ON SOME CONNECTIONS BETWEEN ZETA-ZEROS AND 3-FREE INTEGERS

K. M. Bartz

Abstract: A relationship between 3-free integers and zeros of the Riemann zeta-function, which is more explicit than the classical formula is presented.
Keywords: zeros of the Riemann zeta-function, 3 -free integers.

As usual, a natural number is called k-free if it is divisible by no integer k-th power other than 1. Denote $\mu_{3}(n)=1$ for 3 -free n and 0 for remaining n. Following some ideas of my previous works (see [2] and [3] and compare [6]) we will describe the analytic character of some functions $t(z)$ and $T(z)$ defined in the case where there are no multiple zeros o of the Riemann zeta-functions for $\operatorname{Im} z>0$ as follows

$$
t(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\varrho \\ 0<\operatorname{lm}^{\varrho} \varrho<r_{n}}} \frac{\varsigma\left(\frac{1}{3} \varphi\right) e^{\frac{1}{3} z \varrho}}{3 \zeta^{\prime}(\varrho)}
$$

and

$$
T(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\varrho \\ 0<\operatorname{Im}^{\varrho} \varrho<\tau_{n}}} \frac{\varsigma\left(\frac{1}{3} \varrho\right) e^{\frac{1}{3} \varrho z}}{\varrho \varsigma^{\prime}(\varrho)}
$$

where the summation is over all non-trivial zeros ϱ of $\varsigma(s)$. The sequence τ_{n} yields a certain grouping of the zeros.

If $\varsigma(s)$ has a multiple zero at $s=\varrho$, the corresponding term in $t(z)$ and $T(z)$ must be replaced by an appropriate residue. In the following we will consider this general case.

First we prove

Acknowledgment. Supported by KBN Grant nr 2 P03A 02809.
1991 Mathematics Subject Classification: 11N64

Theorem 1. The function $t(z)$ is holomorphic on the upper half-plane and can be continued analytically to a meromorphic function on the whole complex plane, which satisfies the following functional equation

$$
\begin{aligned}
t(z)+\overline{t(\bar{z})}=- & \frac{\epsilon^{z}}{\zeta(3)}-\sum_{l=0}^{\infty} \frac{e^{\left(-2 l-\frac{2}{3}\right) z}(2 \pi)^{+4 l+\frac{4}{3}} \Gamma\left(1+2 l+\frac{2}{3}\right) \varsigma\left(2 l+\frac{5}{3}\right)}{\pi \sqrt{3}(6 l+2)!\varsigma(6 l+3)} \\
& +\sum_{l=0}^{\infty} \frac{e^{\left(-2 l-\frac{4}{3}\right) z(2 \pi)^{4 l+\frac{8}{3}} \Gamma\left(2 l+\frac{7}{3}\right) \varsigma\left(2 l+\frac{7}{3}\right)}}{\pi \sqrt{3}(6 l+4)!\varsigma(6 l+5)}
\end{aligned}
$$

where the second term of the right side is an entire function of order $2 / 3$ of variable $z_{1}=e^{-z}$ (the Ritt order is equal to 2/3) and the third term is an entire function of the Ritt order equal to $4 / 3$.
The only singularities of $t(z)$ are simple poles at the points $z=\log n$ on the real axis, where n is a 3 -free number (also $n=1$) with residues

$$
\operatorname{res}_{z=\log n} t(z)=-\frac{\mu_{3}(n)}{2 \pi i}
$$

A more difficult problem connected with the analytic character of the function $T(z)$ will be described in

Theorem 2. The series

$$
\sum_{n=0}^{\infty} T_{n}(z)=\left(\sum_{\substack{\varrho \\ 0<\operatorname{Tn} \varrho<\tau_{1}}}+\sum_{n=1}^{\infty} \sum_{\tau_{n}<\operatorname{lm} \varrho<\tau_{n+1}}\right) \frac{\varsigma\left(\frac{1}{3} \varrho\right) e^{\frac{1}{3}} \varrho z}{\varrho \varsigma^{\prime}(\varrho)}
$$

where $z=x+i y$ is uniformly convergent for $y \geq \delta>0$ almost uniformly with respect to x. If $y=0$, suppose that, x is not equal to $\log n$, where n is 3 -free number, then the series $\sum_{n=0}^{\infty} T_{n}(x)$ is also convergent to $T(x)$ and the convergence is uniform in every closed interval not containing points of the form $\log n$.

Finally, applying Theorems 1 and 2 we prove an explicit formula for 3 -free integers which is also an explicit formula for $\zeta(3)$.

Let $Q_{3}(x)$ denote the number of 3 -free positive integers not exceeding x. Then evidently

$$
Q_{3}(x)=\sum_{n \leq x} \mu_{3}(n)=-2 \pi i \sum_{n \leq x} \operatorname{res}_{n=10 g n} t(z)
$$

Let

$$
Q_{3}^{0}(x)=\frac{Q_{3}(x+0)+Q_{3}(x-0)}{2}=\sum_{n \leq x}^{\prime} \mu_{3}(n)
$$

where Σ^{\prime} indicates that when x is a integer the term corresponding to $n=x$ to have the factor $\frac{1}{2}$. Then we have

Theorem 3. There is a sequence $\tau_{n}, 2^{n-1} c_{0} \leq \tau_{n}<2^{n} c_{0},(n \geq 1)$, where c_{0} is an absolute positive constant, such that

$$
\begin{aligned}
Q_{3}^{0}(x)= & \lim _{n \rightarrow \infty} \sum_{\substack{ \\
\mid \ln \varrho<\tau_{n}}} \frac{1}{\left(k_{Q}-1\right)!} \frac{d^{k_{Q}-1}}{d s^{k_{Q}-1}}\left[(s-\varrho)^{k_{Q}} \frac{x^{\frac{1}{3} s} \varsigma\left(\frac{1}{3} s\right)}{s \varsigma(s)}\right]_{s=\varrho} \\
& +\frac{x}{\varsigma(3)}+1+\sum_{l=0}^{\infty} \frac{(2 \pi)^{4 l+\frac{4}{3}} \Gamma\left(1+2 l+\frac{2}{3}\right) \varsigma\left(2 l+\frac{5}{3}\right)}{\pi \sqrt{3}(6 l+2)!\varsigma(6 l+3) x^{\left(2 l+\frac{2}{3}\right)}} \\
& -\sum_{l=0}^{\infty} \frac{(2 \pi)^{4 l+\frac{8}{3}} \Gamma\left(2 l+\frac{7}{3}\right) \varsigma\left(2 l+\frac{7}{3}\right)}{\pi \sqrt{3}(6 l+4)!\varsigma(6 l+5) x^{2 l+\frac{4}{3}}}
\end{aligned}
$$

where k_{ϱ} denotes the order of multiplicity of the nontrivial zero ϱ of the Riemann zeta-function $\varsigma(s)$.

For the proof of this theorems it is sufficient to remark that we have to consider for any complex $z=x+i y$ from the upper half-plane $H=\{z \in C ; \operatorname{Im} z>$ $0\}$, the integral

$$
\int \frac{\varsigma(s) e^{s z}}{\varsigma(3 s)} d s
$$

taken in the positive sense round the contour with the sides

$$
\left[\frac{4}{3}, \frac{4}{3}+i \frac{1}{3} \tau_{n}\right],\left[\frac{4}{3}+i \frac{1}{3} \tau_{n},-\frac{1}{6}+i \frac{1}{3} \tau_{n}\right],\left[-\frac{1}{6}+i \frac{1}{3} \tau_{n},-\frac{1}{6}\right]
$$

and by a simple and smooth curve $\tau[0,1] \longrightarrow C$ denoting by $l\left(-\frac{1}{6}, \frac{4}{3}\right)$ such that $\tau(0)=-\frac{1}{6}, \tau(1)=\frac{4}{3}$ and $0<\operatorname{Im} \tau<1$ for $t \in(0,1)$.

The sequence $\left(\tau_{n}\right)$ yields a certain grouping of the non-trivial zeros of the Riemann zeta function, implicated by the theorem of Balasubramanian and Ramachandra (see [1]) and independently of Montgomery (see [7]) and compare [5], th.9.4), such that $2^{n-1} c_{0} \leq \tau_{n}<2^{n} c_{0}$ for $n \geq 1$ with a suitable chosen constant c_{0}, such that

$$
\left|\varsigma\left(\sigma+i \tau_{n}\right)\right|^{-1} \leq c_{1}\left(\log \tau_{n}\right)^{c_{2}} \quad \text { for } \quad \sigma \geq-1
$$

where c_{1} and c_{2} are absolute constants, c_{0} depends on c_{2}.
In the proofs of theorem 1, 2 and 3, using methods presented in [2] and [3], we have to use the Mellin-Barnes integrals (see [4], p.64).

The presence of two last terms in theorem 2 and theorem 3 is easy to explain as follows.

We have by functional equation for s(s)

$$
\begin{aligned}
& \sum_{l=0}^{\infty} \underset{s=\left\{\begin{array}{c}
\operatorname{res} \\
-2 l-2 / 3 \\
-2 i-4 / 3
\end{array}\right.}{\operatorname{res}} \frac{e^{s z} \varsigma(s)}{\varsigma(3 s)} \\
& =\sum_{t=0}^{\infty} \underset{s=\left\{\begin{array}{c}
-2 t-2 / 3 \\
-2 t-4 / 3
\end{array}\right.}{\operatorname{res}} \frac{e^{s z} \Gamma(1-s) \varsigma(1-s)}{(2 \pi)^{2 s}\left(e^{i s \pi}+1+e^{-i s \pi}\right) \Gamma(1-3 s) \varsigma(1-3 s)} \\
& =\sum_{l=0}^{\infty} \frac{e^{(-2 l-4 / 3) z}(2 \pi)^{4 l+8 / 3} \Gamma(2 l+2+1 / 3) \varsigma(2 l+2+1 / 3)}{\pi \sqrt{3}(6 l+4)!\varsigma(6 l+5)} \\
& -\sum_{l=0}^{\infty} \frac{e^{(-2 l-2 / 3) z}(2 \pi)^{4 l+4 / 3} \Gamma(2 l+1+2 / 3) \varsigma(2 l+1+2 / 3)}{\pi \sqrt{3}(6 l+2)!\varsigma(6 l+3)}
\end{aligned}
$$

since

$$
\operatorname{res}_{s=-2-2 / 3} \frac{1}{e^{i s \pi}+1+e^{-i s \pi}}=\frac{1}{\sqrt{3} \pi}
$$

and

$$
\operatorname{res}_{s=-2-4 / 3} \frac{1}{e^{i s \pi}+1+e^{-i s \pi}}=-\frac{1}{\pi \sqrt{3}} .
$$

References

[1] R. Balasubramanian, R. Ramachandra, On the frequency of Titchmarsh's phenomenon fors(s), III. Proc. Indian Acad. Sci. 86A (1977) 341-351.
[2] K. M. Bartz, On some complex explicit formulae connected with the Möbius function. I, II Acta Arithmetica LVII (1991), 283-305.
[3] K. M. Bartz, On some connections between zeta-zeros and square-free integers, Monatshefte für Mathematik 114 (1992), 15-34.
[4] H. Bateman, A. Erdelyi, Higher transcendental functions, Vol. 1, Mc Graw-Hill Book Company, 1953 (russian translation, Moskwa 1973).
[5] A. Ivic, The Riemann zeta function. The theory of the Riemann zeta-function with applications, Wiley, New York 1985.
[6] J. Kaczorowski, The k-functions in multiplicative number theory, I. On complex explicit formulae, Acta Arithmetica LVI (1990), 195-211.
[7] H. L. Montgomery, Extreme values of the Riemann zeta-function, Comment. Math. Helv. 52 (1977), 511-518.

Address: Krystyna Maria Bartz, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
E-mail: kbartz@math.amu.edu.pl
Received: 26 Oct 2000

