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1. Introduction. 
For a fixed integer k 2:". 2, denote by rk(n) the number of representations of the 
positive integer n as a sum of the k-th powers of two integers taken absolutely: 

rk(n) = #{(u1,u2) E '11..2 : luilk + lu2lk = n}. 

The average order of this arithmetic function is described by the sum 

Rk(u) = I: rk(n), 
l'.Sn'.Suk 

where u is a large real variable1. One is interested in precise asymptotic formulas 
for this summatory function Rk ( u). 

For k = 2, this is the celebrated Gaussian circle problem. (An enlightening 
account on its history can be found in the monograph of Kratzel [10].) The sharpest 
published results to date2 read 

R2(u) = 1ru2 + P2(u), 

P2(u) = O(u46/73(logu)315/l46)' 

and3 

P2(u) = fL (u112(log u) 114(log logu) ¼ Iog 2 exp(-cJlog log logu)) 

1991 Mathematics Subject Classification: 11P21, 11N37, 11L07 
l Note that, in part of the relevant literature, t = u 2 is used as the basic variable. 

(1.1) 

( 1.2) 

(c > 0), 
(1.3) 

2 Actually, M. Huxley has meanwhile improved further this upper bound, essentially replacing 
the exponent *~ = 0.6301 ... by ~~~ = 0.6298 .... The author is indebted to Professor Huxley 
for sending him a copy of his unpublished manuscript. 
3 We recall that F1(u) = Q.(F2(u)) means that limsup(*Fi(u)/F2(u)) > 0 for u--+ = where 
* is either + or - , and F2(u) is positive for u sufficiently large. 
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(c'>O). (1.4) 

These are due to Huxley [ 4], [6]. Hafner [3], and Cornidi & Katai [1], respectively. 
It is a wide-standing belief that 

. 1 
mf{0 E JR: Pz(u) «e u8 } = 2 . (1.5) 

In favour of this conjecture, there is the mean-square asymptotic 

(1.6) 

which has been established (with this precise error term) by Katai [7]. 
The proofs of the results (1.3). (1.4), (1.6) were based on the fact that the 

generating function (Dirichlet series) of r 2 (n) is the Epstein zeta- function of the 
quadratic forrn u? + u~, which satisfies a wPll-known functional equation and thus 
makes available the whole toolkit of complex analysis. 

The general case, k 2 3, lacks this technical advantage. :'--JeverthdPss, the 
problem concerning the asymptotic behaviour of Rk( u), k 2 3, has attracted a lot 
of attention, too. It has first been dealt with by Van der Corput [18] and Kratzel 
[9]. For a thorough account on the history of this problem and the results available 
until 1988. see again Kratzel's textbook [10]. It turns out that 

2r2 (1/k) 2 1 1;1.: 
Rk(u) = kr( 2/k) u + Bk<P1.(u)u -- + Pk(u) (1.7) 

where 

'.X 

<Pi.:(u) = I: n-l-l/k sin(2rrnu - ;.) . 
n=l 

and the new error term Pk( u) satisfies an estimate quite analogous to ( 1. 2). i.e .. 

'G ·-·, 315/146 
Pk(u) = 0(1i""1 '"(logv) ) . (1.8) 

as was provPd hy Kuba [11], using I luxlPy's mPthod [4]. [6]. 
Concerning lower bounds, it was shown by the author [16] that. for any fixed 

k 2 3, 
A(u) = fL ( u 112 (log 11) 114 ), (1.9) 

and by Kuehleitner, Nowak, Schoil3engeier & Wooley [13] that 

(1.10) 
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The similarity of these results to those for the case k = 2 suggested to extend tl1e 
classic conjecture (1.5) to arbitrary k 2: 2. It turned out that this is again true in 
mean-square: In fact, the author [15] was able to show that, for T large, 

11T 2 I' 
0 

(A(u)) du« T (1.11) 

for any fixed k 2: 3. 1\1. Kuehleitner [12] refined this estimate, proving an asymp-
totic formula 

~ {T (Pk(u)) 2 du= ck T + O(Tl-wk+'), .f o 

with cxplicite constants C1.: and Wk > 0. 

2. Statement of result 

(1.12) 

In the present note we investigate the question whether the "average moderate 
size'' of this error term Pk( u), as displayed by ( 1. 11), can be observed only "in the 
long run,'· i.e., by averaging over an interval of order T, or if a similar estimate 
is possible for a "short interval mean.·· In fact, it turns out that it essentially 
suffices to average over an interval of bounded length-at the cost of a small loss 
of precision ( extra logarithmic factor). 

Theorem 2.1. For T large and arbitrary fixed k 2 3, 

with the « -constant depending on k. 

RErnarks. This work is inspired by a paper of Huxley [5] who investigated the 
corresponding problem for the lattice rest of a convex planar domain (with smooth 
boundary of finite nonzero curvature throughout), linearly dilated by a large fac
tor u. He obtained the corresponding mean-square bound O(T log T), thereby 
including the case of a circle, i.e., that of k = 2 in our problem. 

In geometric terms, for k z 3 we are concerned with the number of lattice 
points in a domain bounded by a Lame':-, curve /~lk + lrt = uk. This has curvature 
0 in its points of intersection with the coordinate axes. As a consequence, the 
expansion of the lattice rest into a trigonometric series. as discovered by Kendall 
[8] and employed by Huxley [5], is no longer available. Therefore, we use a different 
approach based on fractional part sums, Vaaler's transition to exponential sums, 
the Van der Corput transformation ( "B-step" ), and, in the end, Huxley's trick 
involving the Fejer kernel. 

Catching a word of Huxley [5] (who imagined the dilation factor u as a time 
variable). we can say that, according to our result, these number-theoretic error 
terms "have no memory," or, a bit more precisely, that their average small size is 
accomplished "not by long-term memory, but by short-term memory." 
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3. Proof of the Theorem 2.1 

As in our earlier article [15]. we start from formulae (3.37), (3.58) (aud the &;yrnµ
lotic expansion below) in Kratzel [10]. p. 148. In our notation, this reads 

(3.1) 

with '1/J(w) = w - [w] - ½ throughout, and a := 2- 1/k. We suppose that T 
is sufficiently large, u E [T - ½,T + ½J, and define q by 1/k + 1/q = 1, i.e., 
q = k / ( k - 1), and thus 1 < q S ~. We break up the range of summation into 
subintervals J\j(u) = ]1Y:i, 1\i+1J, where N:i = u (l + rJq)-I/k. j = 0, 1, ... , J. 
with J minimal such that u - NJ < l for all u E [T - ½, T + ½J .4 It follows that 
the length of any N:i(u.) is equal to N:i+ 1 - Nj :::c:: rjqT, and that w E J\J(u) 
implies that uk - wk>:: 2-JqTk. \Ve put 

and infer from Cauchy's inequality, with some fixed E > 0 sufficiently small, that 

J J J 
(3.2) 

s L 2. jE L 21< I] en « L 2.ic I) en . 
j=O j=O j=O 

We now invoke a deep result of Vaaler [17] which connects fractional parts with 
exponential sums. (See also Graham and Kolesnik [2], p. 116.) For every positive 
integer D then· exists a sequence (nh.D)~~1 contained in the interval [0, 1] such 
that for all reals w, 

with e(w) = e271"iw as usual. From this it is easy to see that there exists a complex

valued sequence (/3h.D) ~=l with 

1 
;31,.0 « Ti (3.3) 

4 The idea of this special choice of suhrlivision points is that d';,, ( ( uk - wk)II k) assumes integer 
values at w = N1 . See the application of thP Lnnma below. 
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such that 

We choose D = exp(log 2 [½ log T / log2]), i.e., D is a power of 2 and D ::::: fl. 
The last term in (3.4) is thus« 4-JqT. 

\Ve now transform the exponential sums under consideration by a fairly sharp 
form of the "Van der Corµut step." 

Lemma 3.1. Suppose that f is a real-valued function which possesses four con
tinuous drJrivatives on the interval [A, B] . Let L and U be real parameters not 
less than 1 such that B - A ::::: L, 

jUl(w) « ULI-j for w E [A Bl, j = 1, 2, 3, 4. 

and, for some C* > 0, 

J"(w) 2': C*UL- 1 for w E [A.BJ. 

Suppose further tliat f'(A) and f'(B) are integers, and denote b_y ¢ the inverse 
function of J'. Then it follows that 

L e(f(k)) = e (!) I:" e(.f (¢(m)) - m<i>(m)) + O(log(l + U)), 
A:-:ksB S f'(A),Sms/'(B) ✓ f'1(¢(m)) 

where I:'' means that the terms corresponding to m = f'(A) and m = J'(B) get 
a factor ½. The O-co11sta11t depends on C* and on the constants implied in the 
order symbols in the suppositions. 

Proof. This is Lemma 2 in Kiihleitner [12]. For a more general version of the 
same precision, as well as for comments on the history of this sort of results, see 
Kiihleitner & Nowak [14], Lemma 2.2. 

We use this formula to transform each of the sums over n in (3.4), with 
[A, B] = [Nj, NJ+1J, and 

.f(w) = -h(uk - ui) I/k. 

We readily compute the derivatives m,s 
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J'"(w) = h(k- l)ukw,- 3 (,l - wk) :OH/k((k-2)1l + (k+ 1),1'') 

« hT- 2 2J- 2Jq . 

f14)( .) h(k 1) k k-4( 'k k)-4+-I/k ,' U'= ,·- 'UW V-W 

x ((k - 2)(k- :i)11n + (k + 1)(4k - 7),iv), + (k + l)(k + 2)w2k) 
« hT-3 2J- 3Jq . 

Our Lemma thus applies with L = NJ+ 1 - NJ::=:: 2-JqT, U = h 2.i 1 and we obtain 

by a straightforward calculation, for u E [T ½. T + ½J. 

L e (-h(uk - nk)1fk) 
nEN1 (t) 

= ~hu112 L 11 (hm)-1+,i/2 ll(h, m)ll,~q H/'2 e(-u li(h, m)llq) 
mF}Vi, i h) 

+ O(logT), 
(3.5) 

with 
MJ(h) = ]f'(.VJ), f'(NJ 1-dl = ]21h. 2.J+ 1 h] , 

and ll·llq denoting the q-norm in lR2, i.e., ll(u1, u2)llq = (l,11\q + [v2l'l) I/q. With 
a look back to (3.4), we define 

Sh(u) := :3h.n h L 11 (hm)-lH/2 ll(h. m)ll;q+l/'2 e(-u ll(h. m)ilq) 
mFM 1 (h) 

and divide the range l :::; h :::; D = 2I (say) into dyadic subintervals H; 

]21- 1 • 2i], i = 1 ..... I « log r. Combining (3.4) and (3.5). we conclude by 

Cauchy's inequality that 

(3.6) 

Following an idea of Huxley [5]. we now use the Fejer kernel 

) ( sin ( nw) ) 2 

s;(v• := 
1fW 

By Jordan's inequality . ..p(w) ~ 4/1r2 for lwl :::; ½. and the Fourier transform has 
the simple shape 

i3(y) = f ..p(w)e(yw) dw = max(0. 1 - IYI). 
};..; 



On sums of two k-th powers: a mean-square bound over short intervals 123 

Therefore, 

4 !,T + ~ I 12 I 12 " 2 . _ 1 - L Sh(v) du :S / cp(u -T) L S,,(u) du= 
· 1 2 h'c:H, lx hE'H, 

I:" 
m 1Elvf, (h 1 ). 

m2EMj(h2) 

(1l(h1,mi)ll'l 11(112, m2)1iq)-q+l/2 

(m1m2) 1-q/2 

« 

x e(-T(ll(h1,mi)llq - ll(h2,m2)llq)) 

l cp(u)e(-u(l[(h1, mi)ll'l - ll(h2. m2)IIJ) du 

m1EM1 (111). 
m2EMJ(h2) 

(ll(h1, m1)ll1J II (h2, m2)ll'l)-q+l/2 

( m1 m2) l-q/ 2 

(3.7) 
using the bound (3.3) for the /3 's. We recall that h E 1-i; implies h :::=:: 2i and 
m E Jv11(h) implies that ll(h,m)llq :::=:: m :::=:: 2J h. Therefore, the last expression in 
(3. 7) is 

« (i)-2+q(2i+j)-l-q #{ (h1, h2, m1, m2) E Z4 : h1, h2 E Hi, 
mi E .'v1j(h1 ), m2 E M 1 (h2). )ll(h1, mi)IIIJ - l[(h2, m2)[!ql < 1}. 

(3.8) 

Now denote by A; ( u) the numher of lattice points v E Z 2 with [lvllq :S u, then 
the most elementary estimate 

·'Number of lattice points = area + O(length of boundary)'' 

implies, for any fixed (h1. mi), h1 E 1-l;, m 1 E J'v1 j (h1), that 

Thus, combining (3.7) and (3.8), it follows that 

uniformly in i = l. ... ,I. Using this in (3.6), we get 

Ij(T) « 2-j(q- l) T(logT) 2 + (logT) 2 . 
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Recalling (:U), (:t2), and the fact that. q = k/(k - 1) > 1, we complete the proof 
of the Theorem. • 

References 

[1] K. Cornidi Rncl I. Katai, A commPnt on K. S. Gangadharo,n:8 papPr "Two 
classical lattice point problems" (Hungarian), Magyar Tud. Akad. mat. fiz. 
Oszt. Ki)zl. 17 (1967), 89-97. 

[2] S.W. Graham and G. Kolesnik. Van dr-T Corput's mPthod of nponential 
sums, Cambridge University Press, Cambridge, 1991. 

[3] J.L. Hafner, New omega theorems for two classical lattice point problems, 
Invent. Math. 63 (1981), 181-186. 

[4] M.N. Huxley, Exponential sums and lattice point,s II, Proc. London lVlath. 
Soc. 66 (1993), 279-301. 

[5] M.N. Huxley. The mean lattice point discrepancy, Proc. Edinburgh Math. 
So('. 38 (1995), 523-531. 

[6] :M.N, HuxlPy. Area, lattice points, and P:rponential sums, LMS Monographs, 
New Ser. 13, Oxford 1996. 

[7] I. Katai, The number of lattice points in a circle, Ann. Univ. Sci. Bu
dap. Rolando Eotvos, Sect. Math. 8 (1965), 39-60. 

[8] D.G. Kendall, On the number of lattice points inside a random oval, Quart. 
J. Math. (Oxford) 19 (1948), 1-26. 

[9] E. Kriitzel, Bemerkungen zu einem Gitterpunktproblem. Math. Ann. 179 
(19fi9), 90-9fi. 

[10] E. KriitzPl, Lattice Points, Dt.. VPrL cl. Wiss., Berlin, 1988. 

[11] G. Kuba, On sums of two k-th powPTs of numbers in residue classes II, Abh. 
Math. Sem. Hamburg 63 (1993), 87-95. 

[12] 11. Kiihleitner, On sums of two kth powers: an asymptotic formula for the 
mean square of the error term, Acta Arithm. 92 (2000), 263-276. 

[13] M. Kiihleitner, W. G. Nowak, J. SchoiBengeier and T. Wooley, On sums 
of two cubes: An D+-estimate for the error term, Acta Arithm. 85 (1998), 
179-195. 

[14] M. KiihlPitncr and W. G. Nowak, The asymptotic behaviour of the mean-squa
re offructional part sums, Proc. Edinburgh Math. Soc., 43 (2000), 309-323. 

[15] W. G. Nmvak, On sums of two k-th powers: a mean-squ.an' buu.nd for the 
error tPTm, Analysis 16 (1996), 297-:HJ4. 

[16] W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error 
term, Arch. Math. 68 (1997), 27-35. 

[17] .J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. 
Soc. (2) 12 (1985), 183-216. 

[18] J.G. Van der Corput, Over roosterpunkten in het plate vlak, Thesis, Gronin
gen. 1919. 



On sums of two k-th powers: a mean-square bound over short intervals 125 

Address: Institut fiir Mathematik u. Ang.Stat., Universitat fiir Bodenkultur, A-1180 Wien, Austria. 
E-mail: nowak©mail. boku. ac. at, http://www. boku. ac. at/math/nth. html 
Received: 14 May 2000 




