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As usual, a natural number is called k-free if it is divisible by no integer k-th 
power other than 1. Denote µ 3 (n) = 1 for 3-free n and O for remaining n. 
Following some ideas of my previous works (see [2] and [3] and compare [6]) we 
will describe the analytic character of some functions t(z) and T(z) defined in 
the case where there are no multiple zeros e of the Riemann zeta-functions for 
Im z > 0 as follows 

t(z) = lim I: 
<;(½e)e½ze 

n->x 3<;' (e) e 
O<lme<rn 

and 

T(z) = lim I: 
,(½e)e½ez 

n->x e,' (e) (! 

O<lme<rn 

where the summation is over all non-trivial zeros e of <;(s). The sequence Tn 

yields a certain grouping of the zeros. 
If <;(s) has a multiple zero at s = e, the corresponding term in t(z) and 

T(z) must be replaced by an appropriate residue. In the following we will consider 
this general case. 

First we prove 
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Theorem 1. The function t(z) is holomorphic on the upper half-plane and can 
be continued anal_vticall.v to a meromorphic fimction on the wholP complex plane, 
which satisfies the following functional equation 

~ ez 00 e<- 21 -i)z(27r)+4l+½q1 + 2l + ?)c;(2l + §_) 
t(z) + t(z) = - .;(3) - ~ 7rv'3(6l + 2)k(61 + 3) 3 

oc e(-2l-f)z(27r)4l+iq2l + f )c;-(21 + i) 
+ ~ 7Tv'3(6l + 4)k(6l + 5) 

where the sPcond term of the right side is an entire function of order 2/3 of variable 
z1 = e-z (the Ritt order is equal to 2/3) and the third term is an entire function 
of the Ritt order equal to 4/3. 
The only singularities of t( z) are simple poles at the points z = log n on the real 
axis, where n is a 3-free number (also n = 1) with residues 

J13 (n) res t(z) = ---.-
z=log n 27Ti 

A more difficult problem connected with the analytic character of the func
tion T ( z) will be described in 

Theorem 2. The series 

t Tn(z) = ( L 
n=O i! 

O<lm u<n 

where z = .r + iy is uniformly convergent for y 2: b > 0 almost uniformly with 
respect to x. If y = 0, suppose that, x is not equal to log n, where n is 3-free 
number, then the series L~o Tn(x) is also convergent to T(x) and the conver
gence is uniform in every closed interval not containing points of the form log n. 

Finally, applying Theorems 1 and 2 we prove an explicit formula for :3-free 
integers which is also an explicit formula for ((3). 

Let Q:i(x) denote the number of 3-free positive integers not exceeding x. 
Then evidently 

Q3(.r) = '""µ3(n) = -27ri'"" res t(z) L L z=logn 
n:Sx n'.S;x 

Let 

Qo(· ) _ Q3(:r + 0) + Q3(.1.· - 0) _ '"" 1 ( ) 
3 x - 2 - L J13 n 

nS.r 

where :E' indicates that when x is a integer the term corresponding to n = x to 
have the factor ½ . Then we have 
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Theorem 3. There is a sequence Tn, 2n- 1eo '.S Tn < 2neo, (n 2: 1), where eo is 
an absolute positive constant, such that 

1 dk 0 -l [ x½sc;( ls)] 
Qg(x) = ;~~ ~ (ke - 1)! dske-I (s - elo sc;(s) s=e 

llmel<rn 

x x (21r) 41+½q1+2l+~)c;(2l+!) 
+-+l+ L 2 

c;(3) L=O 1rv'3(6l + 2)!c;(6l + 3)x(21+a) 

x (21r) 41+iq2l + f )c;(2l + f) 
- ~ 1rv'3(6l + 4)!c;(6l + 5)x21+½ 

where ke denotes the order of multiplicity of the nontrivial zero {! of the Riemann 
zeta-function c;( s). 

For the proof of this theorems it is sufficient to remark that we have to 
consider for any complex z = x+iy from the upper half-plane H = {z EC: Im z > 
0} , the integral 

J c;(s)esz 
---ds 
c;(3s) 

taken in the positive sense round the contour with the sides 

and by a simple and smooth curve r[O, 1] ---. C denoting by l (-¼, 1) such that 
r(O) = -¼, r(l) = i and O < Imr < 1 fort E (0, 1). 

The sequence ( T 11 ) yields a certain grouping of the non-trivial zeros of the 
Riemann zeta function, implicated by the theorem of Balasubramanian and Ra
machandra (see [1]) and independently of Montgomery (see [7]) and compare [5], 
th.9.4), such that 2n- 1eo '.S Tn < 2nco for n 2: 1 with a suitable chosen constant 
Co , such that 

for a- 2: -1 

where c1 and c2 are absolute constants, co depends on c2. 
In the proofs of theorem 1, 2 and 3, using methods presented in [2] and [3], 

we have to use the Mellin-Barnes integrals (see [4], p.64). 
The presence of two last terms in theorem 2 and theorem 3 is easy to explain 

as follows. 



23G K. M. Bartz 

since 

and 

We have by functional equation for <;( s) 

:x., 

'"""' res L., {-21-2/3 
l=O s~ 

eszc;(s) 

<;(3s) 
-21--l; 3 

= 
= '"""' res L., {-21-2/3 

1-0 s= 
21-4/3 

= e( - 2!-,i/3l 2 (21r) 41 +8 13 f(2l + 2 + 1/3h(2l + 2 + 1/3) 
= ~ nJ;3(6l + 4)k(6l + 5) 

= e(- 21 - 2/ 3 ) 2 (21r) 41 +4/3 f(2l + 1 + 2/3)c;(2l + 1 + 2/3) 
- ~ 1rJ;3(6l + 2)!<;(61 + 3) 

l 1 
res . . r;, 

s=-2-2/3 e'8 " + l + e-,s1r y 371" 

1 
res . . 

s=-2-4/:3 f 18 " + 1 + e-zs:r 

1 
1rv13 . 
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