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EXPLICIT VERSIONS OF THE PRIME IDEAL THEOREM
FOR DEDEKIND ZETA FUNCTIONS UNDER GRH, II

Loïc Grenié, Giuseppe Molteni

Abstract: We have recently proved several explicit versions of the prime ideal theorem under
GRH. Here we further explore the method, in order to deduce its strongest consequence for the
case where x diverges.
Keywords: prime ideal theorem, Dedekind functions, explicit bounds, GRH.

1. Introduction

For a number field K we denote by

• nK its dimension,
• ∆K the absolute value of its discriminant,
• δK := (∆K)(1/nK) its root discriminant,
• r1 the number of its real places,
• r2 the number of its imaginary places,
• dK := r1 + r2 − 1.

In [2] we use a two step process to prove explicit versions of the prime ideal theorem
under GRH: first we prove a bound for |ψK(x) − x| depending on a parameter T
to be fixed later ([2, Theorem 1.1]), then we prove several formulas based on
some choices for T ([2, Corollaries 1.2 and 1.3]). A scheme to produce explicit
versions of the prime ideal theorem for number fields has been proved by Lagarias
and Odlyzko in [3] and recently Winckler computed the effective constants in [7].
In this paper, we reuse Theorem 1.1 of [2] with an additional parameter called κ
producing the general result in Theorem 2.5, we then choose κ and T in such a way
as to obtain the best possible asymptotic expansion for x→ +∞. By doing so we
obtain a formula that is not too far from the best possible bound for |ψK(x)− x|
which can be proved by using this method.

We recall that the Lambert-W function is the function such that ∀x > 0,
W (x)eW (x) = x.
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Theorem 1.1. Assume GRH. Let x > 3,

w := W
(e√5

2π
δK

[ (
√

5− 1)π
√
x

2nK
+ 21.3270 +

33.3542

nK

])
,

T := 8.2822 +
1

w

[ (
√

5− 1)π
√
x

2nK
+ 21.3270 +

33.3542

nK

]
,

εK(x, T ) := max
(

0, dK log x− 3.6133nK

√
x

T

)
.

Then

|ψK(x)− x| 6
√
x

π

[(1

2
log2

(
ew+1 + 33.5251δK

)
− 1

2
log2 δK

+ 3.9792 log δK − 3.4969
)
nK + 25.5362

]
+ 1.0155 log ∆K − 2.1042nK + 8.8590 + εK(x, T ). (1.1)

Moreover we also have

|ψK(x)− x| 6 (2.2543
√
x+ 1.0155) log ∆K + (0.9722

√
x− 2.1042)nK

+
x

10
+ 9.0458

√
x+ 7.0320 + εK(x, 10). (1.2)

The choice of T we have made to deduce Theorem 1.1 from Theorem 2.5 gives the
best coefficients for all terms in the asymptotic expansion, down to the term of
order

√
x. This choice is not too far from the best our method can achieve, even

for finite x; in other words, the T we choose in Theorem 1.1 is not too far from
the optimal T for Theorem 2.5. Note that the values of the other parameters we
fix in the proofs of Theorem 1.1 and Theorem 2.5 affect the term of order

√
x of

the asymptotic expansion.
Inequality (1.2) is a kind of Chebyshev bound, which has the interesting prop-

erty that the linear term has a coefficient independent of the field. It is better
than (1.1) when x is very small with respect to δK.

Asymptotic expansions

We discuss the asymptotic expansions of (1.1) when x diverges and K is fixed. We
have, as t→ +∞

W (t) = log t− log log t+
log log t

log t
+O

(( log log t

log t

)2)
and, even though we will not use it,

∀t > e, W (t) 6 log t− log log t+ 1.024
log log t

log t
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so that the asymptotic expansion we are computing is not too far from an upper
bound. From the first expansion, we deduce

1

2
W (t)2 +W (t) =

1

2
log2 t− log t log log t+ log t+

1

2
(log log t)2 + o(1).

We have w ∼ 1
2 log x when x diverges, thus

log2
(
ew+1 + 33.5251δK

)
=
(
w + 1 +

33.5251δK
ew+1

+O
( 1

e2w

))2

= w2 + 2w + 1 +O
( log x√

x

)
.

We thus have, taking ν :=
√

5−1
2 e

√
5

1

2
log2

(
ew+1 + 33.5251δK

)
− 1

2
log2 δK

=
1

2
w2 + w +

1

2
− 1

2
log2 δK + o(1)

=
1

2

[
log δK +

1

2
log x+ log

( ν

2nK

)]2
−
[

log δK +
1

2
log x+ log

( ν

2nK

)]
×
[

log log x− log 2 +
2 log δK

log x
+

2

log x
log
( ν

2nK

)]
+ log δK +

1

2
log x+ log

( ν

2nK

)
+

1

2

[
log log x− log 2

]2
+

1

2
− 1

2
log2 δK + o(1)

=
1

8
log2 x− 1

2
log x log log x+

1

2

[
log δK + log

( eν
nK

)]
log x

+
1

2
(log log x)2 −

[
log δK + log

( ν

nK

)]
log log x

+
1

2
log2

( ν

nK

)
+ log

( ν

nK

)
log δK +

1

2
+ o(1).

Thus the right hand side of (1.1) is

nK

√
x

2π

[1

4
log2 x− log x log log x+

[
log δK + log

( eν
nK

)]
log x+ (log log x)2

− 2
[

log δK + log
( ν

nK

)]
log log x+

(
2 log

( ν

nK

)
+ 7.9584

)
log δK

+ log2
( ν

nK

)
− 5.9938

]
+ 25.5362

√
x

π
+ o(
√
x).

Since eν ' 15.7187 . . . the coefficient of nK
√
x

2π log x is lower than log δK if nK > 16.
We have verified that the first five terms in the asymptotic expansion cannot

be improved by any choice of the parameters. On the other hand, the sixth term
contains the constants 7.9584, −5.9938 and 25.5362 which can be changed acting
on the parameters.
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The constants hidden in the o(.) terms are unfortunately not uniform in K
and are not even controlled by a linear bound in nK and log ∆K: for instance, the
rather innocent looking nK

√
x

T is asymptotic to 2
(
√

5−1)π
n2
K log x.

To facilitate the comparison with earlier results, we reorganize this asymptotic
expansion in a form similar to Lagarias and Odlyzko’s results. In this form, the
right hand side of (1.1) is
√
x

2π

[
log x− 2 log log x+ 2 log

( ν

nK

)
+ 7.9584

]
log ∆K

+

√
x

8π

[
log2 x− 4 log x log log x+ 4 log

( eν
nK

)
log x+ 4(log log x)2

− 8 log
( ν

nK

)
log log x+ 4 log2

( ν

nK

)
+ 4− 23.9752

]
nK + 25.5362

√
x

π
+ o(
√
x)

=

√
x

2π

[
log
(e2ν2

n2
K

x

log2 x

)
+ 5.9584

]
log ∆K

+

√
x

8π

[
log2

( x

log2 x

)
+ 4 log

( eν
nK

)
log
( x

log2 x

)
+ 4 log2

( eν
nK

)
− 8 log

( ν

nK log x

)
− 27.9752

]
nK + 25.5362

√
x

π
+ o(
√
x)

=

√
x

2π

[
log
(e2ν2

n2
K

x

log2 x

)
+ 5.9584

]
log ∆K

+

√
x

8π

[
log2

(e2ν2

n2
K

x

log2 x

)
− 4 log

(e2ν2

n2
K

1

log2 x

)
− 19.9752

]
nK

+ 25.5362

√
x

π
+ o(
√
x).

As δK diverges (1.1) is not very efficient, but still gives something similar
to (1.2).

Numerical experiments

In [2] we prove the following results. First in Corollary 1.2:

∀x > 100, |ψK(x)− x| 6
√
x
[( log x

2π
+ 2
)

log ∆K +
( log2 x

8π
+ 2
)
nK

]
. (1.3)

Then in Corollary 1.3:

∀x > 3, |ψK(x)− x| 6
√
x
[( 1

2π
log
(18.8x

log2 x

)
+ 2.3

)
log ∆K (1.4)

+
( 1

8π
log2

(18.8x

log2 x

)
+ 1.3

)
nK + 0.3 log x+ 14.6

]
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and

∀x > 2000, |ψK(x)− x| 6
√
x
[( 1

2π
log
( x

log2 x

)
+ 1.8

)
log ∆K (1.5)

+
( 1

8π
log2

( x

log2 x

)
+ 1.1

)
nK + 1.2 log x+ 10.2

]
.

We compare the upper bound (1.1) to these three formulas for several values of
nK and four discriminants for each nK. We test totally real and totally imaginary
fields for the minimal discriminants allowed by Odlyzko’s Table 3 in [4] and for
their squares. In each table we indicate the minimal x after which Formula (1.1)
is better than the corresponding formula. One observes that (1.1) is always better
than (1.4), nearly always better than (1.3) (except for quadratic fields) and most
of the times better than (1.5). The best between (1.1) and (1.2) is always better
than (1.3–1.5) except for the case of quadratic fields in Formula (1.3).

From when does (1.1) get better than (1.3–1.5)
real imaginary

minimal

nK ∆K (1.3) (1.4) (1.5)
2 4.9535 187929 3 2000
6 2.9169 · 105 107 3 2000
10 2.3927 · 1011 100 3 2000
20 6.5601 · 1027 100 3 2000
50 7.1245 · 1081 100 3 2425
100 1.5472 · 10177 100 3 2713
200 8.0911 · 10374 100 3 2851

∆K (1.3) (1.4) (1.5)
2.9633 445897 3 2000
9.3896 · 103 106 3 2000
1.8967 · 108 100 3 2000
1.7076 · 1020 100 3 2000
2.8528 · 1059 100 3 2306
3.0629 · 10128 100 3 2663
2.1888 · 10271 100 3 2843

square

nK ∆K (1.3) (1.4) (1.5)
2 2.4538 · 101 25000 3 2000
6 8.5086 · 1010 100 3 2000
10 5.7250 · 1022 100 3 2000
20 4.3035 · 1055 100 3 2074
50 5.0759 · 10163 100 3 2597
100 2.3937 · 10354 100 3 2757
200 6.5467 · 10749 100 3 2830

∆K (1.3) (1.4) (1.5)
8.7813 81922 3 2000
8.8164 · 107 100 3 2000
3.5975 · 1016 100 3 2000
2.9158 · 1040 100 3 2000
8.1386 · 10118 100 3 2532
9.3814 · 10256 100 3 2745
4.7910 · 10542 100 3 2844
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From when does the best of (1.1) and (1.2) get better than (1.3–1.5)
real imaginary

minimal

nK ∆K (1.3) (1.4) (1.5)
2 4.9535 187929 3 2000
6 2.9169 · 105 100 3 2000
10 2.3927 · 1011 100 3 2000
20 6.5601 · 1027 100 3 2000
50 7.1245 · 1081 100 3 2000
100 1.5472 · 10177 100 3 2000
200 8.0911 · 10374 100 3 2000

∆K (1.3) (1.4) (1.5)
2.9633 445897 3 2000
9.3896 · 103 100 3 2000
1.8967 · 108 100 3 2000
1.7076 · 1020 100 3 2000
2.8528 · 1059 100 3 2000
3.0629 · 10128 100 3 2000
2.1888 · 10271 100 3 2000

square

nK ∆K (1.3) (1.4) (1.5)
2 2.4538 · 101 25000 3 2000
6 8.5086 · 1010 100 3 2000
10 5.7250 · 1022 100 3 2000
20 4.3035 · 1055 100 3 2000
50 5.0759 · 10163 100 3 2000
100 2.3937 · 10354 100 3 2000
200 6.5467 · 10749 100 3 2000

∆K (1.3) (1.4) (1.5)
8.7813 81922 3 2000
8.8164 · 107 100 3 2000
3.5975 · 1016 100 3 2000
2.9158 · 1040 100 3 2000
8.1386 · 10118 100 3 2000
9.3814 · 10256 100 3 2000
4.7910 · 10542 100 3 2000

Acknowledgements. We wish to thank Alberto Perelli, for his valuable remarks
and comments, and the referee for her/his careful reading. All computations in
this paper has been made using PARI/GP [6]. The authors are members of the
GNSAGA INdAM group.

2. Reproofs

We reprove the results of [1] and [2] adding an additional parameter to the main
result of [2] and with a couple more digits. The methods of proof are the same
and will thus not be repeated.

We recall that rK is defined as the constant such that

ζ ′K
ζK

(s) =
r1 + r2 − 1

s
+ rK +O(s) as s→ 0.

Lemma 2.1. Assume GRH. One has

|rK| 6 1.0155 log ∆K − 2.1042nK + 8.3423− eK

where

eK :=


4.4002 if (r1, r2) = (1, 0)

0.6931 if (r1, r2) = (0, 1)

0 otherwise.

Proof. The proof of Lemma 3.1 in [1] gives the general case. Moreover, for Q we
know that rQ = log 2π. For imaginary quadratic fields, an r2 log 2 term can be
restored in the proof of the aforementioned lemma. �
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Lemma 2.2. Assume GRH. One has

∑
|γ|65

1

|ρ|
6 1.0111 log ∆K − 1.6550nK + 7.0320.

Proof. see Lemma 3.1 in [2]. �

As in [2] we will denote WK(T ) := log ∆K + nK log
(
T
2π

)
; this is obviously not

the Lambert W function, and we believe that there is no risk of confusion.

Lemma 2.3. We have, for all T > 5,

∑
|γ|6T

1 6
T

π

(
1 +

1.4427

T

)
WK(T )− T

π

(
1− 8.9250

T

)
nK +

8.6542

π
, (2.1a)

∑
|γ|>T

1

|ρ|2
6
(

1 +
2.8854

T

)WK(T )

πT
+
(

1 +
18.6019

T

) nK
πT

+
17.3084

πT 2
, (2.1b)

∑
ρ

|γ|6T

π

|ρ|
6
(

log
( T

2π

)
+ 3.9792

)
log ∆K

+
(1

2
log2

( T
2π

)
− 1.4969

)
nK + 25.5362. (2.1c)

Proof. These are just First sum, Second sum and Third sum, in [2] with
more digits. To prove (2.1c), we use Lemma 2.2 instead of Lemma 3.1 of [2]. �

Lemma 2.4. Let

f1(x) :=

∞∑
r=1

x1−2r

2r(2r − 1)
, f2(x) :=

∞∑
r=2

x2−2r

(2r − 1)(2r − 2)
,

Rr1,r2(x) := −(r1 + r2 − 1)(x log x− x) + r2(log x+ 1)− (r1 + r2)f1(x)− r2f2(x).

Let x > 3, then

−(r1+r2−1) log x 6 R′r1,r2(x) 6 −δ(r1,r2),(1,0) log(1−x−2)−δ(r1,r2),(0,1) log(1−x−1)

where δ(r1,r2),(a,b) is 1 if and only if both indices are equal and 0 otherwise.

Proof. See Lemma 2.2 in [2]. �
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We now restate Theorem 1.1 of [2].

Theorem 2.5. For every x > 3, T > 5 and 0 < κ 6 2 we have:∣∣∣ψK(x)− x+
∑
|γ|<T

xρ

ρ

∣∣∣
6

√
x

π

[ 2

κ
+
κ

2
+

1.4427κ2 + 3κ+ 11.5416

2κT
+

0.5915κ+ 4.3282

T 2

]
WK(T )

+

√
x

π

[ 2

κ
− κ

2
+

8.9250κ2 + 3κ+ 74.4076

2κT
+

1.7702κ+ 27.9029

T 2

]
nK

+
κx

2T
+

√
x

π

[ (1.3774κ2 + 11.0190)π

κT
+

(0.4133κ+ 8.2643)π

T 2

]
+ |rK|+ ε̃K(x, T )

where

ε̃K(x, T ) :=


− log(1− x−2) if (r1, r2) = (1, 0)

− log(1− x−1) if (r1, r2) = (0, 1)

max
(
0, dK log x− 3.6133nK

√
x
T

)
otherwise.

Proof. The proof proceeds as for [2, Theorem 1.1], but now we choose h = ±κxT
with κ ∈ (0, 2] instead of h = ± 2x

T . We start from [2, Inequality (4.2)] which,
given the small modification of Lemma 2.4 above, now reads:

−(r1 + r2 − 1) log x 6
ψ

(1)
K (x+ h)− ψ(1)

K (x)

h

−
(
x+

h

2
−
∑
ρ

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)
− rK

)
6 −δ(r1,r2),(1,0) log(1− x−2)− δ(r1,r2),(0,1) log(1− x−1).

As seen in [2, Section 4], under GRH we have

∣∣∣ ∑
|γ|>T

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)

∣∣∣ 6 ∑
|γ|>T

x
3
2

(
1 + h

x

) 3
2 + 1

h|ρ(ρ+ 1)|
6 A

x
3
2

h

∑
|γ|>T

1

|ρ2|
,

with A := 1 +
(
1 + h

x

) 3
2 while

∑
|γ|<T

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)
=
∑
|γ|<T

xρ

ρ
+ hx−1/2

∑
|γ|<T

wρx
iγ

with

wρ :=

(
1 + h

x

)ρ+1 − 1− (ρ+ 1)hx

ρ(ρ+ 1)
(
h
x

)2 .
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For h > 0, we take h = κx
T thus

A = 1 +
(

1 +
κ

T

) 3
2

6 2 +
3κ

2T
+

3κ2

8T 2
.

From Lemma 2.1 in [2] we know that |wρ| 6 1
2 hence by (2.1b) and (2.1a)

π√
x

∣∣∣∑
ρ

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)
−
∑
|γ|<T

xρ

ρ

∣∣∣
6
[ 2

κ
+

3

2T
+

3κ

8T 2

][(
1 +

2.8854

T

)WK(T )

πT
+
(

1 +
18.6019

T

) nK
πT

+
17.3084

T

]
+
κ

2

[(
1 +

1.4427

T

)
WK(T )−

(
1− 8.9250

T

)
nK +

8.6542

T

]
=
[( 2

κ
+

3

2T
+

3κ

8T 2

)(
1 +

2.8854

T

)
+
κ

2

(
1 +

1.4427

T

)]
WK(T )

+
[( 2

κ
+

3

2T
+

3κ

8T 2

)(
1 +

18.6019

T

)
− κ

2

(
1− 8.9250

T

)]
nK

+
( 2

κ
+

3

2T
+

3κ

8T 2

)17.3084

T
+ 4.3271

κ

T
.

After some simplifications it becomes, for T > 5,

π√
x

∣∣∣∑
ρ

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ (2.2)

6
[ 2

κ
+
κ

2
+

1.4427κ2 + 3κ+ 11.5416

2κT
+

0.5915κ+ 4.3281

T 2

]
WK(T )

+
[ 2

κ
− κ

2
+

8.9250κ2 + 3κ+ 74.4076

2κT
+

1.7702κ+ 27.9029

T 2

]
nK

+
4.3271κ2 + 34.6168

κT
+

1.2982κ+ 25.9626

T 2
,

which is an analogous of [2, Equation (4.3)].

For h < 0, we take h = −κxT , we then have x + h > 1 if κ 6 3, x > 3 and T > 5.
We slightly modify the bound for A in that case and take

A = 1 +
(

1− κ

T

) 3
2

6 2− 3κ

2T
+

κ2

2T 2
.
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We still have |wρ| 6 1
2 + κ

6T and Equation (4.4) of [2] becomes for T > 5

π√
x

∣∣∣∑
ρ

(x+ h)ρ+1 − xρ+1

hρ(ρ+ 1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ (2.3)

6
[ 2

κ
+
κ

2
+
κ3/3 + 1.4427κ2 − 3κ+ 11.5416

2κT

+
0.2405κ2 + 0.7886κ− 4.3281

T 2

]
WK(T )

+
[ 2

κ
− κ

2
+
−κ3/3 + 8.9250κ2 − 3κ+ 74.4076

2κT

+
1.4875κ2 + 2.3602κ− 27.9028

T 2

]
nK

+
4.3271κ2 + 34.6168

κT
+

1.4424κ2 + 1.7309κ− 25.9626

T 2
.

Let MW,±(T ), Mn,±(T ) and Mc,±(T ) be the functions of T such that the right
hand side of (2.2) and (2.3) respectively are

MW,+(T )WK(T ) +Mn,+(T )nK +Mc,+(T ),

MW,−(T )WK(T ) +Mn,−(T )nK +Mc,−(T ),

and their differences let be denoted as

DW (T ) := MW,+(T )−MW,−(T ) =
18− κ2

6T
+

8.6562− 0.1971κ− 0.2405κ2

T 2
,

Dn(T ) := Mn,+(T )−Mn,−(T ) =
18 + κ2

6T
+

55.8057− 0.5900κ− 1.4875κ2

T 2
,

Dc(T ) := Mc,+(T )−Mc,−(T ) =
51.9252− 0.4327κ− 1.4424κ2

T 2
.

We then have∣∣∣ψK(x)− x+
∑
|γ|<T

xρ

ρ

∣∣∣
6

√
x

π

(
MW,+(T )WK(T ) +Mn,+(T )nK +Mc,+(T )

)
+
κx

2T
+ |rK|+ δ(r1,r2),(1,0) log(1− x−2) + δ(r1,r2),(0,1) log(1− x−1)

+ max
(

0, (r1 + r2 − 1) log x−
√
x

π

(
DW (T )WK(T ) +Dn(T )nK +Dc(T )

))
.

The claim follows if dK = 0 since DW (T ), Dn(T ) and Dc(T ) > 0 (Dc and the
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coefficients of 1
T 2 in Dn and DW are positive ∀κ ∈ [−6, 4]). If dK > 0 we have

1
nK

log ∆K > 1
2 log 5 thus

DW (T )
WK(T )

nK
+Dn(T ) >

(18− κ2

6T
+

8.6562− 0.1971κ− 0.2405κ2

T 2

)
log
(√5T

2π

)
+

18 + κ2

6T
+

55.8057− 0.5900κ− 1.4874κ2

T 2

>
3.6133π

T

when T > 5 and 0 6 κ 6 2. �

3. Proof of Theorem 1.1

By Equation (2.1c) we have for T > 5∣∣∣ ∑
ρ

|γ|<T

xρ

ρ

∣∣∣ 6 √x
π

[(
log
( T

2π

)
+ α

)
log ∆K +

(1

2
log2

( T
2π

)
+ β

)
nK + γ

]
(3.1)

with α = 3.9792, β = −1.4969 and γ = 25.5362. Recalling the upper bound for
|rK| in Lemma 2.1, from the result in Theorem 2.5 and (3.1) we deduce that for
x > 3 and T > 5,

|ψK(x)−x| 6
(√x
π
F (T )+1.0155

)
log ∆K+

(√x
π
G(T )−2.1042

)
nK+H(x, T ) (3.2)

with

F (T ) := log
( T

2π

)
+

2

κ
+
κ

2
+

1.4427κ2 + 3κ+ 11.5416

2κT

+
0.5915κ+ 4.3282

T 2
+ α,

G(T ) :=
1

2
log2

( T
2π

)
+
( 2

κ
+
κ

2
+

1.4427κ2 + 3κ+ 11.5416

2κT
+

0.5915κ+ 4.3282

T 2

)
log
( T

2π

)
+ β +

2

κ
− κ

2
+

8.9250κ2 + 3κ+ 74.4076

2κT
+

1.7702κ+ 27.9029

T 2
,

H(x, T ) :=
κx

2T
+

√
x

π

[
γ +

(1.3774κ2 + 11.0190)π

κT
+

(0.4133κ+ 8.2643)π

T 2

]
+ 8.3423 + εK(x, T ).

(3.3)

We need to choose T to get the lowest possible bound for |ψK(x) − x|, thus we
choose the best T by looking for an approximate zero of

∂

∂T

(√x
π
F (T ) log ∆K +

√
x

π
G(T )nK +H(x, T )

)
above 5. Unfortunately we are not able to find T as an explicit function of x.
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Both T 7→ F (T ) and T 7→ G(T ) have a unique minimum while T 7→ H(x, T ) is
decreasing for any x > 0. The main increasing terms are

√
x

2π

[
log
(
T
2π

)
+ κ

2 + 2
κ

]2
nK

from G(T ), and
√
x
π

[
log
(
T
2π

)
+ κ

2 + 2
κ

]
log ∆K from F (T ), while the main decreasing

term is κx
2T from H(x, T ). The derivative of the sum of these three terms is zero

for T log
(
e

2
κ

+κ
2 δKT

2π

)
= κπ

√
x

2nK
, we should thus choose

T = TW :=
2π

δKe
2
κ+κ

2

e
W

(
κe

2
κ

+κ
2 δK
√
x

4nK

)

=
κπ
√
x

2nKW
(
κe

2
κ

+κ
2 δK
√
x

4nK

) .
However, for δK →∞ we have TW → 0. We thus slightly complicate the expression
we are trying to minimize: this will have the effect to give a minimum that is both
more precise and above 5. The expressions contain the parameter κ, which has to
be fixed. To find a good value for κ, we computed the asymptotic expansion of
the result with optimal T and κ unevaluated but independent of x. This is

√
x

2π

( log2 x

4
− log x log log x+

(
log δK + log

(κe 2
κ+κ

2

2πnK

)
+ 1
)

log x+ o(log x)
)
nK,

so that the best value for κ is the one minimizing κe
2
κ+κ

2 , i.e.
√

5 − 1. Thus, to
ease a little bit the computations, we set κ =

√
5− 1 right now, and we retain the

symbol κ only in those terms which will contribute to the main part of the result.
Notice that 2

κ + κ
2 =
√

5 and 2
κ −

κ
2 = 1 and that (3.2) and (3.3) give

F (T ) 6 log
( T

2π

)
+

2

κ
+
κ

2
+

7.0604

T
+

5.0593

T 2
+ 3.9792,

G(T ) 6
1

2

(
log
( T

2π

)
+

2

κ
+
κ

2

)2

+
(7.0604

T
+

5.0593

T 2

)
log
( T

2π

)
− 2.9969 +

37.1145

T
+

30.0910

T 2
,

H(x, T ) 6
κx

2T
+

√
x

π

(
25.5362 +

33.3542

T
+

27.5673

T 2

)
+ 8.3423 + εK(x, T ).

We have kept κ in all terms which will contribute to the highest order terms of the
asymptotic expansion in x, in order to make explicit the role of this parameter on
the final quality of the result.
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Since εK is small with respect to most other parameters and not differentiable,
we remove it from the optimization process. Let then

E0(x, T ) := F (T ) log δK +G(T ) +
π

nK
√
x

(H(x, T )− εK(x, T ))

6
(

log
( T

2π

)
+

2

κ
+
κ

2
+

7.0604

T
+

5.0593

T 2
+ 3.9792

)
log δK

+
1

2

(
log
( T

2π

)
+

2

κ
+
κ

2

)2

+
(7.0604

T
+

5.0593

T 2

)
log
( T

2π

)
− 2.9969 +

37.1145

T
+

30.0910

T 2
+
κπ
√
x

2nKT

+
1

nK

(
25.5362 +

33.3542

T
+

27.5673

T 2

)
+

8.3423π

nK
√
x

6
1

2

(
log
( T

2π

)
+

2

κ
+
κ

2
+ log δK

)2

− 1

2
log2 δK

+
(7.0604

T
+

5.0594

T 2

)(
log
( T

2π

)
+

2

κ
+
κ

2
+ log δK

)
+
κπ
√
x

2nKT
+

21.3270

T
+

18.7781

T 2
+

1

nK

(33.3542

T
+

27.5673

T 2

)
+ 3.9792 log δK − 2.9969 +

25.5362

nK
+

8.3423π

nK
√
x

=: E(x, T ). (3.4)

It is obvious that limT→∞E(x, T ) =∞. We have

∂E(x, T )

∂T
=
( 1

T
− 7.0604

T 2
− 10.1186

T 3

)(
log
( T

2π

)
+

2

κ
+
κ

2
+ log δK

)
−
[14.2666

T 2
+

32.4969

T 3
+

1

nK

(33.3542

T 2
+

55.1346

T 3

)
+
κπ
√
x

2nKT 2

]
.

Let TF = 8.282137 . . . be the positive root of T 2 − 7.0604T − 10.1186 (which is
where the estimate of F reaches its minimum). We obviously have

∂E(x, T )

∂T
|T=TF < 0 and

∂E(x, T )

∂T
= 0

when(
T − 7.0604− 10.1186

T

)(
log
( T

2π

)
+

2

κ
+
κ

2
+ log δK

)
=
κπ
√
x

2nK
+ 14.2666 +

32.4969

T
+

1

nK

(
33.3542 +

55.1346

T

)
. (3.5)
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The left hand side of this equation is increasing for T > TF and maps [TF ,+∞)
onto [0,+∞) while the right hand side is decreasing for T > 0 thus the equation
has a single solution for T > TF . Thus for given K and x, E(x, T ) has a single local
minimum for some T > TF and this minimum is reached for the unique T > TF
satisfying (3.5). The solutions (in T ) of (3.5) can unfortunately not be expressed
with standard analytic functions. We thus slightly modify (3.5) to have a solution
with a nice expression in terms of the Lambert-W function. We will discuss in
Remark 1 below the effect of the change we made to the equation.
Suppose we have found a T0 satisfying(
T0−7.0604− 10.1186

T0

)(
log
(T0

2π

)
+

2

κ
+
κ

2
+log δK

)
=
κπ
√
x

2nK
+21.3270+

33.5251

nK
.

(3.6)
Denote

w := log
(T0

2π

)
+

2

κ
+
κ

2
+ log δK

so that

κπ
√
x

2T0nK
+

21.3270

T0
+

33.3542

T0nK
=
(

1− 7.0604

T0
− 10.1186

T 2
0

)
w.

Then

E(x, T0) =
1

2
w2 + w − 1

2
log2 δK +

18.7781 + 27.5673
nK

− 5.0593w

T 2
0

(3.7)

+ 3.9792 log δK − 2.9969 +
25.5362

nK
+

8.3423π

nK
√
x

and so, according to Lemma 3.1, see below, it is

6
1

2
(w + 1)2 − 1

2
log2 δK + 3.9792 log δK − 3.4969 +

25.5362

nK
+

8.8590π

nK
√
x

=
1

2

(
log
(
δKe

2
κ+κ

2
T0

2π

)
+ 1
)2

− 1

2
log2 δK (3.8)

+ 3.9792 log δK − 3.4969 +
25.5362

nK
+

8.8590π

nK
√
x
.

To have an upper-bound for E(x, T0), we can substitute T0 in (3.8) by anything
greater than T0. We define TW and redefine w by

a :=
κπ
√
x

2nK
+ 21.3270 +

33.3542

nK
,

w := W
(e 2

κ+κ
2

2π
δKa
)
,

TW :=
2πew

δKe
2
κ+κ

2

=
a

w
,
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which means that TW is the solution of the equation

T
(

log
( T

2π

)
+

2

κ
+
κ

2
+ log δK

)
=
κπ
√
x

2nK
+ 21.3270 +

33.3542

nK
. (3.9)

Recalling the constant TF defined above, TF + TW is larger than T0. Indeed, if
we replace T0 by TF + TW in (3.6), the first factor is bigger than TW while the
second is bigger than the one in (3.9) so that the left hand side of (3.6) is bigger
than its right hand side; since the left hand side is increasing this proves that
TF + TW > T0. We now replace T0 by TF + TW in (3.8) obtaining

E0(x, T0) 6
1

2

(
log
(
δKe

2
κ+κ

2
TW + TF

2π

)
+ 1
)2

+ 3.9792 log δK

− 3.4969 +
25.5362

nK
+

8.8590π

nK
√
x

6
1

2
log2

(
ew+1 + 33.5251δK

)
+ 3.9792 log δK

− 3.4969 +
25.5362

nK
+

8.8590π

nK
√
x

which is exactly the first claim in Theorem 1.1.
We now proceed for the second inequality (1.2). We fix a value for T , postpon-

ing to Remark 2 the reason for this choice. The minimal value for F is reached
when (κ, T ) ' (2.141, 7.2773) and the actual value is 6 2.2367π. We make a
slightly different choice, which is κ = 2 and T = 10, which increases slightly the
coefficient of

√
x log ∆K but decreases the coefficient of

√
xnK and x, and makes

the formula slightly nicer. We then have

F (T ) 6 2.2543π

G(T ) 6 0.9722π

which gives

|ψK(x)− x| 6 (2.2543
√
x+ 1.0155) log ∆K + (0.9722

√
x− 2.1042)nK

+
x

10
+ 9.0458

√
x+ 7.0320 + εK(x, 10)

proving the second claim in Theorem 1.1.

Remark 1. We discuss some choices we made for the first bound. Let us call
Tmin the zero of (3.5) above TF . When we define T0 from (3.6) we obviously have
T0 6= Tmin. However the difference between the functions appearing on the right
hand side of (3.6) and (3.5) is

7.0604− 32.4969

T
− 55.1346

nKT
.

This means that, to obtain Tmin, we should remove from the right hand side of
the equation defining T0 a quantity that is asymptotic to 7.0604. Hence, to the
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first order for x → +∞, T0 − Tmin ∼ 7.0604
log T0

. Thus log T0 − log Tmin ∼ 7.0604
T0 log T0

,
and 1

2 log2 T0 − 1
2 log2 Tmin ∼ 7.0604

T0
. This difference produces a term of order

nK
√
x

T0
� n2

K log x which is already much smaller than the main terms of the upper
bound. On the other hand, when we substitute

κπ
√
x

2nKTmin
+ 21.3270 +

33.3542

nK

in (3.4) to obtain the equivalent of (3.7), a term 7.0604
Tmin

∼ 7.0604
T0

would remain.
This term cancels out the previous one, so that the final effect of the replacement
of Tmin by T0 is even smaller than n2

K log x.
The situation where δK → +∞ with x and nK fixed is slightly different. In this

case Tmin and T0 both tend to TF so that the result is changed by a term of the
order of 1

log δK
. However (1.1) is not very good anyway because in several steps we

dropped terms in − 1
T 2 , including a term in − w

T 2 , which now do not tend to 0.

Remark 2. One should keep in mind that (1.2) is thought for fixed x and diverging
δK. To prove it, we chose T = 10. We could have used a technique similar to the
one we used for (1.1) optimizing T in terms of δK. However this is not worth it,
because we would obtain a bound which differs from (1.2) by (−c1 + o(1))

√
x

log δK
.

Meanwhile, all the approximations and choices we made affect the coefficient of√
x log δK in (1.2), thus to improve the bound it is more efficient, for instance,

to increase the minimal value above which Theorem 2.5 is valid or to refine the
bounds in Lemma 2.3.

Lemma 3.1. In the settings of the proof of Theorem 1.1,

R :=
18.7781 + 27.5673

nK
− 5.0593w

T 2
0

6
0.5167π

nK
√
x
.

Proof. Letting L := 2
κ + κ

2 + log δK and S := κπ
√
x

2nK
+ 21.3270 + 33.3542

nK
, we

rewrite (3.6) as
f(T0, L) = S.

Using the implicit function theorem, it is then easy to see that

∂w

∂L
=

(
T0 + 10.1186

T0

)(
log
(
T0

2π

)
+ L

)(
T0 + 10.1186

T0

)(
log
(
T0

2π

)
+ L

)
+
(
T0 − 7.0604− 10.1186

T0

) > 0

and that ∂T0

∂x > 0 and thus w is increasing with both L and x. It is thus obvious
that R is decreasing with x. We now prove that, if nK > 2 and x is fixed, the
maximum value of R is obtained for the minimal discriminant. Indeed we observe
that ∂R

∂L is

2
(
T0 − 7.0604− 10.1186

T0

)(
18.7781 + 27.5673

nK

)
− 5.0593w(3T0 − 2 · 7.0604− 10.1186

T0
)

T 2
0

((
T0 + 10.1186

T0

)(
log
(
T0

2π

)
+ L

)
+
(
T0 − 7.0604− 10.1186

T0

))
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which is negative if

log δK >
2
(
T0 − 7.0604− 10.1186

T0

)(
18.7781 + 27.5673

nK

)
5.0593

(
3T0 − 2 · 7.0604− 10.1186

T0

) − log
(T0

2π

)
−
√

5.

This is true because as a function of T0 the right hand side has a maximum value
equal to 0.1366 . . . (attained for nK = 2 and T0 ≈ 21.2153) while log δK > 1

2 log 3.
For each degree, we thus just need to bound R for the field with minimal absolute
discriminant. For the first few nK we determine the lowest possible value for ∆K
using the “megrez” number field tables [5] and for nK > 8 we use Odlyzko’s Table 3
in [4].

For any increasing sequence (xn) let cn :=
nK
√
xn+1

π R(xn). Since R is decreasing
in x and (xn) is increasing, if cmax := max cn, we have

∀x, R(x) 6
cmaxπ

nK
√
x
.

We use the sequence (xn) defined as follows:

x1 := 3, xn+1 := xn +


1 if xn ∈ [3, 5000)

10 if xn ∈ [5000, 104)

100 if xn ∈ [104, 105)

xn otherwise.

The table below shows the values of cmax for each degree, the point xnmax
where

it is reached and the total number of points we compute (we stop as soon as
R(xn) < 0). For nK > 9, we used the general formula for nK = 9 with S = 21.3270
and T0 = TF , which ensures that the result is valid for all nK > 9.

nK cmax xnmax
npoints

1 0.2110 2810 6411
2 0.4644 4350 6402
3 0.5167 3986 6398
4 0.4443 2927 5809
5 0.1325 694 4177
6 0.0144 63 280
7 < 0 3 1
8 < 0 3 1

> 9 < 0 3 1 �
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