SYMMETRIC q-BERNOULLI NUMBERS AND POLYNOMIALS

Hédi Elmonser

Abstract

In this work we are interested by giving a new q-analogue of Bernoulli numbers and polynomials which are symmetric under the interchange $q \leftrightarrow q^{-1}$ and deduce some important relations of them. Also, we deduce a q-analogue of the Euler-Maclaurin formulas

Keywords: q-Bernoulli, symmetric.

1. Introduction

In literature, q-analogue of some special functions like a q-exponential, q-Gamma, q -Betta and q -Bessel functions have been studied intensively for $0<q<1$.

In ([4]), G.Dattoli and A.Torre introduced a q-Bessel functions of index which are symmetric under the interchange $q \leftrightarrow q^{-1}$. The authors use a generating function obtained owing a product of symmetric q-exponential functions ([16], [17]).

Recently, Kamel Brahim and Yosr Sidomou ([2]) introduced a symmetric q -Gamma and q -Betta functions and extended the symmetric q -Bessel function of real index.

In the present paper, we introduce a symmetric q-Bernoulli polynomials and q-Bernoulli numbers and give some applications.

This paper is organized as follows: In Section 2, we present some results about quantum calculus and symmetric quantum calculus that will be useful in the sequel. In Section 3, we study the symmetric q-exponential function. In Section 4 and 5 , we introduce and study symmetric q-Bernoulli polynomials and symmetric q-Bernoulli numbers. As an application we introduce in Section 6 a q-analogue of Euler-MacLaurin formulas.

2. Symmetric quantum calculus

We recall some usual notions and notations used in the q-theory (see [5] and [8]). Throughout this paper, we assume $q>0, q \neq 1$.

For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), \quad n=1,2, \ldots
$$

We denote

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad x \in \mathbb{C}
$$

and

$$
\widetilde{[x]_{q}}=\frac{q^{x}-q^{-x}}{q-q^{-1}}, \quad x \in \mathbb{C} .
$$

We also denote

$$
[n]_{q}!=\prod_{k=1}^{n}[k]_{q}=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N},
$$

and

$$
\widetilde{[n]_{q}}!=\prod_{k=1}^{n} \widetilde{[k]_{q}}, \quad n \in \mathbb{N}
$$

The q-binomial coefficient is defined by

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad k=0,1, \ldots, n
$$

Similarly we can define the symmetric q-binomial coefficient by

$$
\widetilde{\binom{n}{k}_{q}}=\frac{\widetilde{[n]_{q}}!}{\widetilde{[k]_{q}![n-k]_{q}}!}, \quad k=0,1, \ldots, n
$$

One can see that

1) $\widetilde{[x]_{q}}=\widetilde{[x]_{q^{-1}}}$.
2) $\widetilde{[x+y]}_{q}=q^{y} \widetilde{[x]}_{q}+q^{-x} \widetilde{[y]}_{q}$.
3) $\widetilde{\binom{n}{k}_{q}}=\widetilde{\binom{n}{k}_{\frac{1}{q}}}$.
4) $\widetilde{[x]}_{q}=q^{-(x-1)}[x]_{q^{2}}$.

The symmetric q-derivative \widetilde{D}_{q} of a function f is given by

$$
\left(\widetilde{D}_{q} f\right)(x)=\frac{f(q x)-f\left(q^{-1} x\right)}{\left(q-q^{-1}\right) x}, \quad \text { if } \quad x \neq 0
$$

$\left(\widetilde{D}_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.

We have the following relation

$$
\widetilde{D}_{q} f(x)=D_{q^{2}} f\left(q^{-1} x\right)
$$

where

$$
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x} .
$$

The following properties hold ([8])

1) $\widetilde{D}_{q}(f(x)+g(x))=\widetilde{D}_{q} f(x)+\widetilde{D}_{q} g(x)$,
2) $\widetilde{D}_{q}(f(x) g(x))=g\left(q^{-1} x\right) \widetilde{D}_{q} f(x)+f(q x) \widetilde{D}_{q} g(x)$,
3) $\widetilde{D}_{q} x^{n}=\widetilde{[n]}{ }_{q} x^{n-1}$,
4) $\widetilde{D}_{q}\left(\widetilde{x-a)_{q}}{ }_{q}^{n}=\widetilde{[n]}_{q}{\widetilde{(x-a)_{q}}}^{n-1}\right.$, where $\widetilde{(x-a)_{q}^{n}}=\left(x-q^{n-1} a\right)\left(x-q^{n-3} a\right)(x-$ $\left.q^{n-5} a\right) \ldots\left(x-q^{-n+1} a\right)$ and $\widetilde{(x-a)_{q}}{ }^{0}=1$.
In the particular case $a=0$, we have $\widetilde{(x-0)_{q}}=\widetilde{(x)_{q}}=x^{n}$.
The following result is a q-analogue of the Gauss binomial formula

$$
\begin{equation*}
\widetilde{(x+a)_{q}}{ }^{n}=\sum_{k=0}^{n} \widetilde{\binom{n}{k}_{q}} a^{n-k} x^{k} \tag{1}
\end{equation*}
$$

Provided that the series converges, the symmetric q-integral or \widetilde{q}-integral is given by ([8])

$$
\begin{aligned}
& \int_{0}^{a} f(x) d_{\widetilde{q}} x=a\left(q^{-1}-q\right) \sum_{n=1,3, \ldots} q^{n} f\left(q^{n} a\right), \\
& \int_{a}^{b} f(x) d_{\widetilde{q}} x=\int_{0}^{b} f(x) d_{\widetilde{q}} x-\int_{0}^{a} f(x) d_{\widetilde{q}} x
\end{aligned}
$$

and

$$
\int_{0}^{\infty} f(x) d \widetilde{q} x=\left(q^{-1}-q\right) \sum_{n= \pm 1, \pm 3, \ldots} q^{n} f\left(q^{n} a\right)
$$

The \widetilde{q}-integral satisfy the following properties

Lemma 1.

a) If F is any anti q-derivative of the function f, namely $\widetilde{D}_{q} F=f$, continuous at $x=0$, then

$$
\int_{0}^{a} f(x) d \widetilde{q} x=F(a)-F(0) .
$$

b) For any function f we have

$$
\widetilde{D}_{q} \int_{0}^{x} f(t) d_{\widetilde{q}} t=f(x)
$$

c) We have

$$
\int_{a}^{b} f\left(q^{-1} x\right) \widetilde{D}_{q} f g(x) d_{\widetilde{q}} x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(q x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x .
$$

Proof. 1) We have

$$
\begin{aligned}
\int_{0}^{a} f(x) d_{\widetilde{q}} x & =a\left(q^{-1}-q\right) \sum_{n=1,3, \ldots} q^{n} \widetilde{D}_{q} F\left(q^{n} a\right) \\
& =-\sum_{n=1,3, \ldots}\left[F\left(q^{n+1} a\right)-F\left(q^{n-1} a\right)\right]=F(a)-F(0) .
\end{aligned}
$$

2) We have

$$
\begin{aligned}
\widetilde{D}_{q} \int_{0}^{x} f(t) d_{\widetilde{q}} t & =\frac{1}{\left(q-q^{-1}\right) x}\left[\int_{0}^{q x} f(t) d_{\widetilde{q}} t-\int_{0}^{q^{-1} x} f(t) d_{\widetilde{q}} t\right] \\
& =-\left(\sum_{n=1,3, \ldots} q^{n+1} f\left(q^{n+1} x\right)-\sum_{n=1,3, \ldots} q^{n-1} f\left(q^{n-1} x\right)\right)=f(x)
\end{aligned}
$$

3) From the symmetric q-product derivative rule.

3. Symmetric q-exponential function

The classical exponential function e^{z} has two different natural q-extensions ([13]) one of them denoted by $e_{q}(z)$ and given by

$$
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

where $z \in \mathbb{C},|z|<1$ and $0<q<1$.
The function $e_{q}(z)$ can be considered as formal power series in the formal variable z and satisfies the relation $\lim _{q \rightarrow 1} e_{q}((1-q) z)=e^{z}$.

Let $C_{q}[[x, y]]$ be the complex associative algebra with 1 of formal power series

$$
\sum_{k, l=0}^{\infty} c_{k, l} y^{l} x^{k}
$$

with arbitrary complex coefficients $c_{k, l}$ and where x, y satisfy the relation $x y=q y x$.
In the algebra $C_{q}[[x, y]]$, the function $e_{q}(z)$ satisfy the following relation ([14])

$$
e_{q}(x+y)=e_{q}(y) e_{q}(x) .
$$

A symmetric q-exponential (symmetric under the interchange $q \leftrightarrow q^{-1}$) is defined by D. S. McAnally in ([16],[17]):

$$
\widetilde{e}_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!},
$$

for $z \in \mathbb{C}$ and $q \in] 0,1[\cup] 1,+\infty[$.

The function $\widetilde{e}_{q}(z)$ can be considered as formal power series in the formal variable z and satisfies the relation $\lim _{q \rightarrow 1} \widetilde{e}_{q}(z)=e^{z}$.

The function $\widetilde{e}_{q}(z)$ can be extended in the following way:

$$
\widetilde{e}_{q}(x+y)=\sum_{n=0}^{\infty} \frac{{\widetilde{(x+y)_{q}}}^{n}}{\widetilde{[n]_{q}!}},
$$

in the particular case when $\mathrm{y}=0$, we have

$$
\widetilde{e}_{q}(x+0)=\sum_{n=0}^{\infty} \frac{\widetilde{(x)_{q}^{n}}}{\widetilde{[n]_{q}}!}=\sum_{n=0}^{\infty} \frac{x^{n}}{\widetilde{[n]_{q}}!}=\tilde{e}_{q}(x) .
$$

Using (1), we have the following lemma
Lemma 2. In the commutative algebra $C[[x, y]]$ we have the identity

$$
\widetilde{e}_{q}(x+y)=\widetilde{e}_{q}(y) \widetilde{e}_{q}(x) .
$$

Proof. We have

$$
\begin{aligned}
& \widetilde{e}_{q}(x+y)=\sum_{n=0}^{\infty} \frac{\widetilde{(x+y)}_{q}^{n}}{\widetilde{[n]_{q}!}} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{\widetilde{[n]_{q}!}} \widetilde{\binom{n}{k}_{q}} y^{n-k} x^{k} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{\widetilde{[k]}]_{q}![\sqrt{n-k}]_{q}!} y^{n-k} x^{k} \\
& =\sum_{k, l=0}^{\infty} \frac{1}{[\widetilde{l}]_{q}![\widetilde{k}]_{q}!} y^{l} x^{k}=\widetilde{e}_{q}(y) \widetilde{e}_{q}(x) .
\end{aligned}
$$

4. Symmetric q-Bernoulli polynomials

The classical Bernoulli polynomials $B_{n}(x)$ are defined by the generating function

$$
\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!}=\frac{z}{e^{z}-1} e^{z x}
$$

The Bernoulli numbers are defined through the relation $B_{n}=B_{n}(0)$.
The q-Bernoulli polynomials $B_{n}(x, h \mid q)([3],[10])$ are defined by q-generating function

$$
e^{\frac{t}{1-q}} \sum_{j=0}^{\infty} \frac{j+h}{[j+h]_{q}} q^{j x}(-1)^{j} \frac{1}{(1-q)^{j}} \frac{t^{j}}{j!}=\sum_{n=0}^{\infty} \frac{B_{n}(x, h \mid q)}{n!} t^{n}, \quad h \in \mathbb{Z}, x \in \mathbb{C} .
$$

Note that

$$
\lim _{q \rightarrow 1} B_{n}(x, h \mid q)=B_{n}(x)
$$

The q-Bernoulli numbers are defined through the relation $B_{n}(h \mid q)=B_{n}(0, h \mid q)$.
In ([6]) the authors gave another approach to study the q-Bernoulli polynomials. They defined the q-Bernoulli polynomials $B_{n}(x, q)$ by q -generating function

$$
\sum_{n=0}^{\infty} B_{n}(x, q) \frac{z^{n}}{[n]_{q}!}=\frac{z}{e^{z}-1} e_{q}((1-q) z x)
$$

They proved that

$$
B_{n}(x, q)=\sum_{k=0}^{n}\binom{n}{k}_{q} b_{k}(q) x^{n-k}
$$

where $b_{n}(q)=\frac{b_{n}}{n!}[n]_{q}$! is a q-analogue of the Bernoulli numbers.
In this paper we use the same approach in ([6]) to define and study a q-analogue of Bernoulli polynomials which is symmetric under the interchange $q \leftrightarrow q^{-1}$.

Let $\widehat{B}(t)$ be the generating function of the classical Bernoulli numbers ([15])

$$
\widehat{B}(t)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}=\frac{z}{e^{z}-1} .
$$

Then we get

$$
\widehat{B}\left(\frac{\partial}{\partial x}\right) x^{k}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(\frac{\partial}{\partial x}\right)^{n} x^{k}=\sum_{n=0}^{k}\binom{k}{n} B_{n} x^{k-n} .
$$

Also, on exponent

$$
\widehat{B}\left(\frac{\partial}{\partial x}\right) e^{t x}=\widehat{B}(t) e^{t x}=B(x, t)
$$

Now we will define a q-analogue of the generating function $\widehat{B}(t)$ as

$$
\widetilde{B}_{q}(t)=\sum_{n=0}^{\infty} \frac{\widetilde{b}_{n}(q)}{\widetilde{[n]_{q}}!} t^{n}
$$

where $\widetilde{b}_{n}(\underset{\sim}{q})$ is a q-analogue of the Bernoulli numbers. By using the q -difference operator \widetilde{D}_{q} we get

$$
\widetilde{B}_{q}\left(\widetilde{D}_{q}\right) x^{k}=\sum_{n=0}^{\infty} \frac{\widetilde{b}_{n}(q)}{\widetilde{[n]_{q}}!} \widetilde{D}_{q}^{n} x^{k}=\sum_{n=0}^{k} \frac{\widetilde{b}_{n}(q)}{\widetilde{[n]_{q}}!} \frac{\widetilde{[k]_{q}}!}{\left[\widetilde{[k-n]_{q}}!\right.} x^{k-n}=\sum_{n=0}^{k} \widetilde{\binom{k}{n}_{q}} \widetilde{b}_{n}(q) x^{k-n}
$$

This procedure will suggest the following q-analogue of Bernoulli polynomials

$$
\widetilde{B}_{k}(x, q)=\sum_{n=0}^{k} \widetilde{\binom{k}{n}_{q}} \widetilde{b}_{n}(q) x^{k-n}
$$

Also,

$$
\begin{aligned}
\widetilde{B}_{q}\left(\widetilde{D}_{q}\right) \widetilde{e}_{q}(x t) & =\sum_{n=0}^{\infty} \frac{\widetilde{b}_{n}(q)}{\widetilde{[n]}!} \widetilde{D}_{q}^{n}\left(\sum_{k=0}^{\infty} \frac{x^{k}}{\widetilde{[k]}]^{k}} t^{k}\right)=\sum_{k=0}^{\infty} \frac{t^{k}}{\widetilde{[k]}!} \sum_{n=0}^{\infty} \frac{\widetilde{b}_{n}(q)}{\widetilde{[n]}]_{q}!} \widetilde{D}_{q}^{n} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{t^{k}}{\widetilde{[k}]_{q}!} \widetilde{B}_{k}(x, q)=B(x, t, q) .
\end{aligned}
$$

Using these notations we can define the symmetric q-Bernoulli polynomials
Definition 1. The symmetric q-Bernoulli polynomials $\widetilde{B}_{n}(x, q)$ are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{B}_{n}(x, q) \frac{z^{n}}{[n]_{q}!}=\frac{z}{e^{z}-1} \widetilde{e}_{q}(z x) \tag{2}
\end{equation*}
$$

where $\lim _{q \rightarrow 1} \widetilde{B}_{n}(x, q)=B_{n}(x), B_{n}(x)$ are the ordinary Bernoulli polynomials.

Proposition 1.

$$
\widetilde{D}_{q} \widetilde{B}_{n}(x, q)=\widetilde{[n]}_{q} \widetilde{B}_{n-1}(x, q) .
$$

Proof.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \widetilde{D}_{q} \widetilde{B}_{n}(x, q) \frac{z^{n}}{[n]_{q}!} & =\frac{z^{2}}{e^{z}-1} \widetilde{e}_{q}(z x)=\sum_{n=0}^{\infty} \widetilde{B}_{n}(x, q) \frac{z^{n+1}}{[n]_{q}!} \\
& =\sum_{n=1}^{\infty} \widetilde{B}_{n-1}(x, q) \frac{z^{n}}{[n-1]_{q}!}=\sum_{n=1}^{\infty} \widetilde{[n]_{q}} \widetilde{B}_{n-1}(x, q) \frac{z^{n}}{\left[\widetilde{[n]_{q}!}\right.}
\end{aligned}
$$

Proposition 2. In the commutative algebra $C[[x, y]]$ we have the identity

$$
\begin{equation*}
\widetilde{B}_{n}(x+y, q)=\sum_{k=0}^{n} \widetilde{\binom{n}{k}_{q}} y^{n-k} \widetilde{B}_{k}(x, q) . \tag{3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widetilde{B}_{n}(x+y, q) \frac{z^{n}}{[n]_{q}!} & =\frac{z}{e^{z}-1} \widetilde{e}_{q}(z(x+y))=\frac{z}{e^{z}-1} \widetilde{e}_{q}(z y) \widetilde{e}_{q}(z x) \\
& =\widetilde{e}_{q}(z y)\left(\frac{z}{e^{z}-1} \widetilde{e}_{q}(z x)\right)=\widetilde{e}_{q}(z y) \sum_{n=0}^{\infty} \widetilde{B}_{n}(x, q) \frac{z^{n}}{[n]_{q}!}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} \widetilde{\binom{n}{k}_{q}} y^{n-k} \widetilde{B}_{k}(x, q) \frac{z^{n}}{\widetilde{[n]_{q}!}} & =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{y^{n-k} \widetilde{B}_{k}(x, q)}{\widetilde{[k]_{q}}![n-k]_{q}!} z^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(z y)^{n-k} \widetilde{B}_{k}(x, q)}{\widetilde{[k]}!\left[\widetilde{[n-k]_{q}!} z^{k}\right.} \\
& =\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(z y)^{l} \widetilde{B}_{k}(x, q)}{\widetilde{[l]}]_{q}!} \frac{\widetilde{[k]}]_{q}!}{} z^{k} \\
& =\widetilde{e}_{q}(z y) \sum_{n=0}^{\infty} \widetilde{B}_{n}(x, q) \frac{z^{n}}{[n]} .
\end{aligned}
$$

Which achieves the proof.
The relation (3) is a q-analogue of the classical relation

$$
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} y^{n-k} B_{k}(x)
$$

where $B_{n}(x)$ are ordinary Bernoulli polynomials([1]).

5. Symmetric q-Bernoulli numbers

Definition 2. For $n \geqslant 0, \widetilde{b}_{n}(q)=\widetilde{B}_{n}(0, q)$ are called symmetric q-Bernoulli numbers.

We have the following result
Lemma 3. We have

$$
\begin{equation*}
\widetilde{b}_{n}(q)=\frac{b_{n}}{n!} \widetilde{[n]}{ }_{q}!. \tag{4}
\end{equation*}
$$

where $\lim _{q \rightarrow 1} \widetilde{b}_{n}(q)=b_{n}, b_{n}$ are the ordinary Bernoulli numbers.
Proof. Putting $x=0$ in equation (2), we get

$$
\sum_{n=0}^{\infty} \widetilde{b}_{n} \frac{z^{n}}{\widetilde{[n]_{q}!}}=\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} b_{n} \frac{z^{n}}{n!}
$$

Then

$$
\widetilde{b}_{n}(q)=\frac{b_{n}}{n!} \widetilde{[n]_{q}}!.
$$

Also,

$$
\left.\lim _{q \rightarrow 1} \widetilde{b}_{n}(q)=\lim _{q \rightarrow 1} \frac{b_{n}}{n!} \widetilde{n!}\right]_{q}!=b_{n}
$$

The knowledge of the Bernoulli numbers and the lemma (4) allows us to determinate the symmetric q-Bernoulli numbers. The first five of them are:

$$
\widetilde{b}_{0}=1, \quad \widetilde{b}_{1}=-\frac{1}{2}, \quad \widetilde{b}_{2}=\frac{\widetilde{[2]}_{q}}{12}, \quad \widetilde{b}_{3}=0, \quad \widetilde{b}_{4}=\frac{\widetilde{[2]}_{q}\left[\widetilde{3]_{q}} \widetilde{[4]}_{q}\right.}{720}
$$

Using the properties of the ordinary Bernoulli numbers b_{n} ([8]), we can prove that

- $\widetilde{b}_{n}(q)=0 \forall n$ odd and $n \geqslant 3$,
- $\sum_{j=0}^{n-1}{ }^{n} P_{j} \frac{\widetilde{b}_{j}(q)}{[j]_{q}!}=0$,
- $\sum_{j=1}^{n-1}(-1)^{j \quad n} P_{j} \frac{\widetilde{b}_{j+1}(q)}{[j+1]_{q}!}=\frac{1-n}{2(1+n)}$.

Proposition 3. For any $n \geqslant 1$

$$
\sum_{j=0}^{n-1}{ }^{n} P_{j} \frac{\widetilde{B}_{j}(x, q)}{\widetilde{[J]_{q}!}}=\frac{n!}{[\widetilde{[n-1}]_{q}!} x^{n-1}
$$

Proof. The case where $n=1$ is obvious. If we assume that the relation is true for some $k \geqslant 1$, we have

$$
\begin{aligned}
\widetilde{D}_{q}\left(\sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{\widetilde{B}_{j}(x, q)}{\widetilde{[j}]_{q}!}\right) & =\sum_{j=0}^{k}{ }^{k+1} P_{j} \widetilde{[j]_{q}} \frac{\widetilde{B}_{j-1}(x, q)}{\widetilde{[j]}]_{q}!} \\
& =(k+1) \sum_{j=0}^{k-1}{ }^{k} P_{j} \frac{\widetilde{B}_{j}(x, q)}{\widetilde{[j]}!} \\
& =(k+1) \frac{k!}{[\kappa-1]_{q}!} x^{k-1} \\
& =\frac{(k+1)!}{[\widetilde{k-1}]_{q}!} x^{k-1}=\widetilde{D}_{q}\left(\frac{(k+1)!}{\widetilde{[k]}]_{q}!} x^{k}\right) .
\end{aligned}
$$

Then

$$
\sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{\widetilde{B}_{j}(x, q)}{\widetilde{[j]}]_{q}!}=\frac{(k+1)!}{\widetilde{[k]}]_{q}!} x^{k}+c .
$$

Put $x=0$, then

$$
\sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{\widetilde{b}_{j}(q)}{[\tilde{[j}]_{q}!}=c
$$

Using the second property of $\widetilde{b}_{j}(q)$, we get $c=0$. Hence, by induction, relation is true for any positive integer.

Proposition 4.

$$
\widetilde{B}_{k}(x, q)=\sum_{k=0}^{n} \widetilde{\binom{n}{k}_{q}} \widetilde{b}_{k}(q) x^{n-k}
$$

Proof. Let

$$
F_{n}(x, q)=\sum_{k=0}^{n} \widetilde{\binom{n}{k}_{q}} \widetilde{b}_{k}(q) x^{n-k}
$$

It suffices to show that (i) $F_{n}(0, q)=\widetilde{b}_{n}(q)$ for $n \geqslant 0$ and (ii) $\widetilde{D}_{q} F_{n}(x, q)=$ $\widetilde{[n]}{ }_{q} F_{n-1}(x, q)$ for $n \geqslant 1$, since these two properties uniquely characterize $\widetilde{B}_{k}(x, q)$. The first property is obvious. As for the second property,

$$
\begin{aligned}
& \widetilde{D}_{q} F_{n}(x, q)=\sum_{k=0}^{n-1} \widetilde{\binom{n}{k}_{q}} \widetilde{b}_{k}(q) \widetilde{[n-k]} x^{n-k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\widetilde{[n]_{q}} \sum_{k=0}^{n-1} \frac{\widetilde{[n-1}]_{q}!}{\left[\widetilde{\left.n-k-1]_{q}!\widetilde{k k}\right]_{q}}!\right.} \widetilde{b}_{k}(q) x^{n-k-1} \\
& =\widetilde{[n]_{q}} \sum_{k=0}^{n-1} \widetilde{\binom{n-1}{k}_{q}} \widetilde{b}_{k}(q) x^{n-k-1}=\widetilde{[n]_{q}} F_{n-1}(x, q),
\end{aligned}
$$

and the proof follows.
The knowledge of q-Bernoulli numbers allow us to determine the q-Bernoulli polynomials. The five of them are listed below.

$$
\begin{aligned}
& \widetilde{B}_{0}(x, q)=1 \\
& \widetilde{B}_{1}(x, q)=x-\frac{1}{2!}, \\
& \widetilde{B}_{2}(x, q)=x^{2}-\frac{\widetilde{[2]_{q}}}{2!} x+\frac{\widetilde{[2]_{q}}}{2(3!)}, \\
& \widetilde{B}_{3}(x, q)=x^{3}-\frac{\widetilde{[3]_{q}}}{2!} x^{2}+\widetilde{[2]]_{q}[3]_{q}} \\
& 2(3!) \\
& \\
& \widetilde{B}_{4}(x, q)=x^{4}-\frac{\widetilde{[4]}}{2!} x^{3}+\frac{\widetilde{[3]} \widetilde{q}[4]}{2(3!)} x^{2}+\frac{\widetilde{[2]_{q}} \widetilde{\left.[3]_{q} \widetilde{4}\right]_{q}}}{30(4!)} .
\end{aligned}
$$

Lemma 4. The Symmetric q-Bernoulli polynomials have the following symmetry property

$$
(-1)^{n} \widetilde{B}_{n}(-x, q)=\widetilde{B}_{n}(x, q)+\widetilde{[n]}_{q} x^{n-1}, \quad \forall n \geqslant 1
$$

Proof. The case where $n=1$ is obvious. If we assume that the relation is true for some $k \geqslant 1$, we get

$$
\begin{aligned}
\widetilde{D}_{q}\left((-1)^{k+1} \widetilde{B}_{k+1}(-x, q)\right) & \left.=(-1)^{k} \widetilde{[k+1}\right]_{q} \widetilde{B}_{k}(-x, q) \\
& \left.=\widetilde{[k+1}]_{q} \widetilde{B}_{k}(x, q)+\widetilde{[k+1}\right]_{q} \widetilde{(k]_{q}} x^{k-1} \\
& \left.=\widetilde{D}_{q}\left(\widetilde{B}_{k+1}(x, q)+\widetilde{[k+1}\right]_{q} x^{k}\right),
\end{aligned}
$$

then

$$
\left.(-1)^{k+1} \widetilde{B}_{k+1}(-x, q)=\widetilde{B}_{k+1}(x, q)+\widetilde{[k+1}\right]_{q} x^{k}+c
$$

Put $x=0$, then

$$
\left((-1)^{k+1}-1\right) \widetilde{b}_{k+1}(q)=c
$$

but $\left((-1)^{k+1}-1\right)=0$ if k is an odd number and $\widetilde{b}_{k+1}(q)=0$ if k is an even number. Then $c=0$ and hence, by induction, the relation is true $\forall n \geqslant 1$.

Lemma 5.

$$
\int_{a}^{x} \widetilde{B}_{n}(t, q) d_{\widetilde{q}} t=\frac{\widetilde{B}_{n+1}(x, q)-\widetilde{B}_{n+1}(a, q)}{\left[\widetilde{n+1]_{q}}\right.}
$$

Proof. By using $\widetilde{D}_{q} \widetilde{B}_{n}(t, q)=\widetilde{[n]} \widetilde{B}_{n-1}(t, q)$, then we get

$$
\begin{aligned}
\int_{a}^{x} \widetilde{B}_{n}(t, q) d_{\widetilde{q}} t & =\frac{1}{[n+1]_{q}} \int_{a}^{x} \widetilde{B}_{n+1}(t, q) d_{\widetilde{q}} t \\
& =\left.\frac{1}{\left[\widetilde{[n+1]_{q}}\right.} \widetilde{B}_{n+1}(t, q)\right|_{a} ^{x}=\frac{\widetilde{B}_{n+1}(x, q)-\widetilde{B}_{n+1}(a, q)}{\widetilde{[n+1}]_{q}}
\end{aligned}
$$

6. A symmetric q-Euler Maclaurin formulas

Let the function $P(x)=\widetilde{B}_{1}(x-[x], q)$, in which $[x]$ means the greatest integer $\leqslant x$. The function $P(x)$ is periodic $P(x+1)=P(x)$. Also,

$$
\int_{0}^{1} P(x) d_{\widetilde{q}} t=\int_{t}^{t+1} P(x) d_{\widetilde{q}} t, \quad \forall t \geqslant 0
$$

We employed $P(x)$ in obtaining a symmetric q-analogue of the Euler-Maclaurin formulas ([18]).

Theorem 1.

$$
\sum_{k=0}^{n} f(k)=\frac{f(n)+f(0)}{2}+\int_{0}^{n} f\left(q^{-1} x\right) d_{\widetilde{q}} x+\int_{0}^{n} P(q x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x
$$

where $f(x)$ is differentiable.

Proof. First we write

$$
\int_{0}^{n} P(x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x=\sum_{k=1}^{n} \int_{k-1}^{k} P(x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x .
$$

Now

$$
\int_{k-1}^{k} P(x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x=\int_{k-1}^{k}\left(x-k+\frac{1}{2}\right) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x
$$

and we integrate by parts to obtain

$$
\int_{k-1}^{k} P(q x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x=\left.\left(x-k+\frac{1}{2}\right) f(x)\right|_{k-1} ^{k}-\int_{k-1}^{k} f\left(q^{-1} x\right) \widetilde{D}_{q} P(x) d_{\widetilde{q}} x
$$

then

$$
\begin{aligned}
\int_{k-1}^{k} P(q x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x & =\frac{f(k)+f(k-1)}{2}-\int_{k-1}^{k} f\left(q^{-1} x\right) d_{\widetilde{q}} x \\
\int_{0}^{n} P(q x) \widetilde{D}_{q} f(x) d_{\widetilde{q}} x & =\sum_{k=0}^{n} f(k)-\frac{f(n)+f(0)}{2}-\int_{0}^{n} f\left(q^{-1} x\right) d_{\widetilde{q}} x
\end{aligned}
$$

and the proof follows.

References

[1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press. Cambridge (1999).
[2] K. Brahim and Y. Sidomou, On Some Symmetric q-Special Functions, Le Mathematiche LXVIII (2013)-Fasc.II, 107-122.
[3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-100.
[4] G. Dattoli and A. Torre, Symmetric q-Bessel functions, Le Mathematiche 51 (1996), no. 1, 153-167.
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
[6] A.S. Hegazi and M. Mansour, A Note on q-Bernoulli numbers and polynomials, Journal of Nonlinear Mathematical Physics 13 (2006), no. 1, 9-18.
[7] F.H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics 41 (1910), 193-203.
[8] V.G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[9] T. Kim, Non Archimeden q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.
[10] T. Kim and S.H. Rim, Generalized Carlitz's q-Bernoulli Numbers in the p-adic number field, Adv. Stud. Contemp Math. 2 (2000), 9-19.
[11] T. Kim, L.C. Jang, S.H. Rim, and H.K. Pak, On the twisted q-Zeta functions and q-Bernoulli polynomials, Far East J. Applied Math. 13 (2003), 13-21.
[12] H.T. Koelink and T.H. Koornwinder, q-Special Functions, a Tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math. 134, Editors: M. Gerstenhaber and J. Stasheff, J. Amer. Math. Soc., Providence, (1992), 141-142.
[13] R. Koelink and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05, Technical University Delft (1994).
[14] T.H. Koornwinder, Special functions and q-commuting variables, Fields Institue Communications 14 (1997), 131-166.
[15] B.A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
[16] D.S. McAnally, q-exponential and q-gamma functions I.q-exponential functions, J. Math. Phys. 36 (1995), no. 1, 546-573.
[17] D.S. McAnally, q-exponential and q-gamma functions II.q-gamma functions, J. Math. Phys. 36 (1995), no. 1, 574-595.
[18] E.D. Rainville, Special functions, The Macmillan company, (1965).

Address: Hédi Elmonser: University of Carthage, Department of Mathematics, Institute of Applied Science and Technology, Tunisia.
E-mail: monseur2004@yahoo.fr
Received: 27 April 2016; revised: 23 August 2016

