree k that is
not a d-th power in Fp[x] for all d | p − 1 with d > 1. Furthermore, we require
that x does not divide f(x). Let α be a given integer, we denote by N(α, f ; p) the
number of pairs (ξ, ξαf(ξ)) such that both ξ and ξαf(ξ) are primitive roots of p.
Our result is

Theorem 1.1. It holds that

N(α, f ; p) = (p− 1−R(f))

(
φ(p− 1)

p− 1

)2

+ θk4ω(p−1)√p
(
φ(p− 1)

p− 1

)2

, (1.1)

where |θ| < 1, ω(n) denotes the number of distinct prime divisors of n, R(f)
denotes the number of distinct zeros of f(x) in Fp, and k = deg f .

Now if we take α = 0 and f(x) = x + 1, then we get the famous result on
consecutive primitive roots obtained by J. Johnsen [4] and M. Szalay [5]. If we
take {

α = 1 and f(x) = mxk−1 + n if k > 1,

α = k and f(x) = nx1−k +m if k < 1,

where (mn, p) = 1, then we have deg f = |k − 1| and ξαf(ξ) = mξk + nξ. It
follows from Theorem 1.1 that the asymptotic formula for the number of pairs
(ξ,mξk + nξ) ∈ F2

p such that both ξ and mξk + nξ are primitive roots of p is

(p− 1−R(f))

(
φ(p− 1)

p− 1

)2

+ θ|k − 1|4ω(p−1)√p
(
φ(p− 1)

p− 1

)2

.

We should mention that there is a minor mistake in Han and Zhang’s result.
(However, this does not affect the existence of such pairs; see our Corollary 1.2.)
In fact, they forgot to consider the zeros of f(x) in Fp. For example, if we choose
f(x) = x−1+x = x−1(x2+1), then there are 1+(−1|p) distinct zeros of x2+1 in Fp
where (∗|p) is the Legendre symbol. In this sense, the main term of N(−1, x2+1; p)
(or their N(−1, 1, 1, p)) should be

(p− 2− (−1|p))
(
φ(p− 1)

p− 1

)2

,

while not φ2(p− 1)/(p− 1).
From Theorem 1.1 we also immediately deduce the existence of pairs (ξ, ξαf(ξ))

such that both ξ and ξαf(ξ) are primitive roots of p. Again, we write k = deg f
where f(x) ∈ Fp[x] is a polynomial that is not a d-th power in Fp[x] for all d | p−1.

Corollary 1.2. Let p be an odd prime large enough, then for any given integers
k > 0 and α, there exists a primitive root ξ of p such that ξαf(ξ) is also a primitive
root of p. Moreover, as p goes to infinity, the number of such ξ also goes to infinity.
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2. Preliminary lemmas

We first introduce the indicator function of primitive roots.

Lemma 2.1 (L. Carlitz [2, Lemma 2]). We have

φ(p− 1)

p− 1

∑
d|p−1

µ(d)

φ(d)

∑
χ mod p
ordχ=d

χ(n) =

{
1 if n is a primitive root of p,
0 otherwise.

(2.1)

Here µ is the Möbius function, and ordχ denotes the order of a Dirichlet character
χ mod p, that is, the smallest positive integer f such that χf = χ0, the principal
character modulo p.

Remark 2.1. We should mention that Carlitz proved more than Lemma 2.1. In
fact, for an arbitrary finite field Fq, where q = pα, Carlitz obtained the indicator
function of numbers belonging to an exponent e, where e | q − 1. Let q − 1 = ee′.
It follows that

φ(e)

q − 1

∑
d|q−1

µ(d′)

φ(d′)

∑
χ mod q
ordχ=d

χ(n) =

{
1 if n belongs to the exponent e,
0 otherwise,

where d′ = d/ gcd(d, e′). To get Lemma 2.1, we only need to take q = p and
e = p− 1.

The following famous Weil bound for character sums plays an important role
in our proof.

Lemma 2.2 (A. Weil [7]). Let χ be a non-principal Dirichlet character modulo
p of order d. Suppose f(x) ∈ Fp[x] is a polynomial of positive degree k that is not
a d-th power in Fp[x]. Then we have∣∣∣∣∣

p−1∑
n=1

χ(f(n))

∣∣∣∣∣ 6 (k − 1)
√
p. (2.2)

We also need the less-known extension of Weil bound obtained by D. Wan.

Lemma 2.3 (D. Wan [6, Corollary 2.3]). Let χ1, χ2, . . ., χm be non-principal
Dirichlet characters modulo p of orders d1, d2, . . ., dm, respectively. Suppose f1(x),
f2(x), . . ., fm(x) ∈ Fp[x] are pairwise coprime polynomials of positive degrees
k1, k2, . . ., km. Suppose also that fi(x) is not a di-th power in Fp[x] for all
i = 1, 2, . . . ,m. Then we have∣∣∣∣∣

p−1∑
n=1

χ1(f1(n))χ2(f2(n)) · · ·χm(fm(n))

∣∣∣∣∣ 6
(

m∑
i=1

ki − 1

)
√
p. (2.3)

From Lemmas 2.2 and 2.3, we have
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Lemma 2.4. Let χ1 be a Dirichlet character modulo p, and χ2 be a non-principal
Dirichlet character modulo p of order d. Suppose f(x) ∈ Fp[x] is a polynomial of
positive degree k that is not a d-th power in Fp[x]. We also require that x does not
divide f(x). Furthermore, let α be a given integer. Then we have∣∣∣∣∣

p−1∑
n=1

χ1(nα)χ2(f(n))

∣∣∣∣∣ 6
{

(k − 1)
√
p if χα1 is the principal character,

k
√
p otherwise.

(2.4)

Proof. Note that

p−1∑
n=1

χ1(nα)χ2(f(n)) =

p−1∑
n=1

χα1 (n)χ2(f(n)).

Now if χα1 is the principal character, then it follows that

p−1∑
n=1

χ1(nα)χ2(f(n)) =

p−1∑
n=1

χ2(f(n)),

and we get the bound from Lemma 2.2. If χα1 is not the principal character, then
the bound is obtained through a direct application of Lemma 2.3. �

3. Proofs

Proof of Theorem 1.1. It follows by Lemma 2.1 that

N(α, f ; p)

=

p−1∑
n=1

(
φ(p− 1)

p− 1

)2 ∑
d1|p−1

∑
d2|p−1

µ(d1)

φ(d1)

µ(d2)

φ(d2)

∑
χ1 mod p
ordχ1=d1

∑
χ2 mod p
ordχ2=d2

χ1(n)χ2(nαf(n))

= (p− 1−R(f))

(
φ(p− 1)

p− 1

)2

+

(
φ(p− 1)

p− 1

)2 ∑
d1|p−1
d1>1

µ(d1)

φ(d1)

∑
χ1 mod p
ordχ1=d1

p−1∑
n−1

χ1(n)

+

(
φ(p− 1)

p− 1

)2 ∑
d2|p−1
d2>1

µ(d2)

φ(d2)

∑
χ2 mod p
ordχ2=d2

p−1∑
n−1

χ2(nαf(n))

+

(
φ(p− 1)

p− 1

)2 ∑
d1|p−1
d1>1

∑
d2|p−1
d2>1

µ(d1)

φ(d1)

µ(d2)

φ(d2)

∑
χ1 mod p
ordχ1=d1

∑
χ2 mod p
ordχ2=d2

p−1∑
n=1

χ1(n)χ2(nαf(n)).



Remarks on the distribution of the primitive roots of a prime 43

Claim 3.1. We have

∑
d1|p−1
d1>1

µ(d1)

φ(d1)

∑
χ1 mod p
ordχ1=d1

p−1∑
n−1

χ1(n) = 0.

Proof. We deduce it directly from

p−1∑
n=1

χ(n) = 0,

if χ is not the principal character modulo p. �

Claim 3.2. We have∣∣∣∣∣∣∣∣
∑
d2|p−1
d2>1

µ(d2)

φ(d2)

∑
χ2 mod p
ordχ2=d2

p−1∑
n−1

χ2(nαf(n))

∣∣∣∣∣∣∣∣ 6 (2ω(p−1) − 1)k
√
p.

Proof. Note that

p−1∑
n−1

χ2(nαf(n)) =

p−1∑
n=1

χ2(nα)χ2(f(n)).

Now by Lemma 2.4, we have∣∣∣∣∣
p−1∑
n−1

χ2(nαf(n))

∣∣∣∣∣ 6 k√p.
Note also that ∑

d|p−1
d>1

|µ(d)| = 2ω(p−1) − 1.

We therefore have∣∣∣∣∣∣∣∣
∑
d2|p−1
d2>1

µ(d2)

φ(d2)

∑
χ2 mod p
ordχ2=d2

p−1∑
n−1

χ2(nαf(n))

∣∣∣∣∣∣∣∣ 6
∑
d2|p−1
d2>1

∣∣∣∣µ(d2)

φ(d2)

∣∣∣∣ ∑
χ2 mod p
ordχ2=d2

∣∣∣∣∣
p−1∑
n−1

χ2(nαf(n))

∣∣∣∣∣
6
∑
d2|p−1
d2>1

∣∣∣∣µ(d2)

φ(d2)

∣∣∣∣φ(d2)k
√
p

= (2ω(p−1) − 1)k
√
p. �
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Claim 3.3. We have∣∣∣∣∣∣∣∣
∑
d1|p−1
d1>1

∑
d2|p−1
d2>1

µ(d1)

φ(d1)

µ(d2)

φ(d2)

∑
χ1 mod p
ordχ1=d1

∑
χ2 mod p
ordχ2=d2

p−1∑
n=1

χ1(n)χ2(nαf(n))

∣∣∣∣∣∣∣∣
6 (2ω(p−1) − 1)2k

√
p.

Proof. Note that

p−1∑
n=1

χ1(n)χ2(nαf(n)) =

p−1∑
n=1

χ1χ
α
2 (n)χ2(f(n)).

Again by Lemma 2.4, we get∣∣∣∣∣
p−1∑
n=1

χ1(n)χ2(nαf(n))

∣∣∣∣∣ 6 k√p.
We therefore have∣∣∣∣∣∣∣∣

∑
d1|p−1
d1>1

∑
d2|p−1
d2>1

µ(d1)

φ(d1)

µ(d2)

φ(d2)

∑
χ1 mod p
ordχ1=d1

∑
χ2 mod p
ordχ2=d2

p−1∑
n=1

χ1(n)χ2(nαf(n))

∣∣∣∣∣∣∣∣
6
∑
d1|p−1
d1>1

∑
d2|p−1
d2>1

∣∣∣∣µ(d1)

φ(d1)

∣∣∣∣ ∣∣∣∣µ(d2)

φ(d2)

∣∣∣∣ ∑
χ1 mod p
ordχ1=d1

∑
χ2 mod p
ordχ2=d2

∣∣∣∣∣
p−1∑
n=1

χ1(n)χ2(nαf(n))

∣∣∣∣∣
6
∑
d1|p−1
d1>1

∑
d2|p−1
d2>1

∣∣∣∣µ(d1)

φ(d1)

∣∣∣∣ ∣∣∣∣µ(d2)

φ(d2)

∣∣∣∣φ(d1)φ(d2)k
√
p

= (2ω(p−1) − 1)2k
√
p. �

We conclude by combining Claims 3.1–3.3 that∣∣∣∣∣N(α, f ; p)− (p− 1−R(f))

(
φ(p− 1)

p− 1

)2
∣∣∣∣∣

6
(

(2ω(p−1) − 1) + (2ω(p−1) − 1)2
)
k
√
p

(
φ(p− 1)

p− 1

)2

< k4ω(p−1)√p
(
φ(p− 1)

p− 1

)2

.

This completes our proof. �
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Proof of Corollary 1.2. We first estimate 4ω(p−1). In fact, we have the following

Proposition 3.4. Let A and ε be given positive real numbers, then we have

Aω(n) = o(nε)

as n→∞.

Proof. Let pn denote the n-th prime, then we have

log n > log

ω(n)∏
i=1

pi � ω(n) logω(n).

This leads to ω(n) = o(log n) as n → ∞ and thus the desired estimate follows
immediately. �

Now taking A = 4 and ε = 1/2, then

θk4ω(p−1)√p
(
φ(p− 1)

p− 1

)2

= o

(
φ2(p− 1)

p− 1

)
.

On the other hand, we have R(f) 6 k. Thus

R(f)

(
φ(p− 1)

p− 1

)2

= o

(
φ2(p− 1)

p− 1

)
.

We therefore conclude

N(α, f ; p) =
φ2(p− 1)

p− 1
+ o

(
φ2(p− 1)

p− 1

)
.

At last, to show N(α, f ; p)→∞ as p→∞, we only need to estimate φ2(n)/n.
Let pmax(n) be the largest prime factor of n and ordmax(n) be the largest positive
integer α such that pα | n and pα+1 - n for some prime factor p of n. As n→∞,
either pmax(n) or ordmax(n) goes to infinity. Finally, we note that φ2(n)/n is
multiplicative. Since

φ2(pα)

pα
= pα−2(p− 1)2,

we conclude that φ2(n)/n → ∞ as n → ∞. This ends the proof of Corollary 1.2.
�
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