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CONVERGENCE IN BV, BY NONLINEAR MELLIN-TYPE
CONVOLUTION OPERATORS

CARLO BARDARO, SARAH SCIAMANNINI & GIANLUCA VINTI

Abstract: In this paper we establish convergence results for a family T of nonlinear integral
operators of the form:

+oo +oo
(Twf)(s) = / Ku(t, f(st))dt = / Luw(t)Hw(f(st))dt, s RS,
u] 0

where f € DomT, DomT being the class of all the measurable functions f: IR(')" — R such that

Twf is well defined as Lebesguc integral for every s € RY. For the above family of nonlinear
Mellin type operators, under suitable singularity assumptions on the kernels K = {Ky}, we
state a convergence result of type limyw— 400 Vo {u(Twf — f)] = 0, for some constant g > 0 and
for every f belonging to a suitable subspace of BV, -functions.

Keywords: Musielak-Orlicz @-variation, V,-convergence, locally ¢, n-absolutely continuous
functions, nonlinear Mellin type convolution operators.

1. Introduction

In [16] there is considered convergence with respect to @-variation and rate of
approximation for a class of linear integral operators of the form:

(wa)(s) = Kw(sz t) f(t) dts (])
Rt

defined for every f € X for which (T3, f)(3) is well-defined for every s € Rt and
for every w > 0, being K,, : Rt x Rt — R} a family of kernel functions satisfy-
ing a general homogeneity condition with respect to a measurable function 7, and
where X denotes the space of all Lebesgue measurable functions f: R} — R. Re-
sults concerning estimates for operators of the form (I) with respect to ¢-variation

in one-dimensional and in multidimensional frame can be found in 3], [4], [17].
The concept of p-variation, has been introduced by L.C. Young in [18] and
in [14] this concept was developed by J. Musielak and W. Orlicz in the direction
of function spaces; it represents a generalization of the classical Jordan variation.
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Given a ¢-function ¢ : RY — R}, for every f € X, the Musielak-Orlicz
p-variation of f is defined as
Volfl = Volfi RT| = sup D el — £t-n)l)
i=1

1=

where the supremum is taken over all finite increasing sequences I1 in R} (see
[14], [12] in case of a bounded interval). By means of this functional it is possible
to define the space of functions with bounded -variation on R in the sense of
Musielak-Orlicz, as

BV,(R3) = {f € X : lim V,[Af] = 0}.
It is possible to observe that the functional p: X — [0, +oc}, defined by

p(f) = Vol +1£(all,

for some @ > 0, f € X, is a convex modular on X; therefore the space BV, (R{)
is connected with the theory of modular space and hence also the formulation of
convergence in -variation is connected with the modular convergence (see [15],
[12], [10]). Namely we will say that

a family (fw)wer+ € BVo(RY) is said to be convergent in p-variation to
f € BV,(RY) if there exists @ A > 0 such that V,[A(fu—f)] > 0 as w — +o0.

The problem of convergence in ¢-variation for a family of nonlinear integral
operators is very delicate. Indeed, the modular p above introduced, does not satisfy
the assumptions which are generally used in modular convergence problems of
various families of this kind of operators (see e.g. [13], [1], [5]). In this paper, using
a different approach, we will study properties of convergence in BV, (Rf) for the
family of nonlinear integral operators of Mellin-type:

+ o0

+0oo
Tuf)e) = [ Kult, flat))dr = / Lo(Ha(f(st))dt s €RE,  (IT)

where f € DomT, being DomT the class of all measurable functions f : RE —
R such that 7, f is well defined as Lebesgue integral for every s € Rf. The
above operators represent a nonlinear version of linear convolution Mellin-type
operators, which are considered in the classical theory of Mellin Transform (see
(6], [71).

For estimates with respect to y-variation (also in the generalized sense) for
operators of type (II), see [11].

The main result of the paper is a convergence theorem (Theorem 2) which
states that for f € ACY_(R*) N BV,14(RY), and under singularity assumptions
on the kernels K = {K,}, there is a constant u > 0 sufficiently small that

lim V,([u(Twf~f)l=0,

wW— 40
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that is the family of nonlinear integral operators converges with respect to ¢-va-
riation towards f. Here ¢ and 77 are two o-functions satisfying suitable assump-
tions. In order to formulate the convergence theorem (Theorem 2) there are of
fundamental importance the convergence in @-variation for the dilation operator
7, calculated over (Hy o f), as z — 1 (Theorem 1) and an equiboundedness in
- variation for the family {H,,0 f} (Lemma 3) together with the result (Lemma
3) that for every € > 0 there exists a step function v : R} — R such that

Vgo[/\(Hw Of'- V): [O>b” <&

for a suitable A > 0, uniformly with respect w > @ > 0 and for every interval
[0,b], and being f € ACY . (RE) N BV, (RY).

2. Preliminaries

Let X be the space of all Lebesgue measurable functions f : R} — R where
RS = [0, +00).
Let @ be the class of all nondecreasing functions ¢ : RY — R{ satisfying the
following assumptions:

1) ¢(0) =0, p(u) >0 for u>0;

ii) ¢ is a convex function on R{;

ili) utp(u) >0 as u — 0.
From now on we will always suppose that ¢ € & and we will say that ¢ is a
p-function.
Now, for every f € X, we define the Musielak-Orlicz p-variation of f as follows

Volfl = VolfsRY] = sup 3~ (1 (t:) = f(ti-1)])

where I1 denotes an increasing finite sequence in R} (see [14], [12]).
It is easy to see that the functional p: X — [0, +00}, defined by

p(f) = Volfl +1f(a)l,

for some a > 0, f € X, is a convex modular on X (see [12]).

In the following we will identify functions which differ from a constant.

By means of the above modular p, we define the space of functions with bounded
p-variation on RY in the sense of Musielak-Orlicz, as

BV,(Rf)={feX: }l\imop(/\f) =0}={feX: )l\in%}Vw[/\f] = 0}.
It is possible to observe that by monotonicity and convexity of ¢, we have

BV,(RY) = {f € X : 30> 0: V, [Af] < 400},
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and there results that if f € BV,(R}), then f is bounded in R{. In the following
we will denote BV,,(R}) simply by BV,

We will say that a family of functions {fu}wso is of equibounded ¢-variation if
it is of bounded -variation uniformly with respect to w > 0.

Now we recall the following result about -variation, which we will use in
the following (see [14], [2]):

j) if fl:f2;---7fn & X, then
AV IEED AT
i=]1 i=1

Let ¢,n : Rf — R{ be two ¢ — functions. We will say that a function
f: Rf — R is locally (p,n)-absolutely continuous if there is & A > 0 such
that the following property holds: for every € > 0 and every bounded interval
J C R}, thereis a § > 0 such that for any finite collection of non-overlapping

intervals [a;,b;] C J, i=1,2,..., N, with ):fvzl o(bi — a;) < & there results

N
Zn(f\lf(be) — flas)]) <e. (1)

If n = ¢ in the above property, we will say that f is locally - absolutely conti-
nuous (see [14], [12], [16]), and we will denote by AC{_(R3) the class of all these
functions.

We will say that a family of functions { fu }wso is locally equi (p, n) -absolutely
continuous if there is A > 0 such that for every € > 0 and every bounded interval
J C Rf, we can choose a § > 0 for which the local absolute -continuity of
fw holds uniformly with respect to w > 0. For n = ¢ we will speak of local equi
p-absolute continuity.

Let now K be the class of all the functions K : Rf x R — R of the form
K(t,u) = L(t)H(u), te R}, u€ R,

where L € LY(Rf), L > 0 and H : R — R is a function satisfying a Lipschitz
condition of type

|H(u) - H@)| < ¢(ju—]), v, veER, (2)

where ¢ : R — R} is a function with the following properties:
1. ¥(0) =0, ¥(u) > 0 for u > 0;
2. ¢ is continuous and nondecreasing.
We will denote with ¥ the class of all functions v satisfying the above
conditions.
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Let K = {Ky}wso be a set of functions from K, K, (¢, u) = Ly(t)Hy(u),
w >0, t € Ry, ue R We will say that K is singular in BV,,(R{), if the
following assumptions hold:
(K.1) there exists A > 0, such that 0 < [|L,,|}; = Ay, < A for every w > 0;
(K.2) for every 6 € (0,1), we have

lim L,(t)dt = 0;
W0 Jiyt»5

(K.3) putting Gu(u) = Hy(u) — u, for every u € R, w > 0, there exists
A > 0 such that
Vo [AGy, J] — 0, as w — +o0,

for every bounded interval J C Rf.

Example 1. For every n € N, let
Kn(t,u) = L, (t)Ha(u), t€RY, ueR,
where

_ fnlog(l+u/n), 0<u<l
Hn(u) = {nulog(l +1/n), u>l,

where we extend in odd-way the definition of H,, for u < 0; moreover {Ly, }nen is
a classical kernel with the mass concentrated at 1, i.e.

/ Ln(t)dt =1, for every n € N,
0

with the property (K.2). It is easy to show that
|Hp(u) — Ho(v)] < ju—v), for every u,v € R, and ne N

and, for every u > 0, we have

_ _ Ju—mnlog(l+ u/n), 0<u<l1
(Gn(w)] = |Hn(u) — ul = {u[l —nlog(l+1/n), u>1l

Then |Gp(u)| is increasing on RY. If ¢: RY — RY is a convex function, using
Proposition 1.03 in [14], we have, for every interval J = [0, M|,

VolGn, J] = ¢(IGn(M) — Gn(0)]) — 0, as n — +oo.

Analogously, by the definition of Hy for u < 0, we have V,,[Gn, [-M, 0] — 0,
as n — -+00.
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3. Preliminary lemmas

Before to formulate the following lemmas, we recall the concept of convergence in
-variation (see [14], [12], [2], [16]).

We say that a sequence (fw)wer+ € BV, is convergent in ¢-variation to
f € BV, if there exists a A >0 such that V,[A(fu — f)] = 0 as w — +o0.
Moreover we will use the following relation between the functions ¢, and 7,
being ¢,n two p-functions, with n not necessarily convex and ¢ € .

We say that the triple {¢, 7,9} is properly directed, if the following condition
holds (for similar assumptions see [11]): for every A > 0, there exists a constant
Cy such that

w(Cav(u)) < n(AMu), for every u > 0. (3)

Now we start to formulate the following lemma.

Lemma 1. Let f : Rf — R be a locally (p,n)-absolutely continuous function.
Let {Hy}w>0 be a class of functions satisfying (2) for a fixed ¢ € ¥ and let us
assume that the triple {p,n, ¢} Is properly directed.

Then the family {Hy, o f}wso is locally equi ¢-absolutely continuous.

Proof. Let A > 0 be a constant for which the definition of the (¢, n)-absolute
continuity of f holds and let 0 < u < Cj, being C, the constant in (3). Since f is
locally (¢, 7n)-absolutely continuous, for a fixed interval J C R and € > 0 there
isa & > 0 such that (1) holds for any finite collection of intervals I; = [a;, b;], i =
1,2,...N, with Eil @(b; — a;) < 6. For such a family {I;}, we have

N
>l (Hw o £)(b:) = (Hw o f)(a:)])

:Nl
< Zw(Cxw(!f(bi) - f(a))
1.1—vl
< Do) - fed) <e. .

Lemma 2. Let f be a locally p-absolutely continuous function such that f €
BV,(R]). Let {Hy}ws>o be a family of functions H,, : R — R such that (K.3)
Lolds. Then there is A > 0 such that the following property holds: for every
e > 0 and every interval (0,b] C R{, there are a W > 0 and a step function
v:R{ — R such that

VoA(Hu o f = 1), [0,b]) < e

uniformly with respect w > W > 0.

Proof. Let [0,b] C R} be a fixed bounded interval. From Lemma 1 in 16}, (see
also Theorem 2.21 of [14]), there is a A > 0 such that, for a fixed £ > O there
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exists a division D = {79 = 0,73,...,7, = b} of the interval [0,b], such that the
step function v : R — R, defined by

_fflna), ma<t<m, i=1,...m
"(t)‘{f(b),l £>b

satisfies
Vo [2M(f — v),[0,8]} < €/2.

Now, let D = {tp,t1,...,%,} be an arbitrary partition of [0,b], with t5 < t; <
... < tn. We have

> O Hw (£ () = v(te) = {Hu(f(t:e1)) = v(ti-1)})
i=1
<5 3PN H (7 (8)) - £() = {Hu(F () ~ St}
i=1

+ % Z P(2Af(8:) — v(t:) — {F (1) — v(ti-1)})

:Il+12'

Since f € BV, (RY), f is bounded, i.e. there is M > 0 such that |f(¢)] <
M. Putting J = [-M, M], we have

L< % V,[2AGy, J).
Thus using (K.3) we can take A > 0 such that I; < &/2 for sufficiently large
w > 0. The assertion follows being Iz < 1 V,[2A(f —v),[0,b]] < &/2. [

Lemma 3. Let f € BV,(R{) and {H,} be a family of functions H,, : R —
R satisfying (2). Let us suppose that the triple {¢,n, ¥} is properly directed. Then
the family {H, o f} is of equibounded ¢-variation on every interval I* C R{.

Proof. Let D = {to,t1,...t,} C I* be fixed and let A > 0. For 0 < p <
Cy, Cy being the constant in (3), we have

D e(pl(Hy o f)(8:) = (Hw o f)ti-1)])
i=1

< Z P(CAp(IF(t:) — Fltima)]).

Now, by (3) we have

> " e(ul(Hw o £)(t:) = (Huw © f)(ti1)))
i==1

<Y () = ft-1)]) S VoA T,
=1

and so the assertion follows. [ |
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4. An approximation result by means of the dilation operator

For any z € RT, we will put:
7. f(8) = f(s2),

for every f: R — R and s € Rf. Using the above lemmas, we show the following
theorem

Theorem 1. Let ¢, n be fixed and let f : R — R be a locally p-absolutely
continuous function, such that f € BV, ., (R{). Let {H,,} be a family of functions
H,, : R — R satisfying (K.3) and (2) for a fixed ¢ € ¥. Let us assume that the
triple {¢, 7,1} is properly directed. Then for every A > 0 there exist a constant
w>0 and W > 0 such that

i]_rg le[l‘(Tz(Hw of)—(Huwo[))=0

uniformly with respect to w > w.

Proof. Let g, = Hy 0 f, for w > 0. Since f € BV,(R{), from Lemma 1 of [16],
given £ > 0 thereis ¢ > 0 and A > 0 such that V,[Af, [¢, +00)] < €, for every
0 < A € Ap. From Lemma 3, there exists a constant g > 0 so small that

Vi [44gu, [es +00)] < ValA, [c, +oo)) < &

uniformly with respect to w > 0. Let us choose constants d,b with d > b > ¢ and
let v be a step function on [0, d] given in Lemma 2. Let now 2 be such that ¢/b <
z < min{d/b,b/c}. By convexity of o, and property j), for every z sufficiently
near to 1, we have now, for sufficiently small p > 0,

pr[/J(ngw - gw)]
< %{prl‘('rzgw - Ju), {Oz b]] + Vo [2ﬂ(Tz§w - Gu), [b, +0°)]}

< %W (729w ~ gu), [0,b] + ;}{Vw [44(72gw), [b, +00)] + V3 [4ps(gu), [b, +00)]}
< SVol2u(ragu = 91, (0] + 5 VoS, e +00)]

1
<s5V% 20(T2 9w — gw), [0,B]] + €.

The first inequality comes from a classical property of (-variation (see [14], Pro-
position 1.17).
Now we consider the interval I* = [0,b]. We have, for sufficiently small p > 0,

V¢[2;L(ngw - gw)aI*]
< %{leﬁﬂn(gw = V), I*] + Vo [6u(v — gu), I'] + V, [6u(T.v — v), I*]}

< %{2pr[6#(9w - V), [Oa d]] + Vnp[ﬁl»‘(TzV - V), [01 dj]}
=TI + Is.



Convergence in BV,, by nonlinear Mellin-type convolution operators 25

Now from Lemma 2, I) <¢/2, while as in Theorem 1 in [2], we have I < £/2.
Thus the assertion follows. (]

5. An approximation theorem for nonlinear Mellin-type convolution
operators

Let K = {K,(t,u)}wso be a singular kernel in BV, (Rj), where, as before,
Ky(t,u) = Ly(t)Hw(u) for t e Rf,u € R and w > 0.

We will study approximation properties of the family of nonlinear integral
operators T = {T,,} defined by

+o0 +20

(Tun)(e)= [ Kult, fa)dt = [ Lo(OH(r(s)de s € B,
where f € DomT. Let us remark here that if the function f issuch that (H,of) €
LY(RY), orif f € L®(Ry), then f € DomT. So in particular, if f is of bounded
-variation, where ¢ is an arbitrary -function, f € DomT.

Let now ¢,n be two -functions, with 7 not necessarily convex, such that
the triple {p,n,%} is properly directed. Then in [11] it is proved that if f €
BV,(RY) then T, f is of bounded -variation, for every w > 0.

We have the following

Theorem 2. Let f € ACP,(Rf) N BV,1,(R}) and let us assume that the tri-

loc

ple {¢,n,9} is properly directed. Let K = {K,,} C K be a singular kerne! in
BV,(R{). Then there exists a constant p > 0 such that

lim  Vpli(Tuf = ) = 0.

w— 400

Proof. First of all we remark that T,,f — f € BV,(R{). We can assume that
Ay = 1, for every w > 0, where A,, are the constants given in (K.1). Let A >
0 such that Vy[Af] < +00, and let p > 0 so small that 44 < C) and

zleri Vo 2u(rz(Hy o f) = (Hw o )] =0,
uniformly with respect to sufficiently large w > 0 (Theorem 1).

Let D = {sp,51,...,sn} C R be a finite increasing sequence and let
sufficiently small. We have:

N
> luh(Tu f)(s:) = (Twf)(si-1) = f(s:) + f(5e-1)]

i=]

N I
=Y wlu f Lo (8)[Huw (f(528)) — Hu(f(52))
T Hu(F(52)) = F(56) = Hul fl5e18)) + Hu(F(51-1)) — Hu(F(s3-2) + F(se-1)]dt]
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N 400
% Z / Lu(O)¢[2ul(Hu(f(s:t)

0

Hw(f(Si)))—(H (f(s:-1t)) — Hu(f (si-1)))]dt

N
v 1 Z [ (20 (Ha (F(52)) = F(50)) — (HulF(5i-1)) = Flsin)lldt
= I + Ig.

Now given d € (0,1), we write

et )

Lu(8)p[2ul(Hw(f(sit)) = Hu(f(s:))) — (Hw(f(si-12)) — Huw(f(si-1)))lldt
=11 + 1.

Next,

146
B<g [ LulVoloulrlfyo 1)~ (H, o fd

and so, for sufficiently small § € (0,1) we have I} <&, uniformly with respect
to w > 0.

Now, by property j),

I

IA

rhl»—* |

/ Lu(®)V, l4u(Hu o )ldt
1-t{>6

VyAf] Ly (t)dt,
[1-t]>5

and so, from (K.2), I? - 0, as w — +00.
Finally, we estimate I5. We have:

1 [t 1
L<s f Lu(8)Vo[2uGu] = 5 Vo[2uGul.
0
But since f is bounded, there is M > 0, such that |f(t)] < M for every t €
R}. Putting J = [—~M, M], we apply the singularity assumption (K.3) and we
obtain I — 0 as w — 400. The proof is now complete. [ ]
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Convergence in BV, by nonlinear Mellin-type convolution operators 27

References

(1]

6]
[7]

[12]
[13]
[14]
[15]

[16]

C. Bardaro, J. Musielak and G. Vinti, Approrimation by nonlinear inte-
gral operators in some modular function spaces, Annales Polonici Math. 63
(1996), 173-182.

C. Bardaro and G. Vinti, On convergence of moment operators with respect
to w-variation, Applicable Analysis 41 (1991), 247-256.

C. Bardaro and G. Vinti, Modular estimates of integral operators with homo-
geneous kernels in Orlicz type spaces, Results in Mathematics, 19 (1991),
46-53.

C. Bardaro and G. Vinti, Some estimates of integral operators with respect
to the multidimensional Vitali p-variation and applications in fractional cal-
culus, Rendiconti di Matematica, Serie VII, 11, Roma (1991), 405-416.

C. Bardaro and G. Vinti, Nonlinear weighted Mellin-type convolution opera-
tors: approxirnation properties in modular spaces preprint, Rapporto Tecnico
6/2000, Dipartimento di Matematica e Informatica, Universita di Perugia.

P.L. Butzer and S. Jansche, A direct approach to the Mellin Transform,
J. Fourier Anal. Appl. 3, (1997), 325-376.

P.L. Butzer and S. Jansche, The erponential sampling theorem of signal
analysis, Atti sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, a special isue
dedicated to Professor Calogero Vinti, (1998), 99-122.

P.L. Butzer and S. Jansche, Mellin-Fourier series and the classical Mellin
transform, in print in Computers and Mathematics with Applications.
P.L. Butzer and R.J. Nessel, Fourier Anealysis and Approzimation, I, Aca-
demic Press, New York-London, 1971.

W.M. Kozlowski, Modular Function Spaces, Pure Appl. Math., Marcel Dek-
ker, New York and Basel, 1988.

I[. Mantellini and G. Vinti, ®-variation and nonlinear integral operators, Atti
Sem. Mat. Fis. Univ. Modena, Suppl. Vol 46 (1998), 847-862, a special issue
dedicated to Professor Calogero Vinti.

J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture
Notes in Math., 1034 (1983).

J. Musielak, Nonlinear approximation in some modular function spaces
I, Math. Japonica, 38 (1993), 83-90.

J. Musielak and W. Orlicz, On generalized variation I, Studia Math. 18
(1959), 11-41.

J. Musielak and W. Orlicz, On modular spaces, Studia Math 28 (1959),
49-65.

S. Sciamannini and G. Vinti, Convergence and rate of approzimation in
BV, for a class of integral operators, to appear in Approximation The-
ory and its Applications.



28  Carlo Bardaro, Sarah Sciamannini & Gianluca Vinti

[17] G. Vintl, Generalized @-variation in the sense of Vitali: estimates for integral
operators and applications in fractional calculus, Commentationes Math. 34
(1994), 199-213.

[18] L.C. Young, General inequalities for Stieltjes integrals and the convergence
of Fourter series, Math. Annalen 115 (1938), 581-612.

Address: Carlo Bardaro, Sarah Sciamannini, Gianluca Vinti
Dipartimento di Matematica e Informatica Universitd degli Studi di Perugia Via Vanvi-
telli,1 06123 PERUGIA ITALY
Phone:(075) 5855034; (075) 5853823; (075) 5855032

Fux:(075) 5855024; (075) 5855024; (075) 5855024

E-mail: bardaro@dipmat.unipg.it; sciamannini@yahoo.com; mategian®unipg.it
Received: T May 2001



