LUCAS PSEUDOPRIMES

Andrzej Rotkiewicz

Abstract

Theorem on four types of pseudoprimes with respect to Lucas sequences are proved. If n is an Euler-Lucas pseudoprime with parameters P and Q and n is an Euler pseudoprime to base $Q,(n, P)=1$, then n is Lucas pseudoprime of four kinds.

Let U_{n} be a nondegenerate Lucas sequence with parameters P and $Q= \pm 1, \varepsilon= \pm 1$. Then, every arithmetic progression $a x+b$, where $(a, b)=1$ which contains an odd integer n_{0} with the Jacobi symbol $\left(\frac{D}{n_{0}}\right)$ equal to ε, contains infinitely many strong Lucas pseudoprimes n with parameters P and $Q= \pm 1$ such that $\left(\frac{D}{n}\right)=\varepsilon$ which are at the same time Lucas pseudoprimes of each of the four types.

Keywords: Pseudoprime, Dickson pseudoprime, Lucas pseudoprime, Euler pseudoprime, Lucas sequence

A pseudoprime to base a is a composite n such that $a^{n-1} \equiv 1 \bmod n$.
An odd composite number n is an Euler pseudoprime to base c if $(c, n)=1$ and $c^{(n-1) / 2} \equiv\left(\frac{c}{n}\right) \bmod n$, where $\left(\frac{c}{n}\right)$ is the Jacobi symbol.

Let D, P and Q be integers such that $D=P^{2}-4 Q \neq 0$ and $P>0$. Let $U_{0}=0, U_{1}=1, V_{0}=2$ and $V_{1}=P$. The Lucas sequences U_{k} and V_{k} are defined recursively for $k \geq 2$ by

$$
U_{k}=P U_{k-1}-Q U_{k-2}, \quad V_{k}=P V_{k-1}-Q V_{k-2} .
$$

For $k \geq 0$, we also have

$$
U_{k}=\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}, \quad V_{k}=\alpha^{k}+\beta^{k}
$$

where α and β are distinct roots of $x^{2}-P x+Q=0$.
We shall consider non-degenerate Lucas sequences, i.e. $U_{k} \neq 0$ if $k \geq 1$ (i.e. α / β is not a root of unity which is equivalent with $D=P^{2}-4 Q \neq 0,-2 Q,-3 Q$).

For an odd prime n with $(n, Q D)=1$ we have (cf. [2], [7]):

$$
\begin{equation*}
U_{n-\left(\frac{D}{n}\right)}(P, Q) \equiv 0 \bmod n \tag{1}
\end{equation*}
$$

2000 Mathematics Subject Classification: primary 11A07; secondary 11B39.

$$
\begin{gather*}
U_{n}(P, Q) \equiv\left(\frac{D}{n}\right) \bmod n \tag{2}\\
V_{n}(P, Q) \equiv P \bmod n \tag{3}\\
V_{n-\left(\frac{D}{n}\right)} \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n \tag{4}
\end{gather*}
$$

For every positive integer n the congruences (1), (2) and (3) are linearly dependent $\bmod n$:

We have

$$
\begin{equation*}
A U_{n-\left(\frac{D}{n}\right)}+B\left(U_{n}-\left(\frac{D}{n}\right)\right)+C\left(V_{n}-V_{1}\right)=0 \tag{5}
\end{equation*}
$$

in which

$$
A=2 \alpha \beta, \quad B=-(\alpha+\beta), \quad C=1 \quad \text { for } \quad\left(\frac{D}{n}\right)=1
$$

and

$$
A=-2, \quad B=\alpha+\beta, \quad C=1 \quad \text { for } \quad\left(\frac{D}{n}\right)=-1
$$

Thus if $(n, 2 P Q D)=1$ any two of the congruences (1), (2), (3) imply the other one.

Now we shall prove the following
Proposition \mathbf{P}. The natural number n, where $(n, 2 Q D)=1$ satisfies (1), (2), (3) and (4) if and only if either

$$
\left(\frac{D}{n}\right)=1, \quad \alpha^{n} \equiv \alpha \bmod n \quad \text { and } \quad \beta^{n} \equiv \beta \bmod n
$$

or

$$
\left(\frac{D}{n}\right)=-1, \quad \alpha^{n} \equiv \beta \bmod n \quad \text { and } \quad \beta^{n} \equiv \alpha \bmod n
$$

Proof. Let $\left(\frac{D}{n}\right)=1,(n, 2 Q D)=1, \alpha^{n} \equiv \alpha \bmod n, \beta^{n} \equiv \beta \bmod n$, then $\alpha^{n-1}-\beta^{n-1} \equiv 0 \bmod n$ and $U_{n-1} \equiv 0 \bmod n, \alpha^{n}-\beta^{n} \equiv \alpha-\beta \bmod n$, hence $\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv 1 \bmod n,\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv\left(\frac{D}{n}\right) \bmod n ; \alpha^{n}+\beta^{n} \equiv$ $\alpha+\beta \bmod n, V_{n} \equiv P \bmod n ; \alpha^{n-1}+\beta^{n-1} \equiv 1+1 \equiv 2 \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n$, $V_{n-\left(\frac{D}{n}\right)} \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n$.

If $\left(\frac{D}{n}\right)=-1,(n, Q D)=1, \alpha^{n} \equiv \beta \bmod n$ and $\beta^{n} \equiv \alpha \bmod n$, then $\alpha^{n+1} \equiv \alpha \beta \bmod n, \beta^{n+1} \equiv \alpha \beta \bmod n$, hence $\left(\alpha^{n+1}-\beta^{n+1}\right) /(\alpha-\beta) \equiv 0 \bmod n$, $U_{n-\left(\frac{D}{n}\right)} \equiv 0 \bmod n ; \alpha^{n}-\beta^{n} \equiv \beta-\alpha \bmod n$, hence $\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv-1 \equiv$ $\left(\frac{D}{n}\right) \bmod n, U_{n} \equiv\left(\frac{D}{n}\right) \bmod n ; \alpha^{n}+\beta^{n} \equiv \beta+\alpha \bmod n, V_{n} \equiv P \bmod n ; \alpha^{n+1}+$ $\beta^{n+1} \equiv \beta \alpha+\alpha \beta \equiv 2 \alpha \beta \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n, V_{n-\left(\frac{D}{n}\right)} \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n$.

Conversely, if n, where $(n, 2 Q D)=1$, satisfies the congruences (2) and (3) then for $\left(\frac{D}{n}\right)=1$ we have $\alpha^{n}+\beta^{n} \equiv \alpha+\beta \bmod n,\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv 1 \bmod n$, hence $\alpha^{n}+\beta^{n} \equiv \alpha+\beta \bmod n, \alpha^{n}-\beta^{n} \equiv \alpha-\beta \bmod n, 2 \alpha^{n} \equiv 2 \alpha \bmod n$, $2 \beta^{n} \equiv 2 \beta \bmod n$ and since $(n, 2 Q D)=1$ we have $\alpha^{n} \equiv \alpha \bmod n, \beta^{n} \equiv \beta \bmod n$.

If n, where $(n, 2 Q D)=1$, satisfies the congruences (2) and (3) then for $\left(\frac{D}{n}\right)=-1$ we have $\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv-1 \bmod n, \alpha^{n}+\beta^{n} \equiv \alpha+\beta \bmod n$, hence $\alpha^{n}-\beta^{n} \equiv \beta-\alpha \bmod n, \alpha^{n}+\beta^{n} \equiv \beta+\alpha \bmod n, 2 \alpha^{n} \equiv 2 \beta \bmod n, 2 \beta^{n} \equiv$ $2 \alpha \bmod n$ and since $(n, 2 Q D)=1$ we have $\alpha^{n} \equiv \beta \bmod n, \beta^{n} \equiv \alpha \bmod n$.

A composite n is called a Lucas pseudoprime with parameters P and Q if $(n, 2 Q D)=1$ and (1) holds.

Many results have been published about these numbers (see [1], [2], [3], [4], $[6],[7],[8],[9],[10],[11],[12],[13])$.

Simple examples show that a composite n satisfying one of the congruences $(1),(2),(3),(4)$ does not necessarily satisfy the others. It is easy to check that the number $323=17 \cdot 19$ is a Lucas pseudoprime with parameters $P=1, Q=-1$ but does not satisfy the congruences (2), (3) and (4). Hence three other kinds of pseudoprimes can be distinguished (see [2]).

A composite n such that the congruence (3) holds are called Dickson pseudoprime with parameters P and Q (see [5], [6]).

A composite number n such that the congruence (2) holds are called Lucas pseudoprime of the second kind with parameters P and Q.

Yorinaga (see [14]) proved that there exist infinitely many Lucas pseudoprimes of the second kind with parameters $P=1, Q=-1$. He also published (see [14]) a table of all 109 such numbers n up to 707000 . The least such number is $n=4181=37 \cdot 113$. The number 4181 is also the least composite number n which satisfies all congruences (1), (2), (3) and (4) for $P=1, Q=-1$.

A composite number n which satisfies the congruence (4) is called Dickson pseudoprime of the second kind with parameters P and Q.

Remark. If D is a square and n is a Carmichael number with $(n . Q D)=1$ then all congruences (1), (2), (3) and (4) hold. Indeed. if D is a square $(n, Q D)=1$ and n is a Carmichael number then α and β are rational integers $\neq 0,\left(\frac{D}{n}\right)=1$ and $\left(\alpha^{n-1}-\beta^{n-1}\right) /(\alpha-\beta) \equiv 0 \bmod n:\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \equiv(\alpha-\beta) /(\alpha-\beta) \equiv 1 \equiv$ $\left(\frac{D}{n}\right) \bmod n: \alpha^{n}+\beta^{n} \equiv \alpha+\beta \bmod n$ and $\alpha^{n-1}+\beta^{n-1} \equiv 2 \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n$.

In 1994 Alford. Granville \& Pomerance (see [1]) proved that there are infinitely many Carmichael numbers.

If D is a square, $\alpha>1$ is a positive integer, $\beta= \pm 1$ that is $P=\alpha \pm 1$, $Q= \pm \alpha,(n, 2 Q D)=1$ and n is a Lucas pseudoprime with parameters P and Q then $\alpha^{n} \equiv \alpha \bmod n, \beta^{n}=(\pm 1)^{n} \equiv \pm 1 \bmod n$ and by proposition P the number n satisfies all congruences (1), (2), (3) and (4).

The following problems arise
Problem 1. Let D be a square, P and Q be given integers, $\langle P, Q\rangle \neq\langle\alpha \pm 1, \pm \alpha\rangle$ i.e. $\beta \neq \pm 1$.

Do there exist in every arithmetic progression $a x+b$, where $(a, b)=1$,
infinitely many
a) Lucas pseudoprimes of the second kind with parameters P and Q ?
b) Dickson pseudoprimes with parameters P and Q ?
c) Dickson pseudoprimes of the second kind with parameters P and Q ?

For example: do there exist infinitely many composite n such that $3^{n}+2^{n} \equiv$ $5 \bmod n$ in every arithmetic progression $a x+b$, where $(a, b)=1$?

Problem 2. Given integers $P, Q \neq \pm 1$ with $D=P^{2}-4 Q$ not a square, do there exist infinitely many
a') Lucas pseudoprimes of the second kind with parameters P and Q ?
b) Dickson pseudoprimes with parameters P and Q ?
c) Dickson pseudoprimes of the second kind with parameters P and Q ?
d) Arithmetic progressions formed from three different Dickson pseudoprimes?

Problem 3. Find a composite n with $\left(\frac{D}{n}\right)=-1,(n, 2 P Q D)=1, Q \neq \pm 1$ which satisfies all congruences (1), (2), (3) and (4). Do there exist infinitely many such composite n ?

An odd composite n is an Euler-Lucas pseudoprime with parameters P and Q (see [11]) and

$$
U_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n \quad \text { if }\left(\frac{Q}{n}\right)=1
$$

or

$$
V_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n \quad \text { if }\left(\frac{Q}{n}\right)=-1
$$

We shall prove the following
Theorem 1. If n is an Euler-Lucas pseudoprime with parameters P and Q and n is an Euler pseudoprime to base $Q,(n, P)=1$, then n satisfies all congruences (1), (2), (3) and (4).

Proof. We have (see [10])

$$
\begin{gather*}
V_{n}-Q^{(n-1) / 2} P=D U_{(n-1) / 2} U_{(n+1) / 2} \tag{6}\\
V_{n}+Q^{(n-1) / 2} P=V_{(n-1) / 2} V_{(n+1) / 2} \tag{7}
\end{gather*}
$$

Since n is an Euler-Lucas pseudoprime with parameters P and Q we have

$$
\begin{gather*}
U_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n \quad \text { if }\left(\frac{Q}{n}\right)=1 \tag{8}\\
V_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n \quad \text { if }\left(\frac{Q}{n}\right)=-1 \tag{9}
\end{gather*}
$$

Let $\left(\frac{Q}{n}\right)=1$. Since n is an Euler pseudoprime to base Q we have $Q^{(n-1) / 2} \equiv$ $\left(\frac{Q}{n}\right) \equiv 1 \bmod n$.

By (8) we have $U_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n$, hence

$$
D U_{(n-1) / 2} U_{(n+1) / 2} \equiv 0 \bmod n,
$$

and from (6) we get

$$
V_{n}-Q^{(n-1) / 2} P \equiv 0 \bmod n \quad \text { and since } Q^{(n-1) / 2} \equiv 1 \bmod n
$$

we have $V_{n} \equiv P \bmod n$ and n is a Dickson pseudoprime with parameters P and Q, and since n satisfies the congruence (1) and (3), $(n, 2 P Q D)=1$, hence n satisfies all congruences (1), (2), (3) and (4).

If $\left(\frac{Q}{n}\right)=-1$, then since n is an Euler pseudoprime to base Q, we have $V_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n$, hence

$$
V_{(n-1) / 2} \cdot V_{(n+1) / 2} \equiv 0 \bmod n
$$

Since $Q^{(n-1) / 2} \equiv-1 \bmod n$, be (7) we have $V_{n}+(-1) P \equiv 0 \bmod n$ and $V_{n} \equiv$ $P \bmod n$ and n is a Dickson pseudoprime with parameters P and Q. and since n satisfies the congruence (1) and (3), hence n satisfies all congruences (1), (2), (3) and (4).

Theorem 2. If n is an Euler-Lucas pseudoprime with parameters P and Q, $(n, 2 P Q D)=1$ and n is a Dickson pseudoprime with parameters P and Q, then n is an Euler pseudoprime to base Q.
Proof. Suppose that n is an Euler-Lucas pseudoprime with parameters P and Q.

Let $\left(\frac{Q}{n}\right)=1$ then by $(8), U_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n$, hence by $(6), V_{n}-$ $Q^{(n-1) / 2} P \equiv 0 \bmod n$ and $V_{n} \equiv Q^{(n-1) / 2} P \bmod n$. Since n is a Dickson pseudoprime with parameters and Q we have $V_{n} \equiv P \bmod n$. Thus $Q^{(n-1) / 2} P \equiv$ $P \bmod n$ and since $(n, P)=1$ we have $Q^{(n-1) / 2} \equiv 1 \equiv\left(\frac{Q}{n}\right) \bmod n$.

Since n is a Dickson pseudoprime with parameters P and Q we have $V_{n} \equiv$ $P \bmod n$. Thus $Q^{(n-1) / 2} P \equiv P \bmod n$ and since $(n, P)=1$ we have $Q^{(n-1) / 2} \equiv$ $1 \equiv\left(\frac{Q}{n}\right) \bmod n$.

If $\left(\frac{Q}{n}\right)=-1$ then by (9) we have $V_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \equiv 0 \bmod n$, hence $V_{(n-1) / 2} V_{(n+1) / 2} \equiv 0 \bmod n$ hence by $(7), V_{n} \equiv-Q^{(n-1) / 2} P \bmod n$.

Since n is a Dickson pseudoprime with parameters P and Q we have $V_{n} \equiv$ $P \bmod n$. Thus $-Q^{(n-1) / 2} P \equiv P \bmod n$ and since $(n, P)=1$ we have $Q^{(n-1) / 2} \equiv$ $-1 \equiv\left(\frac{Q}{n}\right) \bmod n$ and in the both cases we have $Q^{(n-1) / 2} \equiv\left(\frac{Q}{n}\right) \bmod n$ and n is an Euler pseudoprime to base Q.
R. Baillie and S. S. Wagstaff (see [2], Theorem 5) proved the following theorem:

Suppose $(n, 2 Q D)=1, U_{n} \equiv\left(\frac{D}{n}\right) \bmod n$, and n is an Lucas pseudoprime with parameters P and Q.

If n is an Euler pseudoprime to base Q, then n is an Euler-Lucas pseudoprime with parameters P and Q.

Now we shall prove the following theorem

Theorem 3. If a square-free number n is a Dickson pseudoprime of the second kind with parameters P and Q, and n is an Euler pseudoprime to base Q, then n is an Euler-Lucas pseudoprime with parameters P and Q.

Proof. If n is a Dickson pseudoprime of the second kind with parameters P and Q, then

$$
\alpha^{n-\left(\frac{D}{n}\right)}+\beta^{n-\left(\frac{D}{n}\right)} \equiv 2 Q^{\left(1-\left(\frac{D}{n}\right)\right) / 2} \bmod n
$$

We consider four cases.
a) If $\left(\frac{D}{n}\right)=1,\left(\frac{Q}{n}\right)=1$, then

$$
\begin{gathered}
\alpha^{n-1}+\beta^{n-1} \equiv 2 \bmod n \\
D\left(\frac{\alpha^{(n-1) / 2}-\beta^{(n-1) / 2}}{\alpha-\beta}\right)^{2}+2(\alpha \beta)^{(n-1) / 2} \equiv 2 \bmod n
\end{gathered}
$$

and since n is an Euler pseudoprime to base $Q, Q^{(n-1) / 2} \equiv\left(\frac{Q}{n}\right) \equiv 1 \bmod n$, $2(\alpha \beta)^{(n-1) / 2} \equiv 2 \bmod n$.

Thus since n is squarefree and $(n, D)=1$, from $n \left\lvert\, D\left(\frac{\alpha^{(n-1) / 2}-\beta^{(n-1) / 2}}{\alpha-\beta}\right)^{2}\right.$ we get $n \left\lvert\, U_{(n-1) / 2}=U_{\left(n-\left(\frac{D}{n}\right)\right) / 2} \cdot\left(\frac{Q}{n}\right)=1\right.$ and n is an Euler-Lucas pseudoprime with parameters P and Q.
b) If $\left(\frac{D}{n}\right)=1,\left(\frac{Q}{n}\right)=-1$, then

$$
\begin{gathered}
\alpha^{n-1}+\beta^{n-1} \equiv 2 \bmod n \\
(\alpha \beta)^{(n-1) / 2} \equiv\left(\frac{Q}{n}\right) \equiv-1 \bmod n
\end{gathered}
$$

$\left(\alpha^{(n-1) / 2}+\beta^{(n-1) / 2}\right)^{2}-2(\alpha \beta)^{(n-1) / 2}=2 \bmod n$ and since n is an Euler pseludoprime to base $Q, Q^{(n-1) / 2} \equiv\left(\frac{Q}{n}\right) \equiv-1 \bmod n$, hence $-2(\alpha \beta)^{(n-1) / 2} \equiv 2 \bmod n$.

Thus since n is squarefree from $n \mid\left(\alpha^{n-1) / 2}+\beta^{(n-1) / 2}\right)^{2}$ we get that $n \mid \alpha^{(n-1) / 2}+\beta^{(n-1) / 2},\left(\frac{Q}{n}\right)=-1$ and n is an Euler-Lucas pseudoprime with parameters P and Q.
c) If $\left(\frac{D}{n}\right)=-1 .\left(\frac{Q}{n}\right)=1$. then

$$
\begin{gathered}
\alpha^{n+1}+\beta^{n+1} \equiv 2 \bmod n \\
D\left(\frac{\alpha^{(n+1) / 2}-\beta^{(n+1) / 2}}{\alpha-\beta}\right)^{2}+2(\alpha \beta)^{(n+1) / 2} \equiv 2 \alpha \beta \bmod n
\end{gathered}
$$

and since n is an Euler pseudoprime to base $Q,\left(\frac{Q}{n}\right)=1$ we have $Q^{(n-1) / 2} \equiv$ $\left(\frac{Q}{n}\right) \equiv 1 \bmod n$. hence $2(\alpha \beta)^{(n+1) / 2} \equiv 2 \alpha \beta \bmod n$.

Thus since n is squarefree $(D, n)=1 . n \left\lvert\, D\left(\frac{\alpha^{(n+1) / 2}-\beta^{(n+1) / 2}}{\alpha-\beta}\right)^{2}\right.$ we get $n \left\lvert\, U_{(n+1) / 2}=U_{\left(n-\left(\frac{D}{n}\right)\right) / 2}\right.,\left(\frac{Q}{n}\right)=1$ and n is an Euler-Lucas pseudoprime with parameters P and Q.
d) If $\left(\frac{D}{n}\right)=-1,\left(\frac{Q}{n}\right)=-1$, then

$$
\begin{gathered}
\alpha^{n+1}+\beta^{n+1} \equiv 2 \alpha \beta \bmod n \\
\left(\alpha^{(n+1) / 2}+\beta^{(n+1) / 2}\right)^{2}-2(\alpha \beta)^{(n+1) / 2} \equiv 2 \alpha \beta \bmod n
\end{gathered}
$$

Since n is an Euler pseudoprime to base Q with $\left(\frac{Q}{n}\right)=-1$ we have $(\alpha \beta)^{(n-1) / 2} \equiv$ $-1 \bmod n$, hence $-2(\alpha \beta)^{(n+1) / 2} \equiv 2 \alpha \beta \bmod n$.

Thus since n is squarefree from $n \mid\left(\alpha^{(n+1) / 2}+\beta^{(n+1) / 2}\right)^{2}$ we get $n \left\lvert\, \alpha^{(n+1) / 2}+\beta^{\left(n-\left(\frac{D}{n}\right)\right) / 2}=V_{\left(n-\left(\frac{D}{n}\right)\right) / 2}\right.,\left(\frac{Q}{n}\right)=-1$ and n is an Euler-Lucas pseudoprime with parameters P and Q.

A composite n is called a strong Lucas pseudoprime with parameters P and Q (see [11]) if $(n, 2 Q D)=1, n-\left(\frac{D}{n}\right)=2^{s} \cdot r, r$ odd and either

$$
\begin{equation*}
U_{r} \equiv 0 \bmod n \quad \text { or } \quad V_{2^{t} r} \equiv 0 \bmod n \quad \text { for some } t, 0 \leq t<s \tag{10}
\end{equation*}
$$

In the joint paper [13] with A. Schinzel we proved the following theorem T.
Theorem T. Given integers P, Q with $D=P^{2}-4 Q \neq 0,-Q,-2 Q,-3 Q$ and $\varepsilon= \pm 1$, every arithmetic progression $a x+b$, where $(a, b)=1$ which contains an odd integer n_{0} with $\left(\frac{D}{n_{0}}\right)=\varepsilon$ contains infinitely many strong Lucas pseudoprimes n with parameters P and Q such that $\left(\frac{D}{n}\right)=\varepsilon$. The number $N(X)$ of such strong pseudoprimes not exceeding X satisfies

$$
N(X)>c\left(P, Q, a, b, \varepsilon \frac{\log X}{\log \log X}\right.
$$

where $c(P, Q, a, b, \varepsilon)$ is a positive constant depending on P, Q, a, b, ε.
Every strong Lucas pseudoprime with parameters P and Q is an Euler-Lucas pseudoprime with parameters P and Q (see [2]) and $Q^{(n-1) / 2} \equiv\left(\frac{Q}{n}\right) \bmod n$ for n odd and $Q=1$, or $Q=-1$, thus from theorem 1 and theorem T it follows the following
Theorem 4. Let U_{n} be a nondegenerate Lucas sequence with parameters P and $Q= \pm 1$. Then, every arithmetic progression $a x+b$, where $(a, b)=1$ which contains an odd integer n_{0} with $\left(\frac{D}{n_{0}}\right)=\varepsilon$ contains infinitely many strong Lucas pseudoprimes n with parameters P and $Q= \pm 1$ such that $\left(\frac{D}{n}\right)=\varepsilon$, which satisfy congruences (1), (2), (3) and (4) simultaneously and the number $N(X)$ of strong pseudoprimes not exceeding X satisfies

$$
N(X)>c(P, a, b) \frac{\log X}{\log \log X},
$$

where $c(P, a, b)$ is a positive constant depending on P, a, b.
The above theorem extends the theorem 2 of my paper [10] that if a and b are fixed coprime positive integers, $Q= \pm 1,(P, Q) \neq(1,1), D=P^{2}-4 Q$
then in every arithmetic progression $a x+b$ there exist infinitely many composite n such that we have simultaneously

$$
U_{n-\left(\frac{D}{n}\right)} \equiv 0 \bmod n, \quad U_{n} \equiv\left(\frac{D}{n}\right) \bmod n, \quad V_{n} \equiv V_{1} \bmod n
$$

References

[1] W. R. Alford, A. Granville, C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 140 (1994), 703-722.
[2] R. Baillie \& S. Wagstaff Jr., Lucas pseudoprimes, Math. Comp. 35 (1980). 1391-1417.
[3] H. J. A. Duparc, On almost primes of the second order, Math. Centrum Amsterdam. Rap. ZW 1955-013, (1955), 1-13.
[4] E. Lieuwens, Fermat Pseudo-Primes, Ph.D. Thesis, Delft 1971.
[5] Siguna M. S. Müller, Pseudoprimes \& Primality Testing Based on Lucas Functions, Ph.D. Thesis, Klagenfurt, 1996.
[6] W. B. Müller and A. Oswald, Generalized Fibonacci pseudoprimes and probable primes, Application of Fibonacci Numbers 5 (1993), 459-464.
[7] P. Ribenboim, The New Book of Prime Number Records, Springer, New York - Heidelberg - Berlin, 1996.
[8] A. Rotkiewicz, Sur les nombres composés tels que $n \mid 2^{n}-2$ et $n \nmid 3^{n}-3$, Bull. Soc. Math. Phys. Serbie 15 (1963), 7-11.
[9] A. Rotkiewicz, Pseudoprime numbers and their generalizations, Student Association of the Faculty of Sciences, University of Novi Sad, Novi Sad 1972, pp. $\mathrm{i}+169$.
[10] A. Rotkiewicz, On the pseudoprimes with respect to the Lucas sequences, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 21 (1978), 793-797.
[11] A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progression, Math. Comp. 39 (1982), 239-247.
[12] A. Rotkiewicz, On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith, 68 (1994), 145-151.
[13] A. Rotkiewicz and A. Schinzel, On Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80.
[14] M. Yorinaga, On a congruential property of Fibonacci numbers. Numenical experiments. Considerations and Remarks, Math. J. Okayama Univ., 19 (1976), 5-10, 11-17.

Address: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, skr. poczt. 137, 00-950 Warszawa, Poland
E-mail: rotkiewi@impan, gov.pl
Received: 21 December 1999

