To Professor Whodzimierz Staś on his 75th birthday

ON SUMS OF TWO K-TH POWERS: A MEAN-SQUARE BOUND OVER SHORT INTERVALS

Werner Georg Nowak

1. Introduction.

For a fixed integer $k \geq 2$, denote by $r_{k}(n)$ the number of representations of the positive integer n as a sum of the k-th powers of two integers taken absolutely:

$$
r_{k}(n)=\#\left\{\left(u_{1}, u_{2}\right) \in \mathbb{Z}^{2}:\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}=n\right\} .
$$

The average order of this arithmetic function is described by the sum

$$
R_{k}(u)=\sum_{1 \leq n \leq u^{k}} r_{k}(n),
$$

where u is a large real variable ${ }^{1}$. One is interested in precise asymptotic formulas for this summatory function $R_{k}(u)$.

For $k=2$, this is the celebrated Gaussian circle problem. (An enlightening account on its history can be found in the monograph of Krätzel [10].) The sharpest published results to date ${ }^{2}$ read

$$
\begin{gather*}
R_{2}(u)=\pi u^{2}+P_{2}(u) \tag{1.1}\\
P_{2}(u)=O\left(u^{46 / 73}(\log u)^{315 / 146}\right) \tag{1.2}
\end{gather*}
$$

and ${ }^{3}$

$$
\begin{equation*}
P_{2}(u)=\Omega_{-}\left(u^{1 / 2}(\log u)^{1 / 4}(\log \log u)^{\frac{1}{4} \log 2} \exp (-c \sqrt{\log \log \log u)}) \quad(c>0)\right. \tag{1.3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
P_{2}(u)=\Omega_{+}\left(u^{1 / 2} \exp \left(c^{\prime}(\log \log u)^{1 / 4}(\log \log \log u)^{-3 / 4}\right)\right) \quad\left(c^{\prime}>0\right) . \tag{1.4}
\end{equation*}
$$

\]

These are due to Huxley [4], [6], Hafner [3], and Corrádi \& Kátai [1], respectively. It is a wide-standing belief that

$$
\begin{equation*}
\inf \left\{\theta \in \mathbb{R}: \quad P_{2}(u) \ll{ }_{\theta} u^{\theta}\right\}=\frac{1}{2} . \tag{1.5}
\end{equation*}
$$

In favour of this conjecture, there is the mean-square asymptotic

$$
\begin{equation*}
\int_{0}^{T}\left(P_{2}(u)\right)^{2} \mathrm{~d} u=C_{2} T^{2}+O\left(T(\log T)^{2}\right) . \quad C_{2}=\frac{1}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{\left(r_{2}(n)\right)^{2}}{n^{3 / 2}} \tag{1.6}
\end{equation*}
$$

which has been established (with this precise error term) by Kátai [7].
The proofs of the results (1.3), (1.4). (1.6) were based on the fact that the generating function (Dirichlet series) of $r_{2}(n)$ is the Epstein zeta- function of the quadratic form $u_{1}^{2}+u_{2}^{2}$, which satisfies a well-known functional equation and thus makes available the whole toolkit of complex analysis.

The general case, $k \geq 3$, lacks this technical advantage. Nevertheless, the problem concerning the asymptotic behaviour of $R_{k}(u), k \geq 3$, has attracted a lot of attention, too. It has first been dealt with by Van der Corput [18] and Krätzel [9]. For a thorough account on the history of this problem and the results available until 1988. see again Krätzel's textbook [10]. It turns out that

$$
\begin{equation*}
R_{k}(u)=\frac{2 \Gamma^{2}(1 / k)}{k \Gamma(2 / k)} u^{2}+B_{k} \Phi_{k}(u) u^{1-1 / k}+P_{k}(u) \tag{1.7}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{k}=2^{3-1 / k} \pi^{-1-1 / k} k^{1 / k} \Gamma\left(1+\frac{1}{k}\right) . \\
\Phi_{k}(u)=\sum_{n=1}^{\infty} n^{-1-1 / k} \sin \left(2 \pi n u-\frac{\pi}{2 k}\right) .
\end{gathered}
$$

and the new error term $P_{k}(u)$ satisfies an estimate quite analogous to (1.2), i.e..

$$
\begin{equation*}
P_{k}(u)=O\left(u^{46 / 73}(\log u)^{315 / 146}\right) . \tag{1.8}
\end{equation*}
$$

as was proved by Kuba [11], using Huxley's method [4]. [6].
Concerning lower bounds, it was shown by the author [16] that, for any fixed $k \geq 3$,

$$
\begin{equation*}
P_{k}(u)=\Omega_{-}\left(u^{1 / 2}(\log u)^{1 / 4}\right), \tag{1.9}
\end{equation*}
$$

and by Küehleitner, Nowak, Schoißengeier \& Wooley [13] that

$$
\begin{equation*}
P_{3}(u)=\Omega_{+}\left(u^{1 / 2}(\log \log u)^{1 / 4}\right) . \tag{1.10}
\end{equation*}
$$

The similarity of these results to those for the case $k=2$ suggested to extend the classic conjecture (1.5) to arbitrary $k \geq 2$. It turned out that this is again true in mean-square: In fact, the author [15] was able to show that, for T large,

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T}\left(P_{k}(u)\right)^{2} \mathrm{~d} u \ll T \tag{1.11}
\end{equation*}
$$

for any fixed $k \geq 3$. M. Küehleitner [12] refined this estimate, proving an asymptotic formula

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T}\left(P_{k}(u)\right)^{2} \mathrm{~d} u=C_{k} T+O\left(T^{1-\omega_{k}+\epsilon}\right) \tag{1.12}
\end{equation*}
$$

with explicite constants C_{k} and $\omega_{k}>0$.

2. Statement of result

In the present note we investigate the question whether the "average moderate size" of this error term $P_{k}(u)$, as displayed by (1.11), can be observed only "in the long run," i.e., by averaging over an interval of order T, or if a similar estimate is possible for a "short interval mean." In fact, it turns out that it essentially suffices to average over an interval of bounded length-at the cost of a small loss of precision (extra logarithmic factor).

Theorem 2.1. For T large and arbitrary fixed $k \geq 3$,

$$
\int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left(P_{k}(u)\right)^{2} \mathrm{~d} u \ll T(\log T)^{2},
$$

with the \ll-constant depending on k.
Remorks. This work is inspired by a paper of Huxley [5] who investigated the corresponding problem for the lattice rest of a convex planar domain (with smooth boundary of finite nonzero curvature throughout), linearly dilated by a large factor u. He obtained the corresponding mean-square bound $O(T \log T)$, thereby including the case of a circle, i.e., that of $k=2$ in our problem.

In geometric terms, for $k \geq 3$ we are concerned with the number of lattice points in a domain bounded by a Lamé's curve $|\xi|^{k}+|\eta|^{k}=u^{k}$. This has curvature 0 in its points of intersection with the coordinate axes. As a consequence, the expansion of the lattice rest into a trigonometric series, as discovered by Kendall [8] and employed by Huxley [5], is no longer available. Therefore, we use a different approach based on fractional part sums, Vaaler's transition to exponential sums, the Van der Corput transformation ("B-step"), and. in the end, Huxley's trick involving the Féjer kernel.

Catching a word of Huxley [5] (who imagined the dilation factor u as a time variable), we can say that, according to our result, these number-theoretic error terms "have no memory," or, a bit more precisely, that their average small size is accomplished "not by long-term memory, but by short-term memory."

3. Proof of the Theorem 2.1

As in our earlier article [15], we start from formulae (3.57), (3.58) (and the asymptotic expansion below) in Krätzel [10], p. 148. In our notation, this reads

$$
\begin{equation*}
P_{k}(u)=-8 \sum_{\alpha u<n \leq u} \psi\left(\left(u^{k}-n^{k}\right)^{1 / k}\right)+O(1), \tag{3.1}
\end{equation*}
$$

with $\psi(w)=w-[w]-\frac{1}{2}$ throughout, and $\alpha:=2^{-1 / k}$. We suppose that T is sufficiently large, $u \in\left[T-\frac{1}{2}, T+\frac{1}{2}\right]$, and define q by $1 / k+1 / q=1$, i.e., $q=k /(k-1)$, and thus $1<q \leq \frac{3}{2}$. We break up the range of summation into subintervals $\left.\mathcal{N}_{j}(u)=\mid N_{j}, N_{j+1}\right]$, where $N_{j}=u\left(1+2^{-j q}\right)^{-1 / k}, j=0,1, \ldots, J$; with J minimal such that $u-N_{J}<1$ for all $u \in\left[T-\frac{1}{2}, T+\frac{1}{2}\right]{ }^{4}$ It follows that the length of any $\mathcal{N}_{j}(u)$ is equal to $N_{j+1}-N_{j} \asymp 2^{-j q} T$, and that $w \in \mathcal{N}_{j}(u)$ implies that $u^{k}-w^{k}=2^{-j q} T^{k}$. We put

$$
I_{j}(T):=\int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left(\sum_{n \in \mathcal{N}_{3}(u)} \psi\left(\left(u^{k}-n^{k}\right)^{1 / k}\right)\right)^{2} \mathrm{~d} u
$$

and infer from Cauchy's inequality, with some fixed $\epsilon>0$ sufficiently small, that

$$
\begin{align*}
& \int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left(\sum_{j=0}^{J} \sum_{n \in \mathcal{N}_{j}(u)} \psi\left(\left(u^{k}-n^{k}\right)^{1 / k}\right)\right)^{2} \mathrm{~d} u \\
& \leq \sum_{j=0}^{J} 2^{-j \varepsilon} \sum_{j=0}^{J} 2^{j \epsilon} I_{j}(T) \ll \sum_{j=0}^{J} 2^{j \epsilon} I_{j}(T) \tag{3.2}
\end{align*}
$$

We now invoke a deep result of Vaaler [17] which connects fractional parts with exponential sums. (See also Graham and Kolesnik [2], p. 116.) For every positive integer D there exists a sequence $\left(\alpha_{h . D}\right)_{h=1}^{D}$ contained in the interval $[0,1]$ such that for all reals w,

$$
\left|\psi(w)+\frac{1}{2 \pi i} \sum_{1 \leq|h| \leq D} \frac{\alpha_{|h| . D}}{h} e(h w)\right| \leq \frac{1}{2 D+2} \sum_{h=-D}^{D}\left(1-\frac{|h|}{D+1}\right) e(h w),
$$

with $e(w)=e^{2 \pi i w}$ as usual. From this it is easy to see that there exists a complexvalued sequence $\left(\beta_{h, D}\right)_{h=1}^{D}$ with

$$
\begin{equation*}
\beta_{h . D} \ll \frac{1}{h} \tag{3.3}
\end{equation*}
$$

[^1]such that
\[

$$
\begin{equation*}
I_{j}(T) \ll \int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left|\sum_{h=1}^{D} \beta_{h, D} \sum_{n \in \mathcal{N}_{2}(u)} e\left(-h\left(u^{k}-n^{k}\right)^{1 / k}\right)\right|^{2} d u+\left(\frac{2^{-j q} T}{D}\right)^{2} \tag{3.4}
\end{equation*}
$$

\]

We choose $D=\exp \left(\log 2\left[\frac{1}{2} \log T / \log 2\right]\right)$, i.e., D is a power of 2 and $D \simeq \sqrt{T}$. The last term in (3.4) is thus $\ll 4^{-j q} T$.

We now transform the exponential sums under consideration by a fairly sharp form of the "Van der Corput step."

Lemma 3.1. Suppose that f is a real-valued function which possesses four contimuous derivatives on the interval $[A, B]$. Let L and U be real parameters not less than 1 such that $B-A \simeq L$,

$$
f^{(j)}(w) \ll U L^{1-j} \quad \text { for } w \in[A, B], j=1,2,3,4
$$

and, for some $C^{*}>0$,

$$
f^{\prime \prime}(w) \geq C^{*} U L^{-1} \quad \text { for } w \in[A, B]
$$

Suppose further that $f^{\prime}(A)$ and $f^{\prime}(B)$ are integers, and denote by ϕ the inverse function of f^{\prime}. Then it follows that

$$
\sum_{A \leq k \leq B} e(f(k))=e\left(\frac{1}{8}\right) \sum_{f^{\prime}(A) \leq m \leq f^{\prime}(B)}^{\prime \prime} \frac{e(f(\phi(m))-m \phi(m))}{\sqrt{f^{\prime \prime}(\phi(m))}}+O(\log (1+U))
$$

where $\sum^{\prime \prime}$ means that the terms corresponding to $m=f^{\prime}(A)$ and $m=f^{\prime}(B)$ get a factor $\frac{1}{2}$. The O-constant depends on C^{*} and on the constants implied in the order symbols in the suppositions.

Proof. This is Lemma 2 in Kühleitner [12]. For a more general version of the same precision, as well as for comments on the history of this sort of results, see Kühleitner \& Nowak [14]. Lemma 2.2.

We use this formula to transform each of the sums over n in (3.4), with $[A, B]=\left[N_{j}, N_{j+1}\right]$, and

$$
f(w)=-h\left(u^{k}-w^{k}\right)^{1 / k}
$$

We readily compute the derivatives as ${ }^{5}$

$$
\begin{gathered}
f^{\prime}(w)=h w^{k-1}\left(u^{k}-w^{k}\right)^{-1+1 / k} \ll h 2^{j} \\
f^{\prime \prime}(w)=h(k-1) u^{k} w^{k-2}\left(u^{k}-w^{k}\right)^{-2+1 / k} \asymp h T^{-1} 2^{j-j q},
\end{gathered}
$$

5 Recall that $w \in \mathcal{N}_{J}(u)$ implies that $w \asymp T$ and $u^{k}-w^{k} \asymp 2^{-3 q} T^{k}$.

$$
\begin{aligned}
& f^{\prime \prime \prime}(w)= h(k-1) u^{k} w^{k-3}\left(u^{k}-w^{k}\right)^{-3+1 / k}\left((k-2) u^{k}+(k+1) w^{k}\right) \\
& \ll h T^{-2} 2^{j-2 j q} \\
& f^{(4)}(w)= h(k-1) u^{k} w^{k-4}\left(u^{k}-w^{k}\right)^{-4+1 / k} \\
& \times\left((k-2)(k-3) u^{2 k}+(k+1)(4 k-7) u^{k} w^{k}+(k+1)(k+2) w^{2 k}\right) \\
& \ll h T^{-3} 2^{j-3 j q}
\end{aligned}
$$

Our Lemma thus applies with $L=N_{j+1}-N_{j} \asymp 2^{-j q} T, U=h 2^{j}$, and we obtain by a straightforward calculation, for $u \in\left[T-\frac{1}{2}, T+\frac{1}{2}\right]$,

$$
\begin{align*}
& \sum_{n \in \mathcal{N}_{3}(t)} e\left(-h\left(u^{k}-n^{k}\right)^{1 / k}\right) \\
&= \frac{e\left(\frac{1}{8}\right)}{\sqrt{k-1}} h u^{1 / 2} \sum_{m \in \mathcal{M}_{3}(h)}^{\prime \prime}(h m)^{-1+q / 2}\|(h, m)\|_{q}^{-q+1 / 2} e\left(-u\|(h, m)\|_{q}\right) \\
& \quad+O(\log T) \tag{3.5}
\end{align*}
$$

with

$$
\left.\left.\left.\left.\mathcal{M}_{j}(h)=\right] f^{\prime}\left(N_{j}\right), f^{\prime}\left(N_{j+1}\right)\right]=\right] 2^{j} h, 2^{j+1} h\right]
$$

and $\|\cdot\|_{q}$ denoting the q-norm in \mathbb{R}^{2}, i.e., $\left\|\left(u_{1}, u_{2}\right)\right\|_{q}=\left(\left|u_{1}\right|^{q}+\left|u_{2}\right|^{q}\right)^{1 / q}$. With a look back to (3.4), we define

$$
S_{h}(u):=\beta_{h . D} h \sum_{m \in \mathcal{M}_{3}(h)}^{\prime \prime}(h m)^{-1+q / 2}\|(h, m)\|_{q}^{-q+1 / 2} e\left(-u\|(h . m)\|_{q}\right)
$$

and divide the range $1 \leq h \leq D=2^{I}$ (say) into dyadic subintervals $\mathcal{H}_{i}=$ $\left.12^{i-1} .2^{i}\right], i=1 \ldots . I \ll \log T$. Combining (3.4) and (3.5), we conclude by Cauchy's inequality that

$$
\begin{align*}
I_{j}(T) & \ll \int_{T-\frac{1}{2}}^{T+\frac{1}{2}} u\left|\sum_{h=1}^{I} \sum_{h \in \mathcal{H}_{i}} S_{h}(u)\right|^{2} \mathrm{~d} u+(\log T)^{2}+4^{-j q} T \\
& \ll T(\log T)^{2} \max _{1 \leq i \leq I} \int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left|\sum_{h \in \mathcal{H}_{t}} S_{h}(u)\right|^{2} \mathrm{~d} u+(\log T)^{2}+4^{-j q} T \tag{3.6}
\end{align*}
$$

Following an idea of Huxley [5], we now use the Féjer kernel

$$
\varphi(w):=\left(\frac{\sin (\pi w)}{\pi w}\right)^{2}
$$

By Jordan's inequality. $\varphi(w) \geq 4 / \pi^{2}$ for $|w| \leq \frac{1}{2}$, and the Fourier transform has the simple shape

$$
\widehat{\varphi}(y)=\int_{\mathbb{R}} p(w) e(y w) \mathrm{d} w=\max (0.1-|y|)
$$

Therefore,

$$
\begin{align*}
& \frac{4}{\pi^{2}} \int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left|\sum_{h \in \mathcal{H}_{2}} S_{h}(u)\right|^{2} \mathrm{~d} u \leq \int_{\mathbb{R}} \varphi(u-T)\left|\sum_{h \in \mathcal{H}_{3}} S_{h}(u)\right|^{2} \mathrm{~d} u= \\
& =\sum_{h_{1}, h_{2} \in \mathcal{H}_{i}}\left(h_{1} h_{2}\right)^{q / 2} \beta_{h_{1} . D} \overline{\beta_{h_{2} . D}} \sum_{\substack{m_{1} \in \mathcal{M}_{1}\left(h_{1}\right) . \\
m_{2} \in \mathcal{M}_{j}\left(h_{2}\right)}}^{\prime \prime} \frac{\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right)^{-q+1 / 2}}{\left(m_{1} m_{2}\right)^{1-q / 2}} \\
& \times e\left(-T\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}-\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right)\right) \\
& \int_{\mathbb{R}} \varphi(u) e\left(-u\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}-\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right)\right) \mathrm{d} u \\
& \ll \sum_{h_{1} \cdot h_{2} \in \mathcal{H}_{2}}\left(h_{1} h_{2}\right)^{-1+q / 2} \sum_{\substack{m_{1} \in \mathcal{M}_{j}\left(h_{1}\right) . \\
m_{2} \in \mathcal{M}_{3}\left(h_{2}\right)}}^{\prime \prime} \frac{\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right)^{-q+1 / 2}}{\left(m_{1} m_{2}\right)^{1-q / 2}} \\
& \times \max \left(0,1-\left|\left\|\left(h_{1}, m_{1}\right)\right\|_{q}-\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right|\right), \tag{3.7}
\end{align*}
$$

using the bound (3.3) for the β 's. We recall that $h \in \mathcal{H}_{i}$ implies $h \simeq 2^{i}$ and $m \in \mathcal{M}_{j}(h)$ implies that $\|(h, m)\|_{q} \simeq m \simeq 2^{j} h$. Therefore, the last expression in (3.7) is

$$
\begin{align*}
& \ll\left(2^{i}\right)^{-2+q}\left(2^{i+j}\right)^{-1-q} \nexists\left\{\left(h_{1}, h_{2}, m_{1}, m_{2}\right) \in \mathbb{Z}^{4}: h_{1}, h_{2} \in \mathcal{H}_{i}\right. \\
& \left.\quad m_{1} \in \mathcal{M}_{j}\left(h_{1}\right), m_{2} \in \mathcal{M}_{j}\left(h_{2}\right),\left|\left\|\left(h_{1}, m_{1}\right)\right\|_{q}-\left\|\left(h_{2}, m_{2}\right)\right\|_{q}\right|<1\right\} \tag{3.8}
\end{align*}
$$

Now denote by $A_{q}^{*}(u)$ the number of lattice points $\mathrm{v} \in \mathbb{Z}^{2}$ with $\|\mathrm{v}\|_{q} \leq u$, then the most elementary estimate

$$
\text { "Number of lattice points }=\text { area }+O \text { (length of boundary)" }
$$

implies, for any fixed $\left(h_{1} . m_{1}\right), h_{1} \in \mathcal{H}_{i}, m_{1} \in \mathcal{M}_{j}\left(h_{1}\right)$, that

$$
A_{q}^{*}\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}+1\right)-A_{q}^{*}\left(\left\|\left(h_{1}, m_{1}\right)\right\|_{q}-1\right) \ll\left\|\left(h_{1}, m_{1}\right)\right\|_{q} \ll m_{1}
$$

Thus, combining (3.7) and (3.8), it follows that

$$
\int_{T-\frac{1}{2}}^{T+\frac{1}{2}}\left|\sum_{h \in \mathcal{H}_{2}} S_{h}(u)\right|^{2} \mathrm{~d} u \ll\left(2^{i}\right)^{-2+q}\left(2^{i+j}\right)^{-1-q} \sum_{h_{1} \in \mathcal{H}_{2} .} \sum_{m_{1} \in \mathcal{M}_{j}\left(h_{1}\right)} m_{1} \ll\left(2^{j}\right)^{1-q}
$$

uniformly in $i=1, \ldots, I$. Using this in (3.6), we get

$$
I_{j}(T) \ll 2^{-j(q-1)} T(\log T)^{2}+(\log T)^{2}
$$

Recalling (3.1), (3.2), and the fact that $q=k /(k-1)>1$, we complete the proof of the Theorem.

References

[1] K. Corrádi and I. Kátai, A comment on K. S. Gangadharan's paper "Two classical lattice point problems" (Hungarian), Magyar Tud. Akad. mat. fiz. Oszt. Közl. 17 (1967), 89-97.
[2] S.W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, Cambridge University Press, Cambridge, 1991.
[3] J.L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
[4] M.N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
[5] M.N. Huxley, The mean lattice point discrepancy, Proc. Edinburgh Math. Soc. 38 (1995), 523-531.
[6] M.N. Huxley, Area, lattice points, and exponential sums, LMS Monographs, New Ser. 13, Oxford 1996.
[7] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 8 (1965), 39-60.
[8] D.G. Kendall, On the number of lattice points inside a random oval, Quart. J. Math. (Oxford) 19 (1948), 1-26.
[9] E. Krätzel, Bemerkungen zu einem Gitterpunktproblem, Math. Ann. 179 (1969), 90-96.
[10] E. Krätzel, Lattice Points, Dt. Verl. d. Wiss., Berlin, 1988.
[11] G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Hamburg 63 (1993), 87-95.
[12] M. Kühleitner, On sums of two kth powers: an asymptotic formula for the mean square of the error term, Acta Arithm. 92 (2000), 263-276.
[13] M. Kühleitner, W. G. Nowak, J. Schoißengeier and T. Wooley, On sums of two cubes: An Ω_{+}-estimate for the error term, Acta Arithm. 85 (1998), 179-195.
[14] M. Kühleitner and W. G. Nowak, The asymptotic behaviour of the mean-square of fractional part sums, Proc. Edinburgh Math. Soc., 43 (2000), 309-323.
[15] W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
[16] W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. 68 (1997), 27-35.
[17] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. (2) 12 (1985), 183-216.
[18] J.G. Van der Corput, Over roosterpunkten in het plate vlak, Thesis, Groningen, 1919.

Address: Institut für Mathematik u. Ang.Stat., Universität für Bodenkultur, A-1180 Wien, Austria.
E-mail: nowak@mail.boku.ac.at, http://www.boku.ac.at/math/nth.html Received: 14 May 2000

[^0]: 1991 Mathematics Subject Classification: 11P21, 11N37, 11 L07
 1 Note that, in part of the relevant literature, $t=u^{2}$ is used as the basic variable,
 2 Actually, M. Huxley has meanwhile improved further this upper bound, essentially replacing the exponent $\frac{46}{73}=0.6301 \ldots$ by $\frac{131}{208}=0.6298 \ldots$. The author is indebted to Professor Huxley for sending him a copy of his unpublished manuscript.
 3 We recall that $F_{1}(u)=\Omega_{*}\left(F_{2}(u)\right)$ means that $\limsup \left(* F_{1}(u) / F_{2}(u)\right)>0$ for $u \rightarrow \infty$ where * is either + or -, and $F_{2}(u)$ is positive for u sufficiently large.

[^1]: 4 The idea of this special choice of subdivision points is that $\frac{d}{d w}\left(\left(u^{k}-w^{k}\right)^{1 / k}\right)$ assumes integer values at $w=N_{2}$. See the application of the Lemma below.

