AVERAGE VALUES OF QUADRATIC TWISTS OF MODULAR L-FUNCTIONS

V. Kumar Murty ${ }^{*}$ and Tomasz Stefanicki

Abstract: This paper studies non-vanishing of quadratic twists of automorphic forms f on $G L(2)$ over Q at various points inside the critical strip. Given any point w_{0} inside the critical strip, and $\epsilon>0$, we show that at least $Y^{12 / 17-\varepsilon}$ of the quadratic twists $L\left(f, \chi_{d}, s\right)$ with $|d| \leq Y$ do not vanish inside the disc $\left|w-w_{0}\right|<(\log Y)^{-1-\varepsilon}$. (Here $d \equiv 1 \bmod 4$ is a fundamental discriminant and χ_{d} denotes the Kronecker symbol.) If we assume the Ramanujan conjecture about the Fourier coefficients of f (in particular, if f is holomorphic) then $\frac{12}{17}$ above can be replaced with 1 .

This should be compared with a result of Ono and Skinner [10] which states that if f is a holomorphic newform of even weight and trivial character, then at least $\gg / \log Y$ of the quadratic twists $L\left(f, \chi_{d}, s\right)$ are nonzero at the central critical point. A slighty weaker result. had been proved earlier by Perelli and Pomykala [11]. By contrast, we make no restriction on the holomorphy of f and the result holds even if f has non-trivial central character. Moreover, we prove non-vanishing in a disc about any point in the critical strip. As in [11], our tools are the method of Iwaniec [4] and a mean value estimate of Heath-Brown [3].

1. Introduction

Let f be a cusp form which is a normalized eigenform for the Hecke operators, of level N, character ω and weight k (k is a positive integer and $k=1$ if f is real-analytic due to our normalization). We have an expansion

$$
f(z)= \begin{cases}\sum_{n \geq 1} a(n) e(n z) & \text { if } f \text { is holomorphic } \\ \sum_{n \neq 0} a(n) 2 \sqrt{y} K_{v}(2 \pi|n| y) e(n x) & \text { if } f \text { is real analytic. }\end{cases}
$$

Here $e(z)=\exp (2 \pi i z), z=x+i y$ and K_{ν} denotes the Bessel function of degree ν. It is known that

$$
\begin{gather*}
|a(n)| \leq \mathbf{d}(n) n^{(k-1) / 2+\alpha} \tag{1.1}\\
\sum_{|n| \leq x}|a(n)| \ll x^{(k+1) / 2} \tag{1.2}
\end{gather*}
$$

[^0]where $\mathbf{d}(n)$ denotes the number of positive divisors of n. If f is holomorphic, the Ramanujan-Petersson conjecture is known and we may take $\alpha=0$. By a recent result of Kim and Shahidi [6], we have $\alpha \leq \frac{5}{34}$ if f is real analytic.

Let χ_{d} denote the quadratic character (d / \cdot). Then the Dirichlet series

$$
L\left(f, \chi_{d}, s\right)=\sum_{n \geq 1} a(n) \chi_{d}(n) n^{-s}=\prod_{p}\left(1-\alpha(p) \chi_{d}(p) p^{-s}\right)^{-1}\left(1-\beta(p) \chi_{d}(p) p^{-s}\right)^{-1}
$$

converges absolutely for $\Re(s)>\frac{1}{2}(k+1)$ and has an analytic continuation as an entire function of s. If d is a fundamental discriminant (i.e. d is squarefree and $\equiv 1(\bmod 4)$ or $d=4 d_{0}, d_{0}$ squarefree $\left.\equiv 2,3 \quad(\bmod 4)\right)$ and $(d, N)=1$, we have the functional equation

$$
A_{d}^{s} \tilde{\Gamma}(s) L\left(f, \chi_{d}, s\right)=\omega_{d} A_{d}^{k-s} \tilde{\Gamma}(k-s) L\left(\bar{f}, \chi_{d} \cdot k-s\right)
$$

where

$$
\begin{aligned}
A_{d} & = \begin{cases}d \sqrt{N} / 2 \pi & \text { if } f \text { is holomorphic } \\
d \sqrt{N} / \pi & \text { if } f \text { is real analytic }\end{cases} \\
\tilde{\Gamma(s)} & = \begin{cases}\Gamma(s) & \text { if } f \text { is holomorphic } \\
\Gamma\left(\frac{s+\nu}{2}\right) \Gamma\left(\frac{s-\nu}{2}\right) & \text { if } f \text { is real analytic }\end{cases}
\end{aligned}
$$

and

$$
\omega_{d}=\omega_{1} \chi_{d}(-N) \omega(d), \quad \omega_{1} \in \mathbf{C}, \quad\left|\omega_{1}\right|=1
$$

We are interested in the average value of the L-function $L\left(f, \chi_{d}, s\right)$ in the critical strip. In [9], Chapter 6 , it was shown that if f is holomorphic and $k=2$, then

$$
\sum_{d \equiv a}^{(\bmod 4 N) \cdot|d| \leq Y} 1 L\left(f, \chi_{d}, 1\right)\left(1-\frac{|d|}{Y}\right)=c Y+\mathbf{O}\left(Y(\log Y)^{-,^{3}}\right)
$$

for some $c \neq 0$ and $\beta>0$ where the sum ranges over all d (i.e. not only over fundamental discriminants). It follows that there are infinitely many fundamental discriminants d such that $L\left(f, \chi_{d}, 1\right) \neq 0$ and this was the first such result for forms f with non-trivial Nebentypus character ω. The methods of [9$]$ were a refinement of those of [8]. In [12]. Stefanicki showed that the method of Iwaniec [4] could be used to prove a similar asymptotic formula ranging over fundamental discriminants and with a sharper error term. An analogous result was established by Friedberg and Hoffstein [2] for automorphic forms on $G L(2)$ over number fields using metaplectic Eisenstein series.

In this paper we use the method of Iwaniec [4] to prove the following estimate. Let $a \equiv 1 \quad(\bmod 4) \cdot(a, 4 N)=1$. Set

$$
D_{a}^{ \pm}=\{n \in \mathbf{N}: \operatorname{sgn}(n)= \pm, n \equiv a \quad(\bmod 4 N)\}
$$

and

$$
D_{a}=D_{a}^{+} \cup D_{a}^{-}
$$

Let F be a smooth compactly supported function in \mathbf{R}^{+}with positive mean value $\int_{0}^{\infty} F(t) d t$ and let μ denote the Möbius function.

Theorem 1.1. Let $\varepsilon>0$. Let $w_{0} \in \mathbf{C}$ satisfy $\Re w_{0} \in[k / 2,(k+1) / 2)$ and for each $d \in D_{a}^{ \pm},|d| \ll Y$ choose $w_{d} \in \mathbf{C}$ in the disc $\left|w-w_{0}\right| \leq \lambda \stackrel{\text { def }}{=} 1 /(\log Y)^{1+\varepsilon}$. Then
$\sum_{d \in D_{a}} \mu^{2}(|d|) L\left(f, \chi_{d}, w_{d}\right) F\left(\frac{|d|}{Y}\right)=\mathrm{c} Y+\mathbf{O}\left(\left|\tilde{\Gamma}\left(w_{0}\right)\right|^{-1} \lambda Y^{1+k / 2-\Re w_{0}} \log Y \log \log Y\right)$
where $c=c\left(f, F, w_{0}, a\right) \neq 0$.
The proof is essentially the same as in [4]. However, it is necessary to keep track of the appearance of α and for this reason, we write out the details.

Theorem 1.2. With the same notation and hypotheses as above,

$$
\sum_{d \in D_{a}^{ \pm}| | d \mid \ll Y} \mu^{2}(|d|)\left|L\left(f, \chi_{d}, w_{d}\right)\right|^{2} \ll\left|\vec{\Gamma}\left(w_{0}\right)\right|^{-2} Y^{1+\varepsilon+2 \alpha} .
$$

These mean-value estimates have the following consequence for zeros of $L\left(f, \chi_{d}, s\right)$.
Theorem 1.3. With notation as in Theorem 1.1, there are $>_{\left|w_{0}\right|} Y^{1-2 \alpha-\varepsilon}$ fundamental discriminants $|d| \ll Y$ such that $L\left(f, \chi_{d}, s\right)$ has no zero in the disc $\left|s-w_{0}\right| \leq \lambda$.

Thus, using $\alpha \leq 5 / 34$, we get $\gg Y^{12 / 17-\varepsilon}$ non-vanishing quadratic twists. If we assume the Ramanujan conjecture, we get $\gg Y^{1-\xi}$ such twists. Theorem 1.3 follows from Theorem 1.1 and 1.2 by the Cauchy-Schwartz inequality.

Remarks

1. It is often possible to obtain an asymptotic formula in Theorem 1 when we restrict summation to D_{a}^{+}or D_{a}^{-}. Indeed, it is always possible if $\Re w_{0} \neq k / 2$. If $\Re w_{0}=k / 2$, then either D_{a}^{+}or D_{a}^{-}will yield an asymptotic formula. The general formula is given in the final section.
2. For a general L-function which can be represented by an Euler product let us write $L_{(a)}(s)$ for the Euler product with p-factors for $p \mid a$ removed. Then the constant in Theorem 1.1 is given by

$$
\begin{aligned}
c\left(f, F, w_{0}, a\right)=\frac{1}{2 N \zeta_{(4 N)}(2)} & L_{(2)}\left(w^{2}, 4 w_{0}-2 k+2\right)^{-1} P\left(2 w_{0}\right) \times \\
& \times f_{4 N}\left(w_{0}\right) L_{(4 N)}\left(S y m^{2}(f) \cdot 2 w_{0}\right) \int_{0}^{\infty} F(t) d t
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta function, $L\left(\omega^{2}, s\right)$ is the Dirichlet L-function associated to the character $\omega^{2}, P(s)$ is a certain function which depends on f and which is represented by an absolutely convergent Euler product for $\Re s>k-1+2 \alpha$ and does not vanish for $\Re s \geq k, f_{4 N}(s)$ is a certain function which depends on
f and which does not vanish for $\Re s \geq k / 2$ and $L\left(S y m^{2}(f), s\right)$ is the L-function attached to the symmetric square of f.
3. Several authors have shown that in some cases, a positive proportion of the twists are nonzero. For this, we refer the reader to works of James, Kohnen, Vatsal, Ono and Skinner (see [1] for the references). Also, Ono and Skinner [10] showed that for holomorphic newforms with trivial character, there are at least $\gg Y / \log Y$ quadratic twists for which the L-function does not vanish at the central critical point. These methods do not appear to work for other points or for non-holomorphic forms as they rely on the relationship of the central critical value to the Shimura lift and on the existence of Galois representations.

2. Preliminaries

Consider the integral

$$
S\left(f, \chi_{d}, w, X\right)=\frac{1}{2 \pi i} \int_{(\gamma)} \tilde{\Gamma}(w+s) L\left(f, \chi_{d}, w+s\right) X^{s} \frac{d s}{s}
$$

We have

$$
S\left(f, \chi_{d}, w, X\right)=\sum_{n \geq 1} a(n) \chi_{d}(n) n^{-w} W\left(w, \frac{n}{X}\right)
$$

where

$$
\begin{aligned}
W(w, X) & =\frac{1}{2 \pi i} \int_{(\gamma)} \tilde{\Gamma}(w+s) X^{-s} \frac{d s}{s} \\
& = \begin{cases}\int_{X}^{\infty} u^{w-1} \exp (-u) d u & \text { if } f \text { is holomorphic } \\
\int_{X}^{\infty} u^{w-1} K_{\nu}(u) d u & \text { if } f \text { is real analytic. }\end{cases}
\end{aligned}
$$

For d squarefree $\equiv 1(\bmod 4)$, the functional equation implies that

$$
\tilde{\Gamma}(w) L\left(f, \chi_{d}, w\right)=S\left(f, \chi_{d}, w, X\right)+\omega_{d} A_{d}^{k-2 w} S\left(\bar{f}, \chi_{d}, k-w, A_{d}^{2} X^{-1}\right) .
$$

As in Iwaniec [4], we obtain

$$
\sum_{d \in D_{a}^{ \pm}} \mu^{2}(|d|) L\left(f, \chi_{d}, w_{d}\right) F\left(\frac{|d|}{Y}\right)=M_{1}^{ \pm}+M_{2}^{ \pm}+R_{1.1}^{ \pm}+R_{2.1}^{ \pm}
$$

where for $i=1,2$,

$$
M_{i}^{ \pm}=\omega_{d}^{*} \sum_{r \leq A .(r .4 N)=1} \mu(r) \sum_{d \in D_{a \bar{r}^{2}}^{ \pm}} \frac{1}{\tilde{\Gamma}\left(w_{d}\right)} S\left(f^{*}, \chi_{d r^{2}}, w_{d}^{*}, A_{\left.d r^{2}\right)} F\left(\frac{|d| r^{2}}{Y}\right) A_{d r^{2}}^{w_{d}^{*}-w_{d}}\right.
$$

and
$R_{i, 1}^{ \pm}=\omega_{a}^{*} \sum_{b \geq 1,(b, 4 N)=1} \sum_{r \mid b, r>A} \mu(r) \sum_{d \in D_{a \bar{\phi}^{2}}^{ \pm}} \mu^{2}(|d|) \frac{1}{\widetilde{\Gamma}\left(w_{d}\right)} S\left(f^{*}, \chi_{d b^{2}}, w_{d}^{*}, A_{d b^{2}}\right) F\left(\frac{|d| b^{2}}{Y}\right)$

Here, A is a power of Y to be specified later, \bar{r} and \bar{b} denote the multiplicative inverses of r and b modulo $4 N$ and

$$
\left(f^{*}, w_{d}^{*}, \omega_{a}^{*}\right)= \begin{cases}\left(f, w_{d}, 1\right) & \text { if } i=1 \\ \left(\bar{f}, k-w_{d}, \operatorname{sgn}(d) \omega_{1}\left(\frac{a}{N}\right) \omega(a)\right) & \text { if } i=2\end{cases}
$$

Every integer can be written uniquely as a product $n=k_{1} l^{2} m$ where $p\left|k_{1} \Rightarrow p\right| 4 N$, $(l m, 4 N)=1$ and m squarefree. Then

$$
\chi_{d}\left(m l^{2}\right)= \begin{cases}\chi_{d}(m) & \text { if }(d, l)=1 \\ 0 & \text { otherwise }\end{cases}
$$

To ensure that the condition $(d, l)=1$ holds we introduce the sum $\sum_{q \mid(d, l)} \mu(q)$. Also, we use the expansion

$$
\chi_{d}(m)=\bar{\varepsilon}_{m} m^{-\frac{1}{2}} \sum_{2|\rho|<m} \chi_{N \rho}(m) e\left(\frac{\overline{4} \bar{N} \rho d}{m}\right)
$$

where

$$
\varepsilon_{m}= \begin{cases}1 & \text { if } m \equiv 1 \quad(\bmod 4) \\ i & \text { if } m \equiv 3 \quad(\bmod 4)\end{cases}
$$

and $\bar{N} \bar{N}$ is the multiplicative inverse of $4 N$ modulo m. The introduction of this expansion is a key factor of Iwaniec's argument in [4].

This brings $M_{i}^{ \pm}$to the form

$$
\begin{align*}
& M_{i}^{ \pm}=\omega_{a}^{*} \sum_{r \leq A,(r, 4 N)=1} \mu(r) \sum_{n=k_{1} b^{2} m \cdot(n, r)=1} a^{*}(n)\left(\frac{a}{k_{1}}\right) \sum_{q \mid l} \mu(q) \sum_{d, d r^{2} q \in D_{\alpha}^{ \pm}} n^{-w_{d}^{*}} \tag{2.2}\\
& \sum_{2|\rho|<m} \frac{1}{\tilde{\Gamma}\left(w_{d}\right)} \epsilon_{m} m^{-\frac{1}{2}} \chi N_{p q}(m) e\left(\frac{\bar{A} \bar{N} \rho d}{m}\right) W\left(w_{d}^{*}, \frac{n}{A_{d r^{2} q}}\right) F\left(\frac{|d| r^{2} q}{Y}\right) A_{d r^{2} q}^{w_{d}^{*-} w_{d}}
\end{align*}
$$

where $a^{*}(n)=a(n)$ or $\bar{a}(n)$ depending on whether $i=1$ or 2 . Let us set

$$
\Delta=\min \left(\frac{1}{2}, r^{2} q Y^{\xi-1}\right)
$$

Then we can write

$$
M_{i}^{ \pm}=M T_{i}^{ \pm}+R_{i, 2}^{ \pm}+R_{i, 3}^{ \pm}
$$

where in $M T_{i}^{ \pm}, \rho=0$, in $R_{i, 2}^{ \pm}, \Delta m \geq|\rho|>0$, and in $R_{i, 3}^{ \pm}, \Delta m<|\rho|<m / 2$. The following lemma is another key feature of [4] and it is very useful in estimating the above sums.

Lemma 2.1. Suppose that ψ is a periodic function of period r and $|\psi| \leq 1$. Suppose $\alpha \in \mathbf{R}$ and $a \in \mathbf{Z}$. Then

$$
\begin{aligned}
\sum_{|n| \leq x} a(n) e(\alpha n) & \ll x^{k / 2} \log x \\
\sum_{\mid n \leq x \cdot(n, a)=1} \mu^{2}(n) \psi(n) a(n) e(\alpha n) & \ll \mathbf{d}(a) r^{1 / 2} x^{k / 2}(\log x)^{3} .
\end{aligned}
$$

We will also need the following standard bounds for the kernel function W and its derivatives

$$
\begin{align*}
W^{(i)}\left(w^{*}, X\right) & \ll \begin{cases}X^{\Re\left(w^{*}-\nu\right)-i} & \text { if } X \ll 1 \\
X_{\Re\left(w^{*}-\frac{3}{2}\right)} \exp (-X) & \text { as } X \rightarrow \infty, f \text { real-analytic } \\
X^{\Re\left(w^{*}-1\right)} \exp (-X) & \text { as } X \rightarrow \infty, f \text { holomorphic }\end{cases} \tag{2.3}\\
& \ll . . c \left\lvert\, \begin{array}{ll}
\Re\left(w^{*}-\nu\right)-i & \exp (-c X)
\end{array}\right.
\end{align*}
$$

where c is a positive constant.

3. The second moment

We have for d squarefree, $\equiv 1(\bmod 4)$, the functional equation

$$
\tilde{\Gamma}(w) L\left(f, \chi_{d}, w\right)=S\left(f, \chi_{d}, w, X\right)+\omega_{d} A_{d}^{k-2 w} S\left(\bar{f}, \chi_{d}, k-w, A_{d}^{2} X^{-1}\right)
$$

Using the exponential decay of $W(w, n / X)$ we see that

$$
\begin{aligned}
& \sum_{\mid d \leq \leq Y, d \in D_{a}^{ \pm}}\left|\sum_{n} a(n) \chi_{d}(n) n^{-w} W\left(w, \frac{n}{X}\right)\right|^{2} \\
& \ll \sum_{|d| \leq Y, d \in D_{a}^{ \pm}}\left|\sum_{n \ll X} a(n) \chi_{d}(n) n^{-w} W\left(w, \frac{n}{X}\right)\right|^{2}
\end{aligned}
$$

and this is

$$
\left.\left.\ll(\log X)^{2} \max _{M \ll X} \sum_{|d| \leq Y, d \in D_{a}^{ \pm}}\right|_{M \leq n \leq 2 M} a(n) \chi_{d}(n) n^{-w} W\left(w, \frac{n}{X}\right)\right|^{2} .
$$

Now by [3], Corollary 3 this is

$$
\ll(\log X)^{2} \max _{A \ll X} Y^{\epsilon} M^{1+\epsilon}(Y+M) \max _{M \leq n \leq 2 M}\left|d(n) n^{(k-1) / 2+\alpha-\Re w}\right|^{2} .
$$

Simplifying, this is

$$
\ll Y^{\epsilon}(X+Y) X^{2 \epsilon+k+2 \alpha-2 \Re w}
$$

Now,

$$
S\left(f, \chi_{d}, w_{d}, X\right)=\frac{1}{2 \pi i} \int_{\left|w-w_{0}\right|=2 \lambda} \frac{S\left(f, \chi_{d}, w, X\right)}{w-w_{d}} d w
$$

so

$$
\begin{aligned}
& \sum_{|d| \leq Y, d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|S\left(f, \chi_{d}, w_{d}, X\right)\right|^{2} \\
& \ll \lambda^{-1} \int_{0}^{2 \pi} \sum_{|d| \leq Y, d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|S\left(f, \chi_{d}, w_{0}+2 \lambda e^{i \theta}, X\right)\right|^{2} d \theta \\
& \ll Y^{\epsilon}(X+Y) X^{k+2 \epsilon-2 \Re w_{0}+4 \lambda+2 \alpha}
\end{aligned}
$$

uniformly for w_{d} as above. Now using partial summation we deduce that

$$
\begin{aligned}
& \sum_{|d| \leq Y, d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|S\left(f, \chi_{d}, w_{d}, X\right) A_{d}^{2 w_{d}-k}\right|^{2} \\
& \ll Y^{2\left(2 \Re w_{0}-k\right)+\epsilon}(X+Y) X^{2 \varepsilon+k+2 \alpha+4 \lambda-2 \Re\left(w_{0}\right)}
\end{aligned}
$$

Similarly

$$
\sum_{|d| \leq Y \cdot d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|S\left(\bar{f}, \chi_{d \cdot} k-w_{d}, X\right)\right|^{2} \ll Y^{\epsilon}(X+Y) X^{2 \epsilon-k+2 \alpha+2 \pi\left(w_{0}\right)+6 \lambda}
$$

Now, from the functional equation

$$
\begin{aligned}
&\left|\tilde{\Gamma}\left(w_{d}\right) L\left(f, \chi_{d}, w_{d}\right) A_{d}^{2 w_{d}-k}\right|^{2} \\
& \ll\left|S\left(f, \chi_{d}, w_{d}, X\right) A_{d}^{2 w_{d}-k}\right|^{2}+\left|S\left(\tilde{f}, \chi_{d}, k-w_{d}, A_{d}^{2} X^{-1}\right)\right|^{2}
\end{aligned}
$$

Multiplying both sides by $d X / X$ and integrating over X in the range $\left(\frac{1}{2} A_{d}, A_{d}\right)$, we find

$$
\begin{aligned}
&\left|\tilde{\Gamma}\left(w_{d}\right) L\left(f, \chi_{d}, w_{d}\right) A_{d}^{2 u_{d}-k}\right|^{2} \\
& \ll \int_{\frac{1}{2} A_{d}}^{A_{d}}\left|S\left(f, \chi_{d}, w_{d}, X\right) A_{d}^{2 w_{d}-k}\right|^{2} \frac{d X}{X} \\
& \quad+\int_{\frac{1}{2} A_{d}}^{A_{d}}\left|S\left(\bar{f}, \chi_{d}, k-w_{d} \cdot \frac{A_{d}^{2}}{X}\right)\right|^{2} \frac{d X}{X} .
\end{aligned}
$$

In the second integral we change the variable to $u=A_{d}^{2} / X$. Then we extend the range of integration in both integrals to obtain

$$
\begin{aligned}
& \left|\tilde{\Gamma}\left(w_{d}\right) L\left(f, \chi_{d}, w_{d}\right) A_{d}^{2 w_{d}-k}\right|^{2} \\
& \quad \ll \int_{1}^{c N Y}\left(\left|S\left(f, \chi_{d}, w_{d}, X\right) A_{d}^{2 w_{d}-k}\right|^{2}+\left|S\left(\bar{f}, \chi_{d}, k-w_{d}, X\right)\right|^{2}\right) \frac{d X}{X}
\end{aligned}
$$

Now summing over d, we deduce that

$$
\sum_{|d| \leq Y, d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|\check{\Gamma}\left(w_{d}\right) L\left(f, \chi_{d}, w_{d}\right) A_{d}^{2 w_{d}-k}\right|^{2} \lll Y^{1+\varepsilon+2 \alpha+6 \lambda+2 \Re\left(w_{0}\right)-k}
$$

Using partial summation we obtain

$$
\sum_{|d| \leq Y, d \in D_{a}^{ \pm}} \mu^{2}(|d|)\left|L\left(f, \chi d, w_{d}\right)\right|^{2} \ll\left|\tilde{\Gamma}\left(w_{0}\right)\right|^{-2} Y^{-1+\varepsilon+2 \alpha} .
$$

4. Estimation of errors

Estimation of $R_{i, 1}^{ \pm}$IN (2.1)

To estimate $R_{i, 1}^{ \pm}$we observe that

$$
S\left(f^{*}, \chi_{d b^{2}}, w^{*}, A_{d b^{2}}\right)=\sum_{l_{1}, l_{2} \mid b} \frac{\alpha^{*}\left(l_{1}\right) \beta^{*}\left(l_{2}\right)}{\left(l_{1} l_{2}\right){w^{*}}^{*}} \chi_{d}\left(l_{1} l_{2}\right) \mu\left(l_{1}\right) \mu\left(l_{2}\right) S\left(f^{*}, \chi_{d}, w^{*}, \frac{A_{d b^{2}}}{l_{1} l_{2}}\right)
$$

Here $\alpha^{*}(n)=\alpha(n)$ or $\bar{\alpha}(n)$ depending on whether $f^{*}=f$ or \bar{f} and similarly for $\beta^{*}(n)$. We also assume that $\left|w-w_{0}\right|=2 \lambda$. Since d is square-free in $R_{i .1}^{ \pm}$we may move the integration in the integral representation of

$$
S\left(f^{*}, \chi_{d}, w^{*}, \frac{A_{d b^{2}}}{l_{1} l_{2}}\right)
$$

to the left of zero, picking up the residue at $s=0$, and apply functional equation to obtain

$$
\{\text { residue at } s=0\}-\omega_{d} A_{d}^{k-2 w^{*}} S\left(\bar{f}^{*}, \chi_{d}, k-w^{*}, \frac{A_{d}^{2} l_{1} l_{2}}{A_{d b^{2}}}\right)
$$

We first estimate the non-residual contribution. Now,

$$
S\left(\bar{f}^{*}, \chi_{d}, k-w^{*}, \frac{A_{d}^{2} l_{1} l_{2}}{A_{d b^{2}}}\right)=\sum_{n \geq 1} \bar{a}^{*}(n) n^{-k+w^{*}} \chi_{d}(n) W\left(k-w^{*}, \frac{n A_{d b^{2}}}{A_{d}^{2} l_{1} l_{2}}\right) .
$$

We split the sum according to whether $n \leq A_{d}^{2} l_{1} l_{2} / A_{d b^{2}}$ or not and use partial summation with (1.2) and (2.3). We obtain

$$
\mathbf{O}\left(\left(|d| b^{-2} l_{1} l_{2}\right)^{(1-k) / 2+\Re w^{*}}\right) .
$$

We sum over l_{1} and l_{2} to see that the contribution to $S\left(f^{*}, \chi_{d b^{2}}, w^{*}, A_{d b^{2}}\right)$ is

$$
\begin{aligned}
& <A_{d}^{k-2 \Re w^{*}} \sum_{l_{1}, l_{2} \mid b}\left|\frac{\alpha^{*}\left(l_{1}\right) \beta^{*}\left(l_{2}\right)}{\left(l_{1} l_{2}\right)^{w^{*}}}\right|\left(\frac{|d| l_{1} l_{2}}{b^{2}}\right)^{(1-k) / 2+\Re w^{*}} \\
& \ll|d|^{(k+1) / 2-\Re w^{*}} b^{k-1-2 \Re w^{*}+\alpha} \mathbf{d}^{2}(b)
\end{aligned}
$$

using (1.1) and the fact that if f is real analytic, one of $\alpha(\cdot)$ or $\beta(\cdot)$ is bounded. Multiplying it by $A_{d b^{2}}^{w^{*}-w}$, dividing by $w-w_{d}$ and summing over $|d| \ll Y / b^{2}$ gives

$$
\ll Y^{(k+3) / 2-\Re u w} b^{\alpha-4} \mathbf{d}^{2}(b) \lambda^{-1}
$$

Summing it over $r \mid b$ and $b>A$ gives

$$
\ll A^{\alpha-3} Y^{(k+3) / 2-\Re w+\varepsilon} .
$$

It remains to estimate the contribution from the residue

$$
A_{d b^{2}}^{w^{*}-w} L\left(f^{*}, \chi_{d}, w^{*}\right) \tilde{\Gamma}\left(w^{*}\right) \prod_{p \mid b}\left(1-\alpha^{*}(p) \chi_{d}(p) p^{-w^{*}}\right)\left(1-\beta^{*}(p) \chi_{d}(p) p^{-w^{*}}\right)
$$

at $s=0$. Firstly we note that the b-contribution is

$$
b^{2 \Re\left(w^{*}-w\right)} \prod_{p \mid b}(\cdot)(\cdot) \ll \mathbf{d}^{2}(b) b^{2 \lambda}
$$

Hence, the contribution from the residue to $R_{i, 1}^{ \pm}$is

$$
\begin{aligned}
\sum_{b>A} \mathbf{d}^{3}(b) b^{2 \lambda} \sum_{|d|<Y / b^{2}} \mu^{2}(|d|) \frac{\left|L\left(f^{*}, \chi_{d}, w^{*}\right)\right|}{\left|w-w_{d}\right|}|d|^{\Re\left(w^{*}-w\right)} \\
\quad \ll \sum_{b>A} \mathbf{d}^{3}(b) b^{2 \lambda}\left(\sum_{|d|<Y / b^{2}} \mu^{2}(|d|)\left|L\left(f^{*}, \chi_{d}, w^{*}\right)\right|^{2}|d|^{2 \Re\left(w^{*}-w\right)}\right)^{\frac{1}{2}}\left(\frac{Y}{b^{2}}\right)^{\frac{1}{2}} \lambda^{-1} \\
\quad \ll\left|\tilde{\Gamma}\left(w_{0}\right)\right|^{-1} A^{-1-2 \alpha-2 \Re\left(w^{*}-w\right)} Y^{1+\alpha+\varepsilon+\Re\left(w^{*}-w\right)}
\end{aligned}
$$

by Theorem 1.2. To summarize, we have proved that

$$
\begin{gathered}
\sum_{b \geq 1 .(b .4 N)=1} \sum_{r \mid b . r>A} \mu(r) \sum_{d \in D_{a \bar{B}^{2}}^{ \pm}} \frac{\mu^{2}(|d|)}{\left(w-w_{d}\right) \tilde{\Gamma}(w)} S\left(f^{*}, \chi_{d b^{2}}, w^{*}, A_{d b^{2}}\right) F\left(\frac{|d| b^{2}}{Y}\right) A_{d b^{2}}^{w^{*}-w} \\
\ll A^{-3+\alpha} Y^{r(k+3) / 2-\Re w+\varepsilon} \\
+\left|\tilde{\Gamma}\left(w_{0}\right)\right|^{-1} A^{-1-2 \alpha-2 \Re\left(w^{*}-w\right)} Y^{1+\alpha+\varepsilon+\Re\left(w^{*}-w\right)}
\end{gathered}
$$

Now, integrating over the circle $\left|w-w_{0}\right|=2 \lambda$ gives
$R_{i, 1}^{ \pm} \ll A^{-3+\alpha} Y^{(k+3) / 2-\Re w_{0}+\varepsilon}+\left|\tilde{\Gamma}\left(w_{0}\right)\right|^{-1} A^{-1-2 \alpha-2 \Re\left(w_{0}^{*}-w_{0}\right)} Y^{1+\varepsilon+\alpha+\Re\left(w_{0}^{*}-w_{0}\right)}$.

Estimation of $R_{1,2}^{(2)}$ in (2.2)
To estimate $R_{i, 2}^{ \pm}$we will sum in (2.2) over m first. Let us write

$$
n=k_{1} l^{2} l_{0} m
$$

where k_{1} and l are as before and $(m, l)=1, p \mid l_{0} \Rightarrow p l l, \mu^{2}\left(l_{0}\right)=1$. We rewrite $R_{i .2}^{ \pm}$as

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\left|w-w_{0}\right|=2 \lambda} \frac{\omega_{a}^{*}}{\bar{\Gamma}(w)} \sum_{r \leq A,(r, 4 N)=1} \mu(r) \sum_{k_{1}, l}\left(\sum_{q \mid l} \mu(q)\right) a^{*}\left(k_{1}\right) k_{1}^{-w^{*}}\left(\frac{a}{k_{1}}\right) \\
& \quad \times \sum_{d \cdot d r^{2} q \in D_{\pi}^{ \pm}} F\left(\frac{|d| r^{2} q}{Y}\right) A_{d r^{2} q}^{w^{*}-w} \sum_{|\rho| \geq 1} \sum_{l_{0}} a^{*}\left(l^{2} l_{0}\right)\left(l^{2} l_{0}\right)^{-w^{*}} \bar{\varepsilon}_{l_{0}} l_{0}^{-\frac{1}{2}} \chi_{N p q}\left(l_{0}\right) \\
& \quad \times \sum_{m \geq \frac{\left\lvert\, \frac{1}{L_{0} \mid}\right.}{} a^{*}(m) m^{-w^{*}-\frac{1}{2}} \mu^{2}(m) \bar{\varepsilon}_{m} \chi_{N p q}(m) e\left(\frac{\overline{4} \bar{N} \rho d}{m l_{0}}\right) W\left(w^{*}, \frac{k_{1} l^{2} l_{0} m}{A_{d r^{2} q_{q}}}\right) \frac{d w}{w-w_{d}} .} .
\end{aligned}
$$

For $T \gg|\rho| / \Delta l_{0}$ set

$$
A(T)=\sum_{m \ll T \cdot(m .4 N)=1} \mu^{2}(m) a^{*}(m) \bar{\varepsilon}_{m} \chi_{N \rho q}(m) e\left(-\frac{\bar{m} \bar{l}_{0} \rho d}{4 N}\right)
$$

where \bar{m} and \bar{l}_{0} are the multiplicative inverses of m and l_{0} modulo $4 N$. By Lemma 1

$$
A(T) \ll \mathbf{d}(l)(|\rho| q)^{\frac{1}{2}} T^{k / 2+\varepsilon} .
$$

By partial summation

$$
\begin{aligned}
A_{1}(T) & \stackrel{\text { def }}{=} \sum_{\left||p| / \Delta t_{0} \ll m \ll T \cdot(m .4 N l)=1\right.} \mu^{2}(m) a^{*}(m) \bar{\varepsilon}_{m} \chi_{N \rho q}(m) e\left(-\frac{\bar{m} \bar{l}_{0} \rho d}{4 N}\right) e\left(\frac{\rho d}{4 N l_{0} m}\right) \\
& \ll \mathbf{d}(l)(|p| q)^{\frac{1}{2}} T^{k / 2+\varepsilon}(1+|d| \Delta) \ll B T^{k / 2+\varepsilon}
\end{aligned}
$$

where $B=\mathbf{d}(l)(|\rho| q)^{\frac{1}{2}} Y^{\varepsilon}$. Here we used $|d| \ll \frac{Y}{r^{2} q}$ and $\Delta \leq r^{2} q Y^{\varepsilon-1}$. Let us set $c=k_{1} l^{2} l_{0} / A_{d r^{2} q}$. Then

$$
\sum_{m \geq \frac{|\rho|}{\Delta I_{0}} \cdot(m \cdot 4 N l)=1} \mu^{2}(m) a^{*}(m) \chi_{N \rho q}(m) \bar{\varepsilon}_{m} e\left(\frac{\overline{4} \bar{N} \rho d}{m l_{0}}\right) m^{-\mu^{*}-\frac{1}{2}} W\left(w^{*} . c m\right)
$$

$$
\begin{aligned}
=- & A_{1}\left(\frac{|\rho|}{\Delta l_{0}}\right)\left(\frac{|\rho|}{\Delta l_{0}}\right)^{-w^{*}-\frac{1}{2}} W\left(w^{*} \cdot \frac{c|\rho|}{\Delta l_{0}}\right) \\
& \left.-\int_{|\rho| / \Delta l_{0}}^{\infty} A_{1}(t) t^{-w^{*}-\frac{1}{2}} W^{*}\left(w^{*}, c t\right) d(t c)+g(t) W\left(w^{*}, c t\right)\right]_{t=|\rho| / \Delta l_{0}}^{\infty} \\
& -\int_{|\rho| / \Delta l_{0}}^{\infty} g(t) W^{\prime}\left(w^{*}, c t\right) d(t c)
\end{aligned}
$$

by partial summation and integration by parts where $g(t)=\int_{t}^{\infty} A_{1}(u) u^{-w^{*}-\frac{3}{2}}\left(-w^{*}-\right.$ $\left.\frac{1}{2}\right) d u$. Notice that the integral defining $g(t)$ converges and is bounded by $B t^{k / 2+\varepsilon-1 / 2-r ~}$

We see that in order to estimate the sum over m we need to estimate
a)

$$
B\left(\frac{|\rho|}{\Delta l_{0}}\right)^{k / 2+\varepsilon-\Re w^{*}-1 / 2}\left|W\left(w^{*}, \frac{c|\rho|}{\Delta l_{0}}\right)\right|
$$

and
b)

$$
B \int_{|p| / \Delta l_{0}}^{\infty} t^{(k-1) / 2+\epsilon-\Re w^{*}}\left|W^{\prime}\left(w^{*}, c t\right)\right| c d t
$$

We estimate the contribution from (b) - the contribution from (a) is exactly the same. We notice that by (2.3) it is enough to estimate

$$
B c^{\Re w^{*}-(k-1) / 2-\varepsilon}\left(\frac{c|\rho|}{\Delta l_{0}}\right)^{(k-3) / 2+\varepsilon-\Re \nu} \exp \left(-\frac{c|\rho|}{2 \Delta l_{0}}\right) .
$$

Summation over $|\rho|$ gives

$$
\sum_{|\rho| \geq 1}|\rho|^{-1-\Re \nu+k / 2+\varepsilon} \exp \left(-\frac{c|\rho|}{2 \Delta l_{0}}\right) \ll\left(\frac{\Delta l_{0}}{c}\right)^{-\Re \nu+k / 2+\varepsilon}
$$

so that after multiplying by $A_{d r^{2} q}^{w^{*}-w} / w-w_{d}$ we see that the contribution is

$$
\left|A_{d r^{2} q}^{w^{*}-w}\right| \mathbf{d}(l) q^{\frac{1}{2}} Y^{\varepsilon} \Delta^{\frac{3}{2}} l_{0}^{\frac{3}{2}} c^{-\frac{k}{2}+\Re w^{*}-\varepsilon-1} \frac{1}{\left|w-w_{d}\right|}
$$

The sum over $|d|$ is

$$
\ll \sum_{|d|<Y / r^{2} q}|d|^{k / 2+1+\varepsilon-\Re w} \frac{1}{\left|w-w_{d}\right|} \ll\left(\frac{Y}{r^{2} q}\right)^{k / 2+2+\varepsilon-\Re w}
$$

so that the total contribution is

$$
Y^{1 / 2+k / 2-\Re w+\varepsilon} \sum_{r \leq A} \sum_{k_{1}, l, l_{0}} \sum_{q \mid l} r q \mathrm{~d}(l) \frac{\left|a\left(k_{1} l^{2} l_{0}\right)\right|}{l_{0}^{1 / 2}\left(k_{1} l^{2} l_{0}\right)^{k / 2+\varepsilon+1}}
$$

Hence. using (1.1) and summing over q, l_{0}, l, k_{1} and $r \leq A$ yields

$$
\ll A^{2} Y^{1 / 2+k / 2-\Re w+\varepsilon} .
$$

Integration over the circle $\left|w-w_{0}\right|=2 \lambda$ finally shows that

$$
R_{i, 2}^{ \pm} \ll A^{2} Y^{1 / 2+k / 2-\Re w_{0}+\varepsilon} .
$$

Estimation of $R_{i, 3}^{ \pm}$in (2.2)

We will start by summing over d in (2.2). We set $c_{f}=A_{d}|d|^{-1}$ and rewrite $R_{i .3}^{ \pm}$ as

$$
\begin{aligned}
& \frac{\omega_{a}^{*}}{2 \pi i} \int_{\left|w-w_{0}\right|=2 \lambda} \sum_{\substack{r \leq A \\
(r, 4 N)=1}} \mu(r) \sum_{\substack{n=k_{1} i^{2} m \\
(n, 2) \\
(n, r)=1}} \frac{a^{*}(n)}{n^{w^{*}}} \sum_{q \mid l} \mu(q) \sum_{\Delta m<|\rho|<\frac{m}{2}} \frac{\bar{\epsilon}_{m}}{m^{1 / 2}} \chi_{N \rho q}(m) \\
& \quad\left(\frac{a}{k_{1}}\right) \sum_{d . d r^{2} q \in D_{a}^{ \pm}} F\left(\frac{|d| r^{2} q}{Y}\right) W\left(w^{*}, \frac{n}{c_{f}|d| r^{2} q}\right)\left(r^{2} q c_{f}|d|\right)^{w^{*}-w} \\
& e\left(\frac{\overline{4} \hat{N} \rho d}{m}\right) \frac{d w}{\left(w-w_{d}\right) \tilde{\Gamma}(w)} .
\end{aligned}
$$

We want to estimate the sum

$$
\begin{equation*}
\sum_{d . d r^{2} q \in D_{a}^{\text {E }}} h(\pm d) e\left(\frac{\overline{4} \bar{N} \rho d}{m}\right) \frac{1}{w-w_{d}} \tag{*}
\end{equation*}
$$

where

$$
h(x)=F\left(\frac{r^{2} q}{Y} x\right) W\left(w^{*}, \frac{n}{c_{f} r^{2} q x}\right)\left(x c_{f} r^{2} q\right)^{w^{*}-w} .
$$

Observe that the presence of F restricts the range of summation to

$$
c_{1} \frac{Y}{r^{2} q}<|d|<c_{2} \frac{Y}{r^{2} q}
$$

if $\operatorname{Supp}(F) \subset\left(c_{1}, c_{2}\right)$. For any $T \leq c_{2} Y / r^{2} q$ we want to estimate

$$
\begin{equation*}
\sum_{d . d r^{2} q \in D_{a}^{ \pm} .|d| \leq T} h(\pm d) e\left(\frac{\overline{4 N} \rho d}{m}\right) . \tag{**}
\end{equation*}
$$

To do so it is sufficient to estimate
$(* * *) \quad \sum_{d . d r^{2} q \in D_{a}^{ \pm}} h(\pm d) g(\pm d) e\left(\frac{\overline{4 N} \rho d}{m}\right)$
where g is smooth, compactly supported function in $[M, 2 M]$ with

$$
g^{(i)}(x) \ll M^{-i}
$$

Here we take $M=c_{3} Y / r^{2} q$ for some constant c_{3}. By Poisson summation formula $(* * *)$ is equal to

$$
\frac{1}{4 N} \sum_{u} e\left(\frac{u a \bar{r}^{2} \bar{q}}{4 N}\right)(\widehat{h g})\left(\frac{u}{4 N}-\frac{\overline{4 N} \rho}{m}\right)
$$

where $(\widehat{h g})$ denotes the Fourier transform of $h(\pm x) g(\pm x)$. We assume for a moment that we can find two positive constants X_{1} and X_{2}, such that

$$
(h g)^{(j)}(x) \ll \frac{X_{1}}{\left(x+X_{2}\right)^{j}}
$$

for some $j \geq 2$ (the constant in \ll depending only on F, W, and j). Then integration by parts shows that

$$
(\widehat{h g})(t) \ll X_{1} X_{2}^{1-j}|t|^{-j}
$$

so that writing $4 N \overline{4 N}=1+e m$ for some integer e we see that

$$
(\widehat{h g})\left(\frac{u}{4 N}-\frac{\overline{4} \bar{N} \rho}{m}\right) \ll \frac{X_{1} X_{2}^{1-j}}{|u-\rho / m-e \rho|^{j}}
$$

Summation over u gives then

$$
(* * *) \ll_{j} X_{1} X_{2}^{1-j}\left(\frac{|\rho|}{m}\right)^{-j}
$$

To estimate $(h g)^{(j)}(x)$ we must estimate

$$
\begin{aligned}
& F^{\left(i_{1}\right)}\left(\frac{r^{2} q}{Y} x\right)\left(\frac{r^{2} q}{Y}\right)^{i_{1}} g^{\left(i_{2}\right)}(x) W^{\left(i_{3}\right)}\left(w^{*}, \frac{n}{c_{f} r^{2} q x}\right)\left(\frac{n}{r^{2} q}\right)^{i_{3}} \\
& x^{-2 i_{3}-i_{4}+\Re\left(w^{*}-w\right)-i_{5}}\left(r^{2} q\right)^{\Re\left(w^{*}-w\right)} \\
& \ll \frac{1}{x^{j}}\left(r^{2} q x\right)^{\Re\left(w^{*}-w\right)}\left|W^{\left(i_{3}\right)}\left(w^{*}, \frac{n}{c_{f} r^{2} q x}\right)\right|\left(\frac{n}{r^{2} q}\right)^{i_{3}} x^{-i_{3}}
\end{aligned}
$$

using $\sum i_{(\cdot)}=j$ and $x \sim Y / r^{2} q$. By (2.3), the fact that $x \sim Y / r^{2} q$ and assumption about g we estimate

$$
(h g)^{(j)}(x)<_{j, c} \exp \left(-c \frac{n}{Y}\right) Y^{\Re\left(w^{*}-w\right)}\left(\frac{n}{Y}\right)^{\Re\left(w^{*}-\nu\right)} \frac{1}{x^{j}} \ll \frac{X_{1}}{\left(x+X_{2}\right)^{j}}
$$

where

$$
X_{1}=\left(\frac{n}{Y}\right)^{\Re\left(w^{*}-\nu\right)} Y^{\Re\left(w^{*}-w\right)} \exp \left(-c \frac{n}{Y}\right), X_{2}=\frac{Y}{r^{2} q}, \quad e-\text { positive constant. }
$$

Hence

$$
(* * *) \ll X_{1} X_{2}^{1-j}\left(\frac{|\rho|}{m}\right)^{-j} \ll \frac{Y^{1-\varepsilon j}}{r^{2} q} \exp \left(-c \frac{n}{Y}\right) n^{\Re\left(w^{*}-\nu\right)} Y^{\Re(\nu-w)}
$$

since $\Delta=r^{2} q Y^{\varepsilon-1}<|\rho| / m$, and we obtain the same estimation for (**) (multiplied only by the factor $\log Y$ say). We return to the estimation of $(*)$. Let $g_{1}(x)$ be a smooth function such that $g_{1}(|d|)=1 / w-w_{d}$ and $g_{1}^{\prime}(x) \ll \lambda^{-1}$. By partial summation, using the estimation of (**) we deduce that

$$
(*) \ll\left(\frac{Y}{r^{2} q}+1\right) \lambda^{-1} \frac{Y^{1-\varepsilon j}}{r^{2} q} \exp \left(-c \frac{n}{Y}\right) n^{\Re\left(w^{*}-\nu\right)} Y^{\Re(\nu-w)}
$$

for any $j \geq 2$. Summing over $r,|p| \ll m$. and q gives

$$
\sum n^{\frac{k}{2}+\alpha} \exp \left(-c \frac{n}{Y}\right) Y^{2-\varepsilon j-\Re w+\Re \nu} \ll 1
$$

by choosing j large enough. Integrating over the circle $\left|w-w_{0}\right|=2 \lambda$ we conclude that

$$
R_{i, 3}^{ \pm} \ll 1
$$

5. Main term

We now consider the sums $M T_{i}^{ \pm}$. As $\rho=0$ in these sums, only the terms with $m=1$ in (2.2) give a nontrivial contribution. Thus we rewrite $M T_{i}^{ \pm}$as

$$
\begin{aligned}
& \omega_{a}^{*} \sum_{k_{1}} a^{*}\left(k_{1}\right)\left(\frac{a}{k_{1}}\right) k_{1}^{-w_{0}^{*}} \sum_{l \geq 1,(l, 4 N)=1} a^{*}\left(l^{2}\right) l^{-2 w_{0}^{*}} \sum_{q \mid l} \mu(q) \sum_{r \leq A(r, 4 N l)=1} \mu(r) \\
& \sum_{d, d r^{2} q \in D_{a}^{ \pm}} \frac{1}{\tilde{\Gamma}\left(w_{0}\right)} F\left(\frac{|d| r^{2} q}{Y}\right) W\left(w_{0}^{*}, \frac{k_{1} l^{2}}{c_{f}|d| r^{2} q}\right)\left(c_{f}|d| r^{2} q\right)^{w_{0}^{*}-w_{0}} \\
& +\mathrm{O}\left(\sum_{k_{1}}\left|a\left(k_{1}\right)\right| \sum_{l_{\geq 1}}\left|a\left(l^{2}\right)\right| \sum_{q \mid l}|\mu(q)| \sum_{r \leq A}|\mu(r)|\right. \\
& \sum_{d, d r^{2} q \in D_{a}^{ \pm}}\left|F\left(\frac{|d| r^{2} q}{Y}\right)\right|\left(k_{1} l^{2}\right)^{-\Re u_{0}^{*}}\left(c_{f}|d| r^{2} q\right)^{\Re\left(w_{6}^{*}-u_{0}\right)} \frac{1}{\left|\tilde{\Gamma}\left(w_{0}\right)\right|} \\
& \times \left\lvert\,\left[\left(k_{1} l^{2}\right)^{-w_{d}^{*}+w_{0}^{*}\left(c_{f}|d| r^{2} q\right)^{w_{d}^{*}-w_{0}^{*}+w_{0}-w_{d}} \frac{\tilde{\Gamma}\left(w_{0}\right)}{\tilde{\Gamma}\left(w_{d}\right)} W\left(w_{d}^{*}, \frac{k_{1} l^{2}}{c_{f}|d| r^{2} q}\right)}\right.\right. \\
& \left.\left.-W\left(w_{0}^{*}, \frac{k_{1} l^{2}}{c_{f}|d| r^{2} q}\right)\right] \mid\right) .
\end{aligned}
$$

We begin by estimating the above error term. The expression in the square brackets is bounded by

$$
\ll\left(\frac{k_{1} l^{2}}{|d| r^{2} q}\right)^{\Re\left(w_{0}^{*}-\nu\right)} \exp \left(-c_{1} \frac{k_{1} l^{2}}{|d| r^{2} q}\right) \lambda\left(k_{1} l^{2}\right)^{\lambda}\left(|d| r^{2} q\right)^{2 \lambda^{*}} \max \left\{\log Y, \log k_{1} l^{2}\right\}
$$

by (2.3) and the fact that $|d| r^{2} q \sim Y$. Here $\lambda^{*}=0$ if $i=1, \lambda^{*}=\lambda$ if $i=2$ and c_{1} is some positive constant. Summation over d contributes

$$
\sum_{|d|<Y Y / r^{2} q}|d|^{-\Re\left(w_{0}-\nu\right)+2 \lambda^{*}} \ll\left(\frac{Y}{r^{2} q}\right)^{-\Re w_{0}+\Re \nu+1+2 \lambda^{*}}
$$

so that the sum over d above is

$$
\ll \frac{Y^{1-\Re w_{0}+\Re \nu}}{r^{2} q} \lambda\left(k_{1} l^{2}\right)^{-\Re \nu} \max \left\{\log Y, \log k_{1} l^{2}\right\} \exp \left(-c_{2} \frac{k_{1} l^{2}}{Y}\right)
$$

for some positive constant c_{2}. In order to sum over l we will use the following estimate

$$
\begin{equation*}
\sum_{l \leq x}\left|a\left(l^{2}\right)\right| \ll x^{k} \tag{*}
\end{equation*}
$$

Indeed, we notice first that

$$
\begin{equation*}
\sum_{l \leq x}\left|a\left(l^{2}\right)\right|^{2} \tag{**}
\end{equation*}
$$

are the partial sums of the coefficients of the (not normalized) Dirichlet series attached to the Rankin-Selberg convolution (on $G L_{3}$) of $S y m^{2}(f) \times S y m^{2}(\bar{f})$. The normalized Rankin-Selberg L-function has a meromorphic continuation to the whole s-plane with simple poles at $s=1,0,[5]$. Hence it follows that ($* *$) is bounded by $x^{2 k-1}$. We use Cauchy-Schwarz inequality to deduce (*). Using (*) and summing over r, q, l and k_{1} (breaking the sum over $k_{1} l^{2}$ at Y) we find that the error term is

$$
\ll \lambda Y^{1+\frac{k}{2}-\Re w_{0}} \log Y \log \log Y
$$

We return to the evaluation of the main term. Summation over d gives

$$
\begin{aligned}
\sum_{d . d r^{2} q \in D_{a}^{ \pm}}= & \frac{Y^{1+w_{0}^{*}-w_{0}}}{4 N r^{2} q} \frac{c_{j}^{w_{0}^{*}-w_{0}}}{\tilde{\Gamma}\left(w_{0}\right)} \int F(t) W\left(w_{0}^{*}, \frac{k_{1} l^{2}}{c_{f} Y t}\right) t^{w_{0}^{*}-w_{0}} d t \\
& +\mathbf{O}\left(Y^{\Re\left(w_{0}^{*}-w_{0}\right)} \int\left|\left(F(t) W\left(w_{0}^{*}, \frac{k_{1} l^{2}}{c_{f} Y t}\right) t^{\Re\left(w_{0}^{*}-w_{0}\right)}\right)\right| d t\right)
\end{aligned}
$$

We use (*), (2.3) and partial summation to find that the above error term is

$$
\ll A Y^{k / 2-\Re w_{0}+\varepsilon}
$$

We use

$$
\sum_{r \leq A,(r, 4 N l)=1} \mu(r) r^{-2}=\zeta_{(4 N)}^{-1}(2) \prod_{p \mid t}\left(1-\frac{1}{p^{2}}\right)^{-1}+\mathbf{O}\left(A^{-1}\right)
$$

to rewrite the main term above as

$$
\begin{aligned}
& w_{a}^{*} \frac{c_{f}^{w_{0}^{*}-w_{0}}}{\tilde{\Gamma}\left(w_{0}\right)} \frac{Y^{1+w_{0}^{*}-w_{0}}}{4 N \zeta_{(4 N)}(2)} \\
& \quad \times \int F(t) f_{4 N}^{*}\left(w_{0}^{*}\right) \sum_{(l, 4 N)=1} \prod_{p \mid l}\left(1+\frac{1}{p}\right)^{-1} a^{*}\left(l^{2}\right) l^{-2 w_{0}^{*}} W\left(w_{0}^{*}, \frac{k_{1} l^{2}}{c_{f} Y t}\right) d t \\
& \quad+\mathrm{O}\left(A^{-1} Y^{1+\Re\left(w_{0}^{*}-w_{0}\right)} \sum_{n=k_{1} t^{2}}|a(n)| n^{-\Re w_{0}^{*}} \sum_{q \mid l} \frac{|\mu(q)|}{q}\right. \\
& \quad \int \left\lvert\, F(t) W\left(w_{0}^{*}, \frac{n}{c_{f} Y t}\right) t^{\Re\left(w_{0}^{\left.*-w_{0}\right)} \mid d t\right)}\right.
\end{aligned}
$$

where

$$
f_{4 N}^{*}(s)=\sum_{k_{1}, p\left|k_{1} \Rightarrow p\right| 4 N} a^{*}\left(k_{1}\right)\left(\frac{a}{k_{1}}\right) k_{1}^{-s}
$$

As before, using (*), (2.3) and partial summation we find that the error term above is

$$
\ll A^{-1} Y^{1+k / 2-\Re w_{0}+\varepsilon}
$$

Consider the functions

$$
\begin{gathered}
B^{*}(s) \stackrel{\text { def }}{=} \prod_{p y 4 N}\left(1+\frac{p}{p+1}\left(a^{*}\left(p^{2}\right) p^{-s}+a^{*}\left(p^{4}\right) p^{-2 s}+\ldots .\right)\right) \\
A_{p}^{*}(s) \stackrel{\text { def }}{=}\left(1-\alpha^{*}(p)^{2} p^{-s}\right)^{-1}\left(1-\beta^{*}(p)^{2} p^{-s}\right)^{-1}\left(1+\omega^{*}(p) p^{k-1-s}\right)-1 \\
L_{(4 N)}^{*}(s) \stackrel{\text { def }}{=} \prod_{p}^{*} 4 N
\end{gathered}\left(1+A_{p}^{*}(s)\right)
$$

where $\omega^{*}=\omega$ or $\bar{\omega}$ depending whether $f^{*}=f$ or \bar{f}. Then

$$
B^{*}(s)=P^{*}(s) L_{(4 N)}^{*}(s)
$$

where

$$
P^{*}(s)=\prod_{p \psi 4 N}\left(1+\frac{1}{p+1}\left(\frac{1}{1+A_{p}^{*}(s)}-1\right)\right) .
$$

The function $L_{(4 N)}^{*}(s)$ is related to the symmetric square L-function of f^{*} by

$$
L_{(4 N)}\left(\operatorname{Sym}^{2}\left(f^{*}\right), s\right)=L_{(2)}\left(\omega^{* 2}, 2 s-2 k+2\right) L_{(4 N)}^{*}(s)
$$

It is known that $L\left(S y m^{2}(f), s\right)$ is entire and satisfies an appropriate functional equation [13]. Now, we see that $P^{*}(s)$ converges absolutely for $\Re s>k-1+2 \alpha$
and does not vanish for $\Re_{s}>k-\frac{3}{5}$ by (1.1). The sum of $f_{4 N}^{*}(s)$ converges absolutely for $\Re s>(k-1) / 2+\alpha$ and does not vanish there. Now replacing W by its integral, we see that the main term is

$$
\begin{aligned}
& \omega_{a}^{*} Y^{1+w_{0}^{*}-w_{0}} \frac{c_{f}^{w_{0}^{*}-w_{0}}}{\tilde{\Gamma}\left(w_{0}\right)} \frac{1}{4 N \zeta_{(4 N)}(2)} \int F(t)\left(\frac{1}{2 \pi i} \int_{\gamma} f_{4 N}^{*}\left(w_{0}^{*}+s\right)\right. \\
& \left.\quad \times \frac{L_{(4 N)}\left(S y m^{2} f^{*}, 2 w_{0}^{*}+2 s\right)}{L_{(2)}\left(w^{* 2}, 4 s+4 w_{0}^{*}-2 k+2\right)} P^{*}\left(2 w_{0}^{*}+2 s\right) \tilde{\Gamma}\left(w_{0}^{*}+s\right)\left(c_{f} Y t\right)^{s} \frac{d s}{s}\right) d t
\end{aligned}
$$

Here $\gamma \gg 0$. Moving the line of integration to the line $\Re s=-1 / 4+k / 2-\Re w_{0}^{*}$ we get the residue from a possible simple pole at $s=0$ (which gives the main term) and an error term

$$
\ll Y^{3 / 4+k / 2-\Re w_{0}}
$$

Here we used that $L\left(\operatorname{Sym}^{2}\left(f^{*}\right), 2 w_{0}^{*}+2 s\right)$ has only polynomial growth for $\Re s \geq$ $-1 / 4+k / 2-\Re w_{0}^{*}$ by Phragmén-Lindelöf principle and functional equation. To summarize, we have shown that

$$
\begin{aligned}
& \sum_{d . d \in D_{a}^{ \pm}} \mu^{2}(|d|) L\left(f, \chi_{d}, w_{d}\right) F\left(\frac{|d|}{Y}\right) \\
& =Y \cdot\left(\frac{1}{4 N \zeta_{(4 N)}(2)} P\left(2 w_{0}\right) f_{4 N}\left(w_{0}\right) \frac{L_{(4 N)}\left(S y m^{2} f, 2 w_{0}\right)}{L_{(2)}\left(w^{2}, 4 w_{0}-2 k+2\right)} \int F(t) d t\right. \\
& \quad+Y^{1+k-2 w_{0}} \cdot \operatorname{sgn}(d) \omega_{1}\left(\frac{a}{-N}\right) \omega(a) \frac{1}{4 N \zeta_{(4 N)}(2)} \frac{\tilde{\Gamma}\left(k-w_{0}\right)}{\tilde{\Gamma}\left(w_{0}\right)} c_{f}^{k-2 w_{0}} \\
& \quad \times f_{4 N}^{*}\left(k-w_{0}\right) P^{*}\left(2 k-2 w_{0}\right) \frac{L_{(4 N)}\left(S y m^{2} \bar{f}, 2 k-2 w_{0}\right)}{L_{(2)}\left(\bar{w}^{2}, 2 k-4 w_{0}+2\right)} \int F(t) d t \\
& \quad+\mathbf{O}\left(Y^{3 / 4+k / 2-\Re w_{0}}+Y^{\varepsilon}\left(A^{2} Y^{(k+1) / 2-\Re w_{0}}+A^{-1} Y^{1+k / 2-\Re w_{0}}\right.\right. \\
& \quad+A^{-1-2 \alpha} Y^{1+\alpha}+A^{-3+\alpha} Y^{\left.(3+k) / 2-\Re w_{0}\right)} \\
& \left.\quad+\lambda Y^{1+k / 2-\Re w_{0}} \log Y \log \log Y\right)
\end{aligned}
$$

where the second term above is present only if $\Re w_{0}<k / 2+1 / 4$. Also f^{*} and P^{*} in the second term correspond to \bar{f}. We take $A=Y^{\frac{9}{37}}$ to write the error as

$$
\mathbf{O}\left(Y^{\frac{731}{740}+\varepsilon}+\lambda Y^{1+k / 2-3 w_{0}} \log Y \log \log Y\right)
$$

Summation over $d \in D_{a}$ eliminates the second term so the Theorem 1.1 follows.

References

[1] J. H. Bruinier, K. James, W. Kohnen, K. Ono, C. Skinner and V. Vatsal, Congruence properties of values of L-functions and applications, in: Topics
in Number Theory, pp. 115-125, eds. S. D. Ahlgren et. al., Kluwer Academic Press, Dordrecht, 1999.
[2] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic L-functions on GL(2), Annals of Math., 142 (1995), 385-423.
[3] R. Heath-Brown, A mean value estimate for real character sums, Acta Arith., 72 (3)(1995), 235-275.
[4] H. Iwaniec, On the order of vanishing of modular L-functions at the critical point, Séminaire de Théorie des Nombres Bordeaux, 2 (1990), 365-376.
[5] H. Jacquet, I. I. Piatetskii-Shapiro and J. Shalika, Rankin-Selberg convolutions, Amer. J. of Math., 105 (2)(1983), 367-464.
[6] H. Kim and F. Shahidi, paper in preparation, May 2000.
[7] V. Kumar Murty, Non-vanishing of L-functions and their derivatives, in: Automorphic Forms and Analytic Number Theory, pp. 89-113, ed. R.Murty, CRM Publications, Montreal, 1990.
[8] M. Ram Murty and V. Kumar Murty, Mean values of derivatives of L-series, Annals of Math., 133 (1991), 447-475.
[9] M. Ram Murty and V. Kumar Murty, Non-vanishing of L-functions and applications, Progress in Mathematics 157, Birkhauser Verlag, Basel, 1997.
[10] K. Ono and C. Skinner, Nonvanishing of quadratic twists of modular L-functions, Invent. Math., 134 (1998), 651-660.
[11] A. Perelli and J. Pomykala, Averages of twisted elliptic L-functions, Acta Arith., 80 (1997), 149-163.
[12] T. Stefanicki, Non-vanishing of L-functions attached to automorphic representations of GL(2), Ph. D. Thesis, McGill Univ., July 1992.
[13] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975),79-98.

Address: Department of Mathematics, University of Toronto, Toronto, CANADA M5S 3G3
E-mail: murty@math.toronto.edu, tomasz@math. toronto.edu
Received: 19 May 2000

[^0]: * Research partially supported by an NSERC grant

