SIMPLE ZEROS OF DEDEKIND ZETA FUNCTIONS

Stéphane R. Louboutin

Abstract

Using Stechkin's lemma we derive explicit regions of the half complex plane $\Re(s) \leqslant 1$ in which the Dedekind zeta function of a number field K has at most one complex zero, this zero being real if it exists. These regions are Stark-like regions, i.e. given by all $s=\beta+i \gamma$ with $\beta \geqslant 1-c / \log d_{K}$ and $|\gamma| \leqslant d / \log d_{K}$ for some absolute positive constants c and d. These regions are larger and our proof is simpler than recently published such regions and proofs.

Keywords: Dedekind zeta function, Siegel zero.

1. Introduction

Let $d_{K}>1$ and $\zeta_{K}(s)$ denote the absolute value of the discriminant and the Dedekind zeta function of a number field K of degree $n=r_{1}+2 r_{2}>1$, with r_{1} real places and r_{2} complex places. It is known that $\zeta_{K}(s)$ has a meromorphic continuation to the complex plane, with a single pole: a simple pole at $s=1$. It is also known that $\zeta_{K}(s)$ has no complex zero in the complex half-plane $\Re(s) \geqslant 1$. For $c>0$ and $d \geqslant 0$ we let $S(c, d)$ denote the region given by all $s=\beta+i \gamma$ with $\beta \geqslant \sigma_{c}:=1-c / \log d_{K}$ and $|\gamma| \leqslant t_{d}:=d / \log d_{K}$. In 1974, H. M. Stark proved an explicit result:

Theorem 1 ([6, Lemma 3]). A Dedekind zeta function $\zeta_{K}(s)$ has at most one zero in the region $S(1 / 4,1 / 4)$; if such a zero exists, it is real and simple.

As noted in [2, Lemma 2] Stark's Theorem 1 holds true in the region $S\left(2(\sqrt{2}-1)^{2}, 0\right)$. In fact, we will show that Stark's proof readily yields:
Theorem 2. Set $c_{1}:=2(\sqrt{2}-1)^{2}=0.34314 \cdots$ and $d_{1}:=2 \frac{1-S_{0}-S_{0}^{2}}{2+S_{0}}=0.27644 \cdots$, where $S_{0}=0.45433 \cdots$ is the only root of $S^{4}+2 S^{3}-2 S^{2}-4 S+2$ in $[0, \sqrt{2}]$. Then Theorem 1 holds true in the regions $S\left(c_{1}, 0\right)$ and $S\left(d_{1}, d_{1}\right)$.

By [3, Theorem 1.1 and Corollary 1.2], Theorem 1 holds true in the regions $S(1 / 2,1 / 2), S(1 / 12.74,1)$ and $S(1 / 1.7,1 / 4)$, for d_{K} large enough. By [1, Theorem 1], Theorem 1 holds true in the region $S(1 / 2,1 / 2)$ without any restriction
on d_{K}. By [8, Corollary 1.2], Theorem 1 holds true in (a slightly smaller region than the) the region $S(0.0875,1)$, for d_{K} large enough (notice that $1 / 12.74=$ $0.078492 \cdots<0.0875$). We use Stechkin's Lemma and our approach introduced in [5] to improve upon these results (see [4] for another recent application of Stechkin's Lemma):

Theorem 3. Set $\lambda:=1-1 / \sqrt{5}, c_{2}:=c_{1} / \lambda=0.62075 \cdots$ and $d_{2}:=d_{1} / \lambda=$ $0.50009 \cdots$, where c_{1} and d_{1} are as in Theorem 2. Then Theorem 1 holds true in the regions $S\left(c_{2}, 0\right), S\left(d_{2}, d_{2}\right)$.

Theorem 1 also holds true in the region $S(0.59110,1 / 4)$ (notice that $0.59110>$ $1 / 1.7=0.58823 \cdots)$ and for $d_{K} \geqslant 8$ in the region $S(0.10379,1)$.

We would like to mention that our proof is simpler than the ones in [1], [3] or [8]. However, our regions are Stark-like regions whereas in [3] and [8] asymptotically valid regions of not larger widths (still of the type $1-c / \log d_{K} \leqslant \beta \leqslant 1$) but of much larger heights $\left(|\gamma| \leqslant 1\right.$ instead of $\left.|\gamma| \leqslant d / \log d_{K}\right)$ are obtained.

2. Proof of Theorem 2

Let $\sigma>1$ be real. Let K be a number field of degree n. Then

$$
\begin{equation*}
0<Z_{K}(\sigma):=-\frac{\zeta_{K}^{\prime}}{\zeta_{K}}(\sigma)=\sum_{k \geqslant 2} \frac{\Lambda_{K}(k)}{k^{\sigma}} \quad(\sigma>1) \tag{1}
\end{equation*}
$$

where $\Lambda_{K}(k) \geqslant 0$ for $k \geqslant 2$, and

$$
\begin{equation*}
Z_{K}(\sigma)+\sum_{\rho} \Re\left(\frac{1}{\sigma-\rho}\right)=\frac{1}{\sigma-1}+\frac{1}{2} \log d_{K}+\frac{1}{\sigma}+h\left(r_{1}, r_{2}, \sigma\right) \tag{2}
\end{equation*}
$$

(e.g., see [6, Proof of Lemma 3]), where ρ runs over the complex zeros of $\zeta_{K}(s)$ such that $0<\Re(\rho)<1$ (counted with their multiplicities) and where

$$
\begin{equation*}
h\left(r_{1}, r_{2}, \sigma\right)=\frac{r_{1}}{2}(\Psi(\sigma / 2)-\log \pi)+r_{2}(\Psi(\sigma)-\log (2 \pi)), \tag{3}
\end{equation*}
$$

with $\Psi(s)=\left(\Gamma^{\prime} / \Gamma\right)(s)$. Since $\Psi(\sigma)$ increases with $\sigma>0$ and since $r_{1} \geqslant 2$ or $r_{2} \geqslant 1$, it is easily seen that $1 / \sigma+h\left(r_{1}, r_{2}, \sigma\right)$ is an increasing function of $\sigma>1$ which is negative in the range $1<\sigma \leqslant 5$.

For the remainder of this section we assume that $1<\sigma \leqslant 5$.
Since $Z_{K}(\sigma)$ is positive and since each contribution

$$
\Re\left(\frac{1}{\sigma-\rho}\right)=\frac{\sigma-\Re(\rho)}{|s-\rho|^{2}}
$$

is positive for $0<\Re(\rho)<1<\sigma$, we obtain

$$
\begin{equation*}
\frac{2}{\sigma-\sigma_{c}} \leqslant \Re\left(\frac{1}{\sigma-\beta_{1}}\right)+\Re\left(\frac{1}{\sigma-\beta_{2}}\right)<\frac{1}{\sigma-1}+\frac{1}{2} \log d_{K} \quad(1<\sigma \leqslant 5) \tag{4}
\end{equation*}
$$

if $\zeta_{K}(s)$ has at least two distinct real zeroes $\beta_{2} \neq \beta_{1}$ or a double real zero $\beta_{2}=\beta_{1}$ in the range $S(c, 0)$, and

$$
\begin{equation*}
\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}=2 \Re\left(\frac{1}{\sigma-\rho}\right)<\frac{1}{\sigma-1}+\frac{1}{2} \log d_{K} \quad(1<\sigma \leqslant 5) \tag{5}
\end{equation*}
$$

if $\zeta_{K}(s)$ has at least one non-real zero $\rho=\beta+i \gamma$ in the region $S(c, d)$, for in that case ρ and $\bar{\rho}$ are two distinct zeroes of $\zeta_{K}(s)$ in $S(c, d)$.

Lemmas 7 and 8 applied with $A=\log d_{K}$ yield the desired results (notice that $1+2(\sqrt{2}-1) / \log d_{K} \leqslant 1+2(\sqrt{2}-1) / \log 3<5$ and $1+2 S_{0} / \log d_{K} \leqslant$ $\left.1+2 S_{0} / \log 3 \leqslant 5\right)$.

3. Stechkin's trick and proof of Theorem 3

Since $Z_{K}(\sigma)$ is a positive valued and decreasing function of $\sigma>1$, by (1), we have

$$
Z_{K}(\sigma)-\kappa Z_{K}(\tau) \geqslant Z_{K}(\sigma)-Z_{K}(\tau) \geqslant 0 \quad \text { for } 0 \leqslant \kappa \leqslant 1<\sigma \leqslant \tau
$$

Using (2) twice, we deduce that for $0 \leqslant \kappa \leqslant 1<\sigma \leqslant \tau$ we have

$$
\begin{equation*}
\sum_{\rho} S(\sigma, \tau, \rho) \leqslant \frac{1}{\sigma-1}+\frac{1-\kappa}{2} \log d_{K}+F_{2}(\sigma, \tau)+R\left(r_{1}, r_{2}, \sigma, \tau\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{2}(\sigma, \tau)=-\frac{\kappa}{\tau-1}+\frac{1}{\sigma}-\frac{\kappa}{\tau} \tag{7}
\end{equation*}
$$

$R\left(r_{1}, r_{2}, \sigma, \tau\right):=h\left(r_{1}, r_{2}, \sigma\right)-\kappa h\left(r_{1}, r_{2}, \tau\right)$ and

$$
S(\sigma, \tau, \rho):=\Re\left(\frac{1}{\sigma-\rho}\right)-\kappa \Re\left(\frac{1}{\tau-\rho}\right)=S(\sigma, \tau, \bar{\rho}) .
$$

Now, we use Stechkin's Lemma:
Lemma 4 ([7, Lemma 2]). Suppose that $\sigma>1$. Set $\tau=\left(1+\sqrt{1+4 \sigma^{2}}\right) / 2$ and $\kappa=1 / \sqrt{5}$. If $0<\Re(\rho)<1$, then

$$
\Re\left(\frac{1}{\sigma-\rho}\right)+\Re\left(\frac{1}{\sigma-(1-\rho)}\right) \geqslant \kappa\left\{\Re\left(\frac{1}{\tau-\rho}\right)+\Re\left(\frac{1}{\tau-(1-\rho)}\right)\right\}
$$

Hence, from now on, we take $\kappa=1 / \sqrt{5}$ and $\tau=\left(1+\sqrt{1+4 \sigma^{2}}\right) / 2$. Notice that

$$
\begin{equation*}
F_{2}(\sigma, \tau)=\frac{\left(\sigma^{2}-1\right) / 5 \sigma^{2}}{\sigma+\sqrt{\left(1+4 \sigma^{2}\right) / 5}}>0 \tag{8}
\end{equation*}
$$

The complex zeros ρ of $\zeta_{K}(s)$ with $0<\Re(\rho)<1$ come in pairs $\{\rho, 1-\rho\}$, and their combined contributions

$$
T(\sigma, \tau, \rho):=S(\sigma, \tau, \rho)+S(\sigma, \tau, 1-\rho)=T(\sigma, \tau, 1-\rho)
$$

are positive, by Lemma 4 . Hence, we have:

Lemma 5. Suppose that $\sigma>1$. Set $\tau=\left(1+\sqrt{1+4 \sigma^{2}}\right) / 2$ and $\kappa=1 / \sqrt{5}$. For any finite set Z of complex zeroes of $\zeta_{K}(s)$ in the region $1 / 2<\Re(s)<1$, we have

$$
\begin{equation*}
\sum_{\rho} S(\sigma, \tau, \rho) \geqslant \sum_{\rho \in Z} T(\sigma, \tau, \rho) \tag{9}
\end{equation*}
$$

where

$$
T(\sigma, \tau, \rho)=\frac{1}{\sigma-\rho}+F_{3}(\sigma, \tau, \rho)
$$

with

$$
F_{3}(\sigma, \tau, \rho)=-\kappa \Re\left(\frac{1}{\tau-\rho}\right)+\Re\left(\frac{1}{\sigma-1+\rho}\right)-\kappa \Re\left(\frac{1}{\tau-1+\rho}\right)
$$

3.1. At least two real zeroes

Assume that $\zeta_{K}(s)$ has at least two distinct real zeroes $\beta_{2} \neq \beta_{1}$ or a double real zero $\beta_{2}=\beta_{1}$ in the range $S(c, 0) \cap(1 / 2,1)$.

For $0<\beta<1<\sigma$, the function

$$
\begin{aligned}
\beta \mapsto F_{3}(\sigma, \tau, \beta) & =-\frac{\kappa}{\tau-\beta}+\frac{1}{\sigma-1+\beta}-\frac{\kappa}{\tau-1+\beta} \\
& =\frac{1-\kappa}{\sigma-1+\beta}+\kappa\left(-\frac{1}{\tau-\beta}+\frac{\tau-\sigma}{(\sigma-1+\beta)(\tau-1+\beta)}\right)
\end{aligned}
$$

is clearly increasing. Hence, we have

$$
F_{3}(\sigma, \tau, \beta) \geqslant F_{3}(\sigma, \tau, 1)=-\frac{\kappa}{\tau-1}+\frac{1}{\sigma}-\frac{\kappa}{\tau}=F_{2}(\sigma, \tau),
$$

by (7), and

$$
T(\sigma, \tau, \beta)=\frac{1}{\sigma-\beta}+F_{3}(\sigma, \tau, \beta)>\frac{1}{\sigma-\beta}+F_{2}(\sigma, \tau) \quad(0<\beta<1)
$$

Using (9), we obtain

$$
\sum_{\rho} S(\sigma, \tau, \rho) \geqslant T\left(\sigma, \tau, \beta_{1}\right)+T\left(\sigma, \tau, \beta_{2}\right) \geqslant 2\left(\frac{1}{\sigma-\sigma_{c}}+F_{2}(\sigma, \tau)\right)
$$

Using (6), we then obtain

$$
\frac{2}{\sigma-\sigma_{c}}-\frac{1}{\sigma-1} \leqslant \frac{1-\kappa}{2} \log d_{K}-F_{2}(\sigma, \tau)+R\left(r_{1}, r_{2}, \sigma, \tau\right)
$$

By (8) and Lemma 6 , setting $\lambda=1-\kappa=1-1 / \sqrt{5}$, we finally obtain a neat inequality (compare with (4)):

$$
\begin{equation*}
\frac{2}{\sigma-\sigma_{c}}-\frac{1}{\sigma-1}<\frac{\lambda}{2} \log d_{K} \quad(1<\sigma \leqslant 7) . \tag{10}
\end{equation*}
$$

Lemma 7 applied with $A=\lambda \log d_{K}$ yields the desired first result (notice that $\left.1+2(\sqrt{2}-1) /\left(\lambda \log d_{K}\right) \leqslant 1+2(\sqrt{2}-1) /(\lambda \log 3) \leqslant 7\right)$.

3.2. At least one non-real zero

Assume that $\zeta_{K}(s)$ has at least one non-real complex zero $\rho=\beta+i \gamma, \gamma \neq 0$, in the region $S(c, d) \cap\{s ; \Re(s)>1 / 2\}$.

Then ρ and $\bar{\rho}$ are two pairwise complex zeroes of $\zeta_{K}(s)$ in this region and $T(\sigma, \tau, \rho)=T(\sigma, \tau, \bar{\rho})$. Hence, using Lemma (5), we obtain

$$
\sum_{\rho} S(\sigma, \tau, \rho) \geqslant 2 T(\sigma, \tau, \rho)=\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}+2 F_{4}(\sigma, \tau, \beta, \gamma)
$$

where

$$
\begin{aligned}
F_{4}(\sigma, \tau, \beta, \gamma)= & F_{3}(\sigma, \tau, \beta+i \gamma) \\
= & -\kappa \frac{\tau-\beta}{(\tau-\beta)^{2}+\gamma^{2}}+\frac{\sigma-1+\beta}{(\sigma-1+\beta)^{2}+\gamma^{2}}-\kappa \frac{\tau-1+\beta}{(\tau-1+\beta)^{2}+\gamma^{2}} \\
\geqslant & -\frac{\kappa}{\tau-\beta}-\frac{\kappa}{\tau-1+\beta}+\frac{\sigma-1+\beta}{(\sigma-1+\beta)^{2}+\gamma^{2}} \\
= & -\frac{\kappa}{\tau-\beta}-\frac{\kappa}{\tau-1+\beta}+\frac{\sigma}{\sigma^{2}+\gamma^{2}} \\
& +(1-\beta) \frac{\sigma^{2}-\sigma+\sigma \beta-\gamma^{2}}{\left((\sigma-1+\beta)^{2}+\gamma^{2}\right)\left(\sigma^{2}+\gamma^{2}\right)} \\
\geqslant & -\frac{\kappa}{\tau}-\frac{\kappa}{\tau-1}+\frac{\sigma}{\sigma^{2}+\gamma^{2}}=F_{2}(\sigma, \tau)-\frac{\gamma^{2}}{\sigma\left(\sigma^{2}+\gamma^{2}\right)} \\
\geqslant & F_{2}(\sigma, \tau)-\gamma^{2},
\end{aligned}
$$

provided that $\sigma^{2}-\sigma+\sigma \beta-\gamma^{2} \geqslant 0$, hence provided that $1 / 2<\beta<1<\sigma$ and $|\gamma| \leqslant 1 / \sqrt{2}$. By Lemma 6 and (6), we have

$$
\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}<\frac{1}{\sigma-1}+\frac{1-\kappa}{2} \log d_{K}-F_{2}(\sigma, \tau)+2 \gamma^{2}+R\left(r_{1}, r_{2}, \sigma, \tau\right) .
$$

Hence, we finally obtain a neat inequality (compare with (5)):

$$
\begin{equation*}
\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}<\frac{1}{\sigma-1}+\frac{1-\kappa}{2} \log d_{K} \quad(1<\sigma \leqslant 3 \text { and }|\gamma| \leqslant 1 / 2) \tag{11}
\end{equation*}
$$

Lemma 8 applied with $A=\lambda \log d_{K}$ yields the desired second result (notice that $1+2 S_{0} /\left(\lambda \log d_{K}\right) \leqslant 1+2 S_{0} /(\lambda \log 3) \leqslant 3$ and that $|\gamma| \leqslant d_{1} /\left(\lambda \log d_{k}\right)$ implies $\left.|\gamma| \leqslant d_{1} /(\lambda \log 3) \leqslant 1 / 2\right)$.

Finally, Lemma 9 applied with $G=\lambda / 4$ and $A=\lambda \log d_{K}$ yields $S_{G}=$ $0.42409 \cdots, B_{G}=0.32675 \cdots$ and $B_{G} / \lambda=0.59110 \cdots$ (notice that $1+2 S_{G} / A \leqslant$ $1+2 S_{G} /(\lambda \log 3) \leqslant 3$ and that $|\gamma| \leqslant 1 /\left(4 \log d_{k}\right)$ implies $|\gamma| \leqslant 1 /(4 \log 3) \leqslant$ $1 / 2$) whereas Lemma 9 applied with $G=\lambda$ and $A=\lambda \log d_{K}$ yields $S_{G}=$ $0.58436 \cdots, B_{G}=0.05737 \cdots$ and $B_{G} / \lambda=0.10379 \cdots$ (notice that $1+2 S_{G} / A \leqslant$ $1+2 S_{G} /(\lambda \log 3) \leqslant 3$ and that $|\gamma| \leqslant 1 / \log d_{k}$ implies $\left.|\gamma| \leqslant 1 / \log 8 \leqslant 1 / 2\right)$.

3.3. Technical Lemmas

Lemma 6. Set $\kappa=1 / \sqrt{5}$ and $\tau=\left(1+\sqrt{1+4 \sigma^{2}}\right) / 2$. Then

$$
R\left(r_{1}, r_{2}, \sigma, \tau\right)=h\left(r_{1}, r_{2}, \sigma\right)-\kappa h\left(r_{1}, r_{2}, \tau\right)=\frac{r_{1}}{2} A_{1}(\sigma)+r_{2} A_{2}(\sigma)
$$

where $A_{k}(\sigma)=\left(\Gamma^{\prime} / \Gamma\right)(k \sigma / 2)-\kappa\left(\Gamma^{\prime} / \Gamma\right)(k \tau / 2)-(1-\kappa) \log (k \pi)$, by (3).
Then, $A_{1}(\sigma)$ and $A_{2}(\sigma)$ increase with $\sigma>1$ and are negative in the range $1<\sigma \leqslant 7$. Hence, the expression $R\left(r_{1}, r_{2}, \sigma, \tau\right)$ is a decreasing function of both r_{1} and r_{2}, for $1<\sigma \leqslant 7$. Therefore, for $n=r_{1}+2 r_{2}>1$, we have

$$
\begin{array}{rlrl}
R\left(r_{1}, r_{2}, \sigma, \tau\right) & \leqslant \max (R(2,0, \sigma, \tau), R(0,1, \sigma, \tau)) \\
& =\max \left(A_{1}(\sigma), A_{2}(\sigma)\right)<0 & & \text { for } 1<\sigma \leqslant 7 \\
& =\max \left(A_{1}(\sigma), A_{2}(\sigma)\right)<-\frac{1}{2} & & \text { for } 1<\sigma \leqslant 3
\end{array}
$$

Proof. Noticing that $\left(\Gamma^{\prime} / \Gamma\right)^{\prime}(\sigma)=\sum_{n \geqslant 0}(n+\sigma)^{-2}>\sigma^{-2}$ for $\sigma>0$, we have

$$
A_{k}^{\prime}(\sigma)=\frac{k}{2} \sum_{n \geqslant 0}\left\{\frac{1}{(n+k \sigma / 2)^{2}}-\frac{2 \sigma}{\sqrt{1+4 \sigma^{2}}} \frac{\kappa}{(n+k \tau / 2)^{2}}\right\}
$$

which, in using $0<2 \sigma / \sqrt{1+4 \sigma^{2}}<1$ and $0 \leqslant \kappa \leqslant 1$ and $k \tau>k \sigma>0$, yields the desired result.

Lemma 7. Assume that $A>0$. For $\sigma=1+2(\sqrt{2}-1) / A$ the upper bound

$$
\frac{2}{\sigma-\sigma_{c}}-\frac{1}{\sigma-1}<\frac{1}{2} A
$$

yields $\sigma_{c}<1-2(\sqrt{2}-1)^{2} / A$.
Lemma 8. Let S_{0} and d_{1} be as in Theorem 2. Assume that $A>0$ and $0<\beta<1$. For $\sigma=1+2 S_{0} / A$ the upper bound

$$
\begin{equation*}
\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}-\frac{1}{\sigma-1}<\frac{1}{2} A \tag{12}
\end{equation*}
$$

yields $\beta<1-d_{1} / A$ or $|\gamma|>d_{1} / A$.
Proof. Write $\beta=1-b / A, \gamma=g / A$ and $\sigma=1+2 S / A$ and set $M=\max (b,|g|)$. Then (12) implies

$$
\frac{2 S+b}{(2 S+b)^{2}+M^{2}}<\frac{S+1}{4 S}
$$

Since this left hand side is a decreasing function of $b \in(0,1)$ for $S \geqslant M / 2$, we obtain

$$
\frac{2 S+M}{(2 S+M)^{2}+M^{2}}<\frac{S+1}{4 S}
$$

which yields

$$
M>f(S):=\frac{-S^{2}+S \sqrt{2-S^{2}}}{S+1}
$$

The choice $S=S_{0}$ for which $f^{\prime}\left(S_{0}\right)=0$ and $f\left(S_{0}\right)=2\left(1-S_{0}-S_{0}^{2}\right) /\left(2+S_{0}\right)=d_{1}$ is optimal.

Lemma 9. For $G \in(0,2)$, let S_{G} be the only zero of $2-(S+2) \sqrt{4 S^{2}-G^{2}(S+1)^{2}}$ in the range $S>G /(2-G)$. Set $B_{G}=\frac{2-4 S_{G}^{2}-2 S_{G}^{3}}{\left(1+S_{G}\right)\left(2+S_{G}\right)}$. Assume that $A>0$ and $0<\beta<1$. For $\sigma=1+2 S_{G} / A$ the upper bound

$$
\begin{equation*}
\frac{2(\sigma-\beta)}{(\sigma-\beta)^{2}+\gamma^{2}}-\frac{1}{\sigma-1}<\frac{1}{2} A \tag{13}
\end{equation*}
$$

yields $\beta<1-B_{G} / A$ or $|\gamma|>G / A$.
Proof. Write $\beta=1-b / A, \gamma=g / A$ and $\sigma=1+2 S / A$. Assume that $|g| \leqslant G$. Then

$$
\frac{2 S+b}{(2 S+b)^{2}+G^{2}}<\frac{S+1}{4 S}
$$

which implies

$$
\left(b+\frac{2 S^{2}}{S+1}\right)^{2}>\frac{4 S^{2}}{(S+1)^{2}}-G^{2}
$$

and

$$
b>f(S)=\frac{-2 S^{2}+\sqrt{4 S^{2}-G^{2}(S+1)^{2}}}{S+1} \quad(S \geqslant G /(2-G)>0) .
$$

Since

$$
f^{\prime}(S)=2 S \frac{2-(S+2) \sqrt{4 S^{2}-G^{2}(S+1)^{2}}}{(S+1)^{2} \sqrt{4 S^{2}-G^{2}(S+1)^{2}}}
$$

and since $S \mapsto 4 S^{2}-G^{2}(S+1)^{2}$ increases from 0 to $+\infty$ for S increasing from $G /(2-G)$ to $+\infty$, the choice $S=S_{G}$ for which $f^{\prime}\left(S_{G}\right)=0$ and $f\left(S_{G}\right)=$ $\frac{2-4 S_{G}^{2}-2 S_{G}^{3}}{\left(1+S_{G}\right)\left(2+S_{G}\right)}=B$ is optimal.

References

[1] J.-H. Ahn and S.-H. Kwon, Some explicit zero-free regions for Hecke L-functions, J. Number Theory 145 (2014), 433-473.
[2] J. Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980/81), 167-174.
[3] H. Kadiri, Explicit zero-free regions for Dedekind zeta functions, Int. J. Number Theory 8 (2012), 125-147.
[4] S. Louboutin, An explicit lower bound on muduli of Dirichlet L-functions at $s=1$, J. Ramanujan Math. Soc. 30 (2015), 101-113.
[5] S. Louboutin, Real zeros of Dedekind zeta functions, Int. J. Number Theory 11 (2015), 843-848.
[6] H.M. Stark, Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152.
[7] S.B. Stechkin, Zeros of the Riemann zeta-function, Math. Notes 8 (1970), 706-711.
[8] A. Zaman, Explicit estimates for the zeros of Hecke L-functions, J. Number Theory 162 (2016), 312-375.

Address: Stéphane R. Louboutin: Institut de Mathématiques de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France.
E-mail: stephane.louboutin@univ-amu.fr
Received: 2 May 2015; revised: 11 April 2016

