SMALL SOLUTIONS OF DIAGONAL CONGRUENCES

Todd Cochrane, Misty Ostergaard, Craig Spencer

Abstract

We prove that for $k \geqslant 2,0<\varepsilon<\frac{1}{k(k-1)}, n>\frac{k-1}{\varepsilon}$, prime $p>P(\varepsilon, k)$, and integers c, a_{i}, with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, there exists a solution \underline{x} to the congruence $$
\sum_{i=1}^{n} a_{i} x_{i}^{k} \equiv c \quad \bmod p
$$ in any cube \mathcal{B} of side length $b \geqslant p^{\frac{1}{k}+\varepsilon}$. Various refinements are given for smaller n and for cubes centered at the origin.

Keywords: diagonal congruences in many variables, exponential sums.

1. Introduction

Our goal is to find small integer solutions to the congruence

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}^{k} \equiv c \quad \bmod p \tag{1}
\end{equation*}
$$

with p prime, $k \in \mathbb{N}$, and $a_{i}, c \in \mathbb{Z}, 1 \leqslant i \leqslant n$. By small we mean $\|\underline{x}\|:=\max \left|x_{i}\right| \leqslant$ ξp^{λ} with $\lambda<1$ and ξ a constant possibly dependent upon λ, k, or n. We hope, in particular, to find the smallest possible value of λ for a given k and n. We also find solutions within a small box that is not centered at the origin. In this case, we seek the minimal b such that any cube $\mathcal{B}:=\left\{\underline{x}: d_{i}+1 \leqslant x_{i} \leqslant d_{i}+b, 1 \leqslant i \leqslant n\right\}$ with $d_{i} \in \mathbb{Z}$ for $1 \leqslant i \leqslant n$, contains a solution of (1).

The optimal choice of λ is $\lambda=\frac{1}{k}$. We reach this conclusion after considering the congruence $\sum_{i=1}^{n} x_{i}^{k} \equiv \frac{p-1}{2} \bmod p$. Any solution \underline{x} must satisfy $n\|\underline{x}\|^{k} \geqslant$ $\left|\sum_{i=1}^{n} x_{i}^{k}\right| \geqslant \frac{p-1}{2}$ and so $\|\underline{x}\| \geqslant\left(\frac{p-1}{2 n}\right)^{\frac{1}{k}}$.

A similar problem may be posed with a composite modulus or a homogeneous congruence (restricting c in (1) to be 0). There is also the option of making some restrictions on k or n. For instance, Schmidt in [11, Equation (4.1)] proved that
for k odd, $\varepsilon>0$, and n sufficiently large, there exists a nonzero solution to the homogeneous congruence with $\|\underline{x}\| \ll p^{\varepsilon}$. Thus, one can surpass the $p^{\frac{1}{k}}$ barrier for a homogeneous congruence of odd degree. For a homogeneous congruence of even degree, $p^{\frac{1}{k}}$ is still optimal.

Baker [1] and Dietmann [6] proved results in the homogeneous case for a composite modulus. In particular, Baker proved in [1, Theorem 1] that for any $\varepsilon>0$, $m \in \mathbb{N}$, and integers $a_{1}, a_{2}, \ldots, a_{n}$, there is a nonzero solution of

$$
a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k} \equiv 0 \quad \bmod m
$$

with

$$
\|\underline{x}\|< \begin{cases}m^{\frac{1}{2}+\frac{1}{2(n-1)}+\varepsilon}, & n \geqslant 4 \\ m^{\frac{2}{3}+\varepsilon}, & n=3 .\end{cases}
$$

Dietmann [6] made an improvement for cubic congruences. He proved that for $a_{1}, \ldots, a_{n} \in \mathbb{Z}, n \geqslant 3$, and $m \in \mathbb{N}$, there is a nonzero solution of the congruence

$$
a_{1} x_{1}^{3}+\cdots+a_{n} x_{n}^{3} \equiv 0 \quad \bmod m
$$

with

$$
\|\underline{x}\| \leqslant \begin{cases}m^{\frac{1}{2}+\frac{1}{2 n}}, & n \text { odd } \\ m^{\frac{1}{2}+\frac{1}{2(n-1)}}, & n \text { even } .\end{cases}
$$

Cochrane [4, Equation (2.33), Example 4.8.14] considered a non-homogeneous congruence with prime moduli. He proved that for $k, n \in \mathbb{N}$, any prime p, and $a_{i}, c \in \mathbb{Z}$, with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, and $p \nmid c$, the diagonal congruence (1) has a solution in any cube of side length b for which

$$
\begin{equation*}
b \gg_{k, n} p^{\frac{1}{2}+\frac{1}{2 n}} . \tag{2}
\end{equation*}
$$

For $c=0$ and $n \geqslant 3$, the same result holds (as seen in [4, Theorem 4.7.13]) with $b \gg_{k, n} p^{\frac{1}{2}+\frac{1}{2(n-1)}}$.

In [13, Theorem 3], Schmidt proved that for $a_{i} \in \mathbb{Z}, 1 \leqslant i \leqslant n, p$ a prime, $k \geqslant 3$ odd, and $\varepsilon>0$, the congruence

$$
\sum_{i=1}^{n} a_{i} x_{i}^{k} \equiv 0 \quad \bmod p
$$

has a nonzero solution \underline{x} with

$$
\begin{equation*}
\|\underline{x}\|<_{n, \varepsilon} p^{\frac{1}{3}+\sqrt{\frac{c(k)}{n}}+\varepsilon} \tag{3}
\end{equation*}
$$

for a constant $c(k)$ depending on k.
Applying a result of Schmidt [12, Theorem 3], Cochrane [4, Cor. 5.7] showed that for $k \geqslant 2$, there exists a solution to (1) for arbitrary c in any cube with side length

$$
\begin{equation*}
b \ggg_{\varepsilon, k, n} p^{\frac{1}{k}+\frac{1}{n}\left(1-\frac{1}{k}\right) 2^{k} \Phi(k)+\varepsilon} \tag{4}
\end{equation*}
$$

where $\Phi(k)$ is a constant dependent upon k. The result of Schmidt shows that one can take $\Phi(2)=\Phi(3)=1, \Phi(4)=3, \Phi(5)=13$, and in general, $\Phi(k)<(\log 2)^{-k} k!$.

Baker proved in [2, Lemma 10.1] that for $m \in \mathbb{N}, a_{i} \in \mathbb{Z}, 1 \leqslant i \leqslant n$, and $n \geqslant C(k, \varepsilon)$, there exist non-negative integers x_{1}, \ldots, x_{n} satisfying

$$
\sum_{i=1}^{n} a_{i} x_{i}^{k} \equiv 0 \quad \bmod m
$$

with

$$
\begin{equation*}
\|\underline{x}\| \leqslant m^{\frac{1}{k}+\varepsilon}, \tag{5}
\end{equation*}
$$

although no attempt was made to make $C(k, \varepsilon)$ explicit.
Here we improve on the above stated results for the case of prime moduli, establishing two main theorems, the first for cubes centered at the origin, and the second for a cube in general position. The results apply equally well to the homogeneous and non-homogeneous congruences.
Theorem 1. For $k \geqslant 2$ and $\varepsilon>0$, there exists a constant $P(\varepsilon, k)$ such that for any prime $p>P(\varepsilon, k)$ and integers c, a_{i} with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, there exists a nonzero solution \underline{x} to (1) with

$$
\|\underline{x}\| \leqslant \begin{cases}p^{\frac{k(\log k+\gamma \log \log k)}{n}+\varepsilon}, & \text { if } n \leqslant k(k-1)(\log k+\gamma \log \log k) ; \\ p^{\frac{1}{k-1}}, & \text { if } k(k-1)(\log k+\gamma \log \log k)<n \leqslant k(k-1)^{2} ; \\ p^{\frac{1}{k}+\frac{k-1}{n}+\varepsilon}, & \text { if } n>k(k-1)^{2} .\end{cases}
$$

Here, γ is the constant appearing in Lemma 2.
Thus, as $n \rightarrow \infty$, we approach the optimal estimate $\|\underline{x}\| \ll p^{\frac{1}{k}}$. In particular, for any positive $\varepsilon^{\prime}<\frac{1}{k(k-1)}$ and $n>\frac{k-1}{\varepsilon^{\prime}}$, applying the theorem with $\varepsilon=\varepsilon^{\prime}-\frac{k-1}{n}$, gives a solution of (1) with $\|\underline{x}\| \ll p^{\frac{1}{k}+\varepsilon^{\prime}}$, for p sufficiently large. Indeed, as the next theorem illustrates, for such n, p, any box of side length $b \gg p^{\frac{1}{k}+\varepsilon^{\prime}}$ contains a solution of (1). The first two estimates in the theorem are consequences of Proposition 2 in Section 3 while the third follows from Proposition 1 in Section 2, as we indicate after the statement of these propositions. These estimates improve on the estimate $\|\underline{x}\| \ll p^{\frac{1}{2}+\frac{1}{2 n}}$ available from (2) for $n>(2+\mathrm{o}(1)) k \log k$ and uniformly improve on (3) and (4).

For solutions in an arbitrary cube, we establish the following result.

Theorem 2.

i) For $k \geqslant 2$ and $\varepsilon>0$, there exists a constant $P(\varepsilon, k)$ such that for any prime $p>P(\varepsilon, k)$ and integers c, a_{i} with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, there exists a solution \underline{x} to (1) in an arbitrary cube \mathcal{B} of side length b provided that

$$
b \geqslant \begin{cases}p^{\frac{k(k-1)}{n}+\varepsilon}, & \text { if } n \leqslant k(k-1)^{2} ; \tag{6}\\ p^{\frac{1}{k}+\frac{k-1}{n}+\varepsilon}, & \text { if } n>k(k-1)^{2} .\end{cases}
$$

ii) For $2 \leqslant k \leqslant 5$, the inequalities in (6) may be improved to

$$
b \geqslant \begin{cases}p^{\frac{2^{k-1}}{n}+\varepsilon}, & \text { if } n \leqslant 2^{k-1}(k-1) \tag{7}\\ p^{\frac{1}{k}+\frac{2^{k-1}}{n k}}+\varepsilon, & \text { if } n>2^{k-1}(k-1) .\end{cases}
$$

These results yield improvements on the bound in (2) for $k \geqslant 6$ and $n \geqslant 2 k(k-1)$ and uniformly improve on (4). They also yield improvements on (2) for $k=3$, $n \geqslant 8 ; k=4, n \geqslant 16$; and $k=5, n \geqslant 32$. We have nothing new to offer here for $k=2$.

2. Solutions in a general cube

We start by recalling a classical result of Hua and Vandiver [8] and Weil [14] on the number $N_{n}(c)$ of solutions of the equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}^{k}=c \tag{8}
\end{equation*}
$$

over the finite field \mathbb{F}_{p} in p elements, where $a_{i} \neq 0,1 \leqslant i \leqslant n$: If $c \neq 0$ then

$$
\begin{equation*}
\left|N_{n}(c)-p^{n-1}\right| \leqslant(k-1)^{n} p^{\frac{n-1}{2}} . \tag{9}
\end{equation*}
$$

Thus, for $c \neq 0$, and $n \geqslant 2$, the equation (8) is guaranteed to have at least one solution provided that

$$
\begin{equation*}
p>k^{\frac{2 n}{n-1}} . \tag{10}
\end{equation*}
$$

For $c=0$, (8) always has the trivial solution $\underline{x}=\underline{0}$. We note that $N_{n}(c)$ is just the number of solutions of (1) in a cube of side length $b=p$.

Next we turn to finding solutions in a restricted cube

$$
\begin{equation*}
\mathcal{B}:=\left\{\underline{x} \in \mathbb{Z}^{n}: d_{i}+1 \leqslant x_{i} \leqslant d_{i}+b\right\} \tag{11}
\end{equation*}
$$

of side length b where $b, d_{i} \in \mathbb{Z}, 1 \leqslant i \leqslant n, b \geqslant 1$. The key ingredient to our investigation is a Weyl sum estimate for the incomplete exponential sum $\sum_{x=1}^{X} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)$; here, $e(x):=e^{2 \pi i x}$ for $x \in \mathbb{R}$. The classical Weyl sum bound is stated in the next lemma; see [5, Lemma 3.1].

Lemma 1. Let $k \geqslant 2$ be an integer, and $\alpha_{i} \in \mathbb{R}, 1 \leqslant i \leqslant k$. Suppose that for some $a \in \mathbb{Z}, q \in \mathbb{N}$ with $(a, q)=1$, one has $\left|\alpha_{k}-\frac{a}{q}\right| \leqslant q^{-2}$. Then with $\sigma=\sigma(k)=2^{1-k}$, we have

$$
\begin{equation*}
\left|\sum_{x=1}^{X} e\left(\alpha_{1} x+\cdots+\alpha_{k} x^{k}\right)\right| \leqslant c_{\varepsilon} X^{1+\varepsilon}\left(\frac{1}{q}+\frac{1}{X}+\frac{q}{X^{k}}\right)^{\sigma} \tag{12}
\end{equation*}
$$

for some constant $c_{\varepsilon}:=c_{\varepsilon}(k)$.
Wooley [17, Theorem 11.1] established an improved estimate, obtaining the inequality in (12) with $\sigma(k)=\frac{1}{2 k(k-2)}$ for $k \geqslant 4$, and made further improvements in [19, Theorem 11.1], and [18, Theorem 7.3] obtaining in the latter, $\sigma(k)=$ $\frac{1}{2(k-1)(k-2)}$ for $k \geqslant 3$. Bourgain, Demeter and Guth [3] recently obtained $\sigma(k)=$ $\frac{1}{k(k-1)}$ for $k \geqslant 2$. The latter value improves on Wooley's estimates and the classical
value $\sigma(k)=2^{1-k}$ for $k \geqslant 6$. For $k=6$, an estimate of Heath-Brown [7] is better for certain ranges of q. Finally, Montgomery [9, Conjecture 1, p. 46] has conjectured that one can in fact take $\sigma(k)=\frac{1}{k}$, which would be best possible. Such a value is currently only known to hold for $k=2$.
Proposition 1. Fix $n \geqslant 2, k \geqslant 2$, and suppose that the Weyl sum estimate in (12) holds for some positive real $\sigma=\sigma(k)$. For any $\varepsilon>0$, there exists a constant $P(\varepsilon, k)$ such that for any prime $p \geqslant P(\varepsilon, k)$ and any integers c, a_{i} with $p \nmid a_{i}$, $1 \leqslant i \leqslant n$, there exists a solution \underline{x} to (1) in any cube \mathcal{B} of side length

$$
b \geqslant \begin{cases}p^{\frac{1}{\sigma n}+\varepsilon}, & \text { if } n \leqslant(k-1) \sigma^{-1} ; \\ p^{\frac{1}{k}+\frac{1}{\sigma n k}+\varepsilon}, & \text { if } n>(k-1) \sigma^{-1} .\end{cases}
$$

Applying the proposition with the value of Bourgain, Demeter and Guth, $\sigma=$ $\frac{1}{k(k-1)}$, immediately yields Theorem 2 (i) and the third inequality in Theorem 1. For $2 \leqslant k \leqslant 5$ we use the classical value $\sigma=2^{k-1}$ to obtain Theorem 2 (ii).

Proof. Fix $n \geqslant 2, k \geqslant 2$, and $\varepsilon>0$, and let c, a_{i} be integers with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, \mathcal{B} be a cube as in (11), N the number of solutions of (1) in \mathcal{B}, and $e_{p}(\xi)=e^{\frac{2 \pi i}{p} \xi}$. Then

$$
\begin{aligned}
N & =\frac{1}{p} \sum_{\underline{x} \in \mathcal{B}} \sum_{\lambda=1}^{p} e_{p}\left(\lambda\left(\sum_{i=1}^{n} a_{i} x_{i}^{k}-c\right)\right) \\
& =\frac{|\mathcal{B}|}{p}+\frac{1}{p} \sum_{\lambda=1}^{p-1} e_{p}(-\lambda c) \sum_{\underline{x} \in \mathcal{B}} e_{p}\left(\lambda\left(\sum_{i=1}^{n} a_{i} x_{i}^{k}\right)\right) \\
& =\frac{b^{n}}{p}+\frac{1}{p} \sum_{\lambda=1}^{p-1} e_{p}(-\lambda c) \prod_{i=1}^{n} \sum_{x_{i}=d_{i}+1}^{d_{i}+b} e_{p}\left(\lambda a_{i} x_{i}^{k}\right),
\end{aligned}
$$

and thus

$$
\begin{equation*}
N=\frac{b^{n}}{p}+\frac{1}{p} \sum_{\lambda=1}^{p-1} e_{p}(-\lambda c) \prod_{i=1}^{n} \sum_{x_{i}=1}^{b} e_{p}\left(\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}\right) . \tag{13}
\end{equation*}
$$

We now apply the Weyl sum estimate of Lemma 1 to the polynomial $\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}$ with $X=b, q=p$, and $\alpha_{k}=\frac{\lambda a_{i}}{p}$. We observe that with $a=\lambda a_{i}$, we have $(a, p)=1$ and $\left|\alpha_{k}-\frac{a}{p}\right|=0<\frac{1}{p^{2}}$. It is also plain that with b satisfying the lower bound stated in the proposition, $b^{k} \geqslant p$. Thus, by (12), we have

$$
\begin{equation*}
\left|\sum_{x_{i}=1}^{b} e_{p}\left(\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}\right)\right| \leqslant c_{\varepsilon^{\prime}} b^{1+\varepsilon^{\prime}}\left(\frac{1}{p}+\frac{1}{b}+\frac{p}{b^{k}}\right)^{\sigma} \tag{14}
\end{equation*}
$$

for any $\varepsilon^{\prime}>0$. We use (13) to determine a lower bound for b such that the error term is less than the main term in (13). It suffices to have b satisfy

$$
\begin{equation*}
\frac{b^{n}}{p}>\frac{1}{p}\left|\sum_{\lambda=1}^{p-1} e_{p}(-\lambda c) \prod_{i=1}^{n} \sum_{x_{i}=1}^{b} e_{p}\left(\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}\right)\right| . \tag{15}
\end{equation*}
$$

First, let us consider the case where $n>(k-1) \sigma^{-1}$. In this case, we put $b=\left\lfloor p^{\frac{1}{k}+\frac{1}{\sigma n k}+\varepsilon}\right\rfloor$. We claim that $b^{k-1} \leqslant p$. Indeed, say $n=(k-1) \sigma^{-1}+\beta$, with $\beta>0$, so that, $n-\beta=(k-1) \sigma^{-1}$. Then

$$
b^{k-1} \leqslant p^{\frac{k-1}{k}+\frac{k-1}{\sigma k n}+\varepsilon(k-1)} \leqslant p^{1-\frac{1}{k}+\frac{n-\beta}{k n}+\varepsilon(k-1)}=p^{1-\frac{\beta}{k n}+\varepsilon(k-1)} \leqslant p
$$

for $\varepsilon \leqslant \frac{\beta}{k(k-1) n}$, which we may assume. Using $b^{k-1} \leqslant p$, the Weyl sum estimate in (14) simplifies to

$$
\left|\sum_{x_{i}=1}^{b} e_{p}\left(\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}\right)\right| \leqslant c_{\varepsilon^{\prime}} b^{1+\varepsilon^{\prime}}\left(\frac{3 p}{b^{k}}\right)^{\sigma}
$$

for any $\varepsilon^{\prime}>0$. Applying this estimate and the triangle inequality to the right-hand side of (15), we find that we are guaranteed a solution to (1) if

$$
\begin{equation*}
\frac{b^{n}}{p}>c_{\varepsilon^{\prime}}^{n}\left(b^{\left(1+\varepsilon^{\prime}\right) n}\right)\left(\frac{3 p}{b^{k}}\right)^{n \sigma} \tag{16}
\end{equation*}
$$

or equivalently

$$
b^{n\left(k \sigma-\varepsilon^{\prime}\right)} \geqslant 3^{n \sigma} c_{\varepsilon^{\prime}}^{n} p^{1+n \sigma} .
$$

Thus it suffices to have

$$
b \ggg k, \varepsilon^{\prime} p^{\frac{1+n \sigma}{n\left(k \sigma-\varepsilon^{\prime}\right)}}=p^{\frac{1}{k-\varepsilon^{\prime} \sigma^{-1}}+\frac{\sigma^{-1}}{n\left(k-\varepsilon^{\prime} \sigma^{-1}\right)}}=p^{\frac{1}{k\left(1-\varepsilon^{\prime} \sigma^{-1} k^{-1}\right)}+\frac{\sigma^{-1}}{n k\left(1-\varepsilon^{\prime} \sigma^{-1} k-1\right)}} .
$$

If $\frac{\varepsilon^{\prime}}{\sigma k}<\frac{1}{2}$ then using $(1-x)^{-1}<1+2 x$ for $0<x<\frac{1}{2}$, we see that it suffices to have

$$
b \gg_{k, \varepsilon^{\prime}} p^{\frac{1}{k}+2 \frac{\varepsilon^{\prime}}{\sigma k^{2}}+\frac{1}{\sigma n k}+2 \frac{\varepsilon^{\prime}}{\sigma^{2} n k^{2}}} .
$$

By taking ε^{\prime} sufficiently small and p sufficiently large, we see that the latter bound holds for $b=\left\lfloor p^{\frac{1}{k}+\frac{1}{\sigma n k}+\varepsilon}\right\rfloor$.

Next, let us consider the case where $n \leqslant(k-1) \sigma^{-1}$. In this case we set $b=\left\lfloor p^{\frac{1}{\sigma n}+\varepsilon}\right\rfloor$. Then plainly $b^{k-1}>p^{\frac{k-1}{\sigma n}} \geqslant p$, and so the Weyl sum estimate simplifies to

$$
\left|\sum_{x_{i}=1}^{b} e_{p}\left(\lambda a_{i}\left(x_{i}+d_{i}\right)^{k}\right)\right| \leqslant c_{\varepsilon^{\prime}} b^{1+\varepsilon^{\prime}}\left(\frac{3}{b}\right)^{\sigma}
$$

for any $\varepsilon^{\prime}>0$. Then by (15), we find we are guaranteed a solution to (1) if

$$
\begin{equation*}
\frac{b^{n}}{p}>c_{\varepsilon^{\prime}}^{n}\left(b^{\left(1+\varepsilon^{\prime}\right) n}\right)\left(\frac{3}{b}\right)^{\sigma n} \tag{17}
\end{equation*}
$$

and so it suffices to have

$$
\begin{equation*}
b \gg \varepsilon^{\prime}, k p^{\frac{1}{\sigma n\left(1-\varepsilon^{\prime} / \sigma\right)}} . \tag{18}
\end{equation*}
$$

If $\varepsilon^{\prime} / \sigma<\frac{1}{2}$, then it suffices to have

$$
\begin{equation*}
b \gg \varepsilon^{\prime}, k p^{\frac{1}{\sigma n}+\frac{2 \varepsilon^{\prime}}{\sigma^{2} n}} . \tag{19}
\end{equation*}
$$

Thus, for ε^{\prime} sufficiently small and p sufficiently large, our choice $b=\left\lfloor p^{\frac{1}{\sigma n}+\varepsilon}\right\rfloor$ suffices.

3. Small solutions via sums over smooth numbers

Let $k \in \mathbb{N}$ and P be a large real number. When $2 \leqslant R \leqslant P$, we define the set of R-smooth numbers, $\mathcal{A}(P, R)$, by

$$
\mathcal{A}(P, R)=\{n \in[1, P] \cap \mathbb{Z}: p \text { prime, } p \mid n \Longrightarrow p \leqslant R\}
$$

and for each real number α, we define the corresponding Weyl sum over smooth numbers, $f(\alpha ; P, R)$, by

$$
f(\alpha ; P, R):=\sum_{x \in \mathcal{A}(P, R)} e\left(\alpha x^{k}\right) .
$$

In [15] Wooley established the following estimate for $f(\alpha ; P, R)$.
Lemma 2. [15, Theorem 1.1] Let \mathfrak{m} denote the set of real numbers α such that whenever $a \in \mathbb{Z}, q \in \mathbb{N},(a, q)=1$, and $|\alpha-a / q| \leqslant \frac{1}{q P^{k-1}}$, one has $q>P$. Then when $\eta=\eta(\varepsilon, k)$ is a sufficiently small positive number, and $2 \leqslant R \leqslant P^{\eta}$, we have with $\sigma^{\prime}=\sigma^{\prime}(k):=k^{-1}(\log k+\gamma \log \log k)^{-1}$,

$$
\begin{equation*}
\sup _{\alpha \in \mathfrak{m}}|f(\alpha ; P, R)| \leqslant \xi_{\varepsilon} P^{1-\sigma^{\prime}+\varepsilon} \tag{20}
\end{equation*}
$$

for some constants $\xi_{\varepsilon}:=\xi(\varepsilon, k)$ and $\gamma:=\gamma(\varepsilon, k)$.
As a consequence of this lemma we shall deduce the following result.
Proposition 2. Suppose that the inequality in (20) holds for a given $\sigma^{\prime}=\sigma^{\prime}(k)$. Then for $k \geqslant 2, n>\sigma^{\prime-1}$ and $\varepsilon>0$, there exist constants $P(\varepsilon, k)$ and $\eta^{\prime}(\varepsilon, k)$ such that for any positive integer ℓ satisfying $\frac{1}{\ell} \leqslant \eta^{\prime}(\varepsilon, k)$, prime $p>P(\varepsilon, k)$, integers c, a_{i} with $p \nmid a_{i}, 1 \leqslant i \leqslant n$, and positive integer b with

$$
b>\max \left\{p^{\frac{1}{\sigma^{\prime} n}+\varepsilon}, p^{\frac{1}{k-1}}\right\}
$$

there exists a solution \underline{x} to (1) with $x_{i} \in \mathcal{A}\left(b, b^{\frac{1}{\ell}}\right), 1 \leqslant i \leqslant n$.
Applying the proposition with Wooley's value $\sigma^{\prime}=k^{-1}(\log k+\gamma \log \log k)^{-1}$, yields the first two inequalities in Theorem 1.

Proof. Suppose that $k \geqslant 2, n>\sigma^{\prime-1}$ and that b satisfies $p^{\frac{1}{k-1}}<b<p$. We apply Lemma 2 with $P=b, R=b^{1 / \ell}$ where ℓ will be chosen below. For the sake of brevity, we'll define $\mathcal{A}:=\mathcal{A}\left(b, b^{\frac{1}{\ell}}\right)$ and let $\mathcal{A}^{n}=\mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}, n$ times. The number of solutions M of $\sum_{i=1}^{n} a_{i} x_{i}^{k} \equiv c \bmod p$ with $\underline{x} \in \mathcal{A}^{n}$ is

$$
\begin{align*}
M & =\frac{1}{p} \sum_{\underline{x} \in \mathcal{A}^{n}} \sum_{\lambda=1}^{p} e_{p}\left(\lambda\left(\sum_{i=1}^{n} a_{i} x_{i}^{k}-c\right)\right) \\
& =\frac{|\mathcal{A}|^{n}}{p}+\frac{1}{p} \sum_{\lambda=1}^{p-1} e_{p}(-\lambda c) \prod_{i=1}^{n} \sum_{x_{i} \in \mathcal{A}} e_{p}\left(\lambda a_{i} x_{i}^{k}\right) . \tag{21}
\end{align*}
$$

Let \mathfrak{m} be as defined in Lemma 2. We note that for $1 \leqslant \lambda \leqslant p-1, \alpha:=\frac{\lambda a_{i}}{p} \in \mathfrak{m}$. Indeed, suppose that $(a, q)=1$ and that $\left|\frac{\lambda a_{i}}{p}-\frac{a}{q}\right| \leqslant \frac{1}{q b^{k-1}}$. Then either $q=p$, whence $q>b$, or $q \neq p$, whence

$$
\frac{1}{p q} \leqslant\left|\frac{\lambda a_{i}}{p}-\frac{a}{q}\right| \leqslant \frac{1}{q b^{k-1}} ;
$$

that is $p \geqslant b^{k-1}$, contradicting $b>p^{\frac{1}{k-1}}$. Thus for any $\varepsilon^{\prime}>0$ and ℓ sufficiently large, $\ell \geqslant 1 / \eta\left(\varepsilon^{\prime}, k\right)$, we have by Lemma 2 that

$$
\left|\sum_{x_{i} \in \mathcal{A}} e_{p}\left(\lambda a_{i} x_{i}^{k}\right)\right| \leqslant \xi_{\varepsilon^{\prime}} b^{1-\sigma^{\prime}+\varepsilon^{\prime}}
$$

Combining this with (21), we see that $M>0$ provided that

$$
\frac{|\mathcal{A}|^{n}}{p}>\xi_{\varepsilon^{\prime}}^{n} b^{\left(1-\sigma^{\prime}+\varepsilon^{\prime}\right) n}
$$

By the work of Ramaswami [10], we have

$$
\left|\mathcal{A}\left(b, b^{\frac{1}{\ell}}\right)\right|=\rho(\ell) b+\mathrm{O}\left(\frac{b}{\log b}\right)
$$

where ρ is the Dickman function. Thus for b sufficiently large in terms of ℓ, we have $\left|\mathcal{A}\left(b, b^{\frac{1}{x}}\right)\right| \geqslant \frac{1}{2} \rho(\ell) b$. Hence it suffices to have

$$
\begin{equation*}
\frac{\rho(\ell)^{n} b^{n}}{2^{n} p}>\xi_{\varepsilon^{\prime}}^{n} b^{\left(1-\sigma^{\prime}+\varepsilon^{\prime}\right) n} \tag{22}
\end{equation*}
$$

that is,

$$
b^{\sigma^{\prime}-\varepsilon^{\prime}}>\xi_{\varepsilon^{\prime}} \frac{2 p^{\frac{1}{n}}}{\rho(\ell)}
$$

or equivalently

$$
b \gg_{\varepsilon^{\prime}, \ell, k} p^{\frac{1}{\sigma^{\prime} n\left(1-\varepsilon^{\prime} \sigma^{\prime-1}\right)}} .
$$

Assuming that $\varepsilon^{\prime} \sigma^{\prime-1}<\frac{1}{2}$, we see that it suffices to have

$$
b \gg \varepsilon^{\prime}, \ell, k p^{\frac{1}{\sigma^{\prime} n}+\frac{2 \varepsilon^{\prime}}{\sigma^{\prime 2} n}} .
$$

Thus with ε^{\prime} sufficiently small and p sufficiently large, we obtain a solution in \mathcal{A}^{n} provided that $b>\max \left\{p^{\frac{1}{\sigma^{\prime} n}+\varepsilon}, p^{\frac{1}{k-1}}\right\}$. We note that since $n>\sigma^{\prime-1}$, for ε small enough, $p^{\frac{1}{\sigma^{\prime} n}+\varepsilon}<p$. Thus we may take $p^{\frac{1}{k-1}}<b<p$ as assumed.

Remark 3.1. In his work [16, Theorem 5], Wooley obtains an estimate for a more general Weyl sum over smooth numbers that one may hope would allow us to generalize Proposition 2 to boxes in arbitrary position. Unfortunately, for the application here, this estimate leads to a weaker result than what is already available from Proposition 1.

Acknowledgment. We would like to thank the referee for his/her many valuable comments which greatly improved the paper. The research of the third author was supported in part by NSA Young Investigator Grant \#H98230-14-1-0164.

References

[1] R.C. Baker, Small solutions of congruences, Mathematika 30 (1983), 164-188.
[2] R.C. Baker, Diophantine Inequalities, London Math. Soc. Monographs, Clarendon Press, Oxford, 1986.
[3] J. Bourgain, C. Demeter and L. Guth, Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three, Ann. Math. 184 (2016), no. 2, 633-682.
[4] T. Cochrane, Exponential Sums and the Distribution of Solutions of Congruences, Inst. of Math., Academia Sinica, Taipei, Taiwan (1994), 1-84.
[5] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, 2nd ed., edited and prepared for publication by T.D. Browning, CUP, 2005.
[6] R. Dietmann, Small solutions of additive cubic congruences, Arch. Math. 75 (2000), 195-197.
[7] D.R. Heath-Brown, Weyl's inequality, Hua's inequality, and Waring's problem, J. London Math. Soc. (20) 38 (1988), 396-414.
[8] L.K. Hua and H.S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99.
[9] H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994.
[10] V. Ramaswami, On the Number of Positive Integers Less Than x and Free of Prime Divisors Greater Than x^{c}, Bulletin of the American Mathematical Society 55 (1949), 1122-1127.
[11] W.M. Schmidt, Small zeros of additive forms in many variables. II., Acta Math. 143 (1979), no. 3-4, 219-232.
[12] W.M. Schmidt, Bounds on exponential sums, Acta Arith. 94 (1984), no. 3, 281-297.
[13] W.M. Schmidt, Small solutions of congruences with prime modulus, Diophantine analysis, Proc. Number Theory Sect. Aust. Math. Soc. Conv. 1985, London Math. Soc. Lect. Note Ser. 109, (1986), 37-66.
[14] A. Weil, Number of solutions of equations in finite fields, Bull. AMS 55 (1949), 497-508.
[15] T.D. Wooley, New estimates for smooth Weyl sums, J. London Math. Soc. 51 (1995), 1-13.
[16] T.D. Wooley, On exponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997), 79-140.
[17] T.D. Wooley, Vinogradov's mean value theorem via efficient congruencing, II, Duke Math. J. 162 (2013), 673-730.
[18] T.D. Wooley, Translation invariance, exponential sums, and Waring's problem, Proceedings of the International Congress of Mathematicians, August 13-21, 2014, Seoul, Korea, Volume II, Kyung Moon Sa Co. Ltd., Seoul, Korea, 2014, 505-529.
[19] T.D. Wooley, Multigrade efficient congruencing and Vinogradov's mean value theorem, Proc. London Math. Soc. (3) 111 (2015), no. 3, 519-560.

Addresses: Todd Cochrane and Craig Spencer: Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA;
Misty Ostergaard: Department of Mathematics, University of Southern Indiana, Evansville, IN 47712, USA.
E-mail: cochrane@math.ksu.edu, m.ostergaard@usi.edu, cvs@math.ksu.edu
Received: 9 March 2015; revised: 16 March 2016

