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ON THE MOMENTS OF HECKE SERIES AT CENTRAL POINTS 

ALEKSANDAR !VIC 

Abstract: We prove, in standard notation from spectral theory, the following asymptotic for
mulas: 

and 

L a1Hf ( ½) = K2 P3{log K) + O{K5/4 Jog37 /4 K) 

Kj¾:K 

L ajHf ( ½) = K 2 P11{log K) + O(K312 J0 g25
/

2 K), 

Kj¾:K 

where P3{x) and Ps(x) are polynomials of degree three and six, whose coefficients may be 
explicitly evaluated. 
Keywords: Hecke series, Maass wave forms, hypetgeometric funct.ion, exponential sums 

1. Introduction and statement of results 

The purpose of this paper is to obtain asymptotic formulas for sums of HJ ( ½) and 
HJ(½), where HJ(s) is the Hecke series, to be defined below. Sums with Hj(½) 
are important for several reasons, one of which is that they appear in the spectral 
decomposition of weighted integrals involving !((½ + it)l 4

, which is of fundamental 
importance in the theory of the Riemann zeta-function ((s). 

We shall first present the relevant notation involving the spectral theory of 
the non-Euclidean Laplacian will be given below. For a competent and extensive 
account of spectral theory the reader is referred to Y. Motohashi's monograph [15J. 

Let {>.j = KJ + ¾} U {O} be the eigenvalues (discrete spectrum) of the 
hyperbolic Laplacian 

t; ~ -y' ( (:.)' + (~)') 
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acting over the Hilbert space composed of all r -auto·morphic functions which are 
square integrable with respect to the hyperbolic measure ( r = PSL(2, Z)). Let 
{'l/Jj}~1 be a maximal orthonormal system such that l:,.-tpj = Aj"Pj for each j ~ 1 
and T(n)'t/Jj ti(n)'t/Ji for each integer n EN, where 

(T(n)f)(z) 

is the Hecke operator. We shall further assume that "Pi(-z) = ei"Pi(z) with 
ei ±1. We then define ( s =a+ it will denote a complex variable) 

00 

Hj(s) = L tj(n)n-s (a> 1), 
n=1 

which is the Hecke series associated with the Maass wave form "Pi ( z), and which 
can be continued to an entire function. It satisfies the functional equation 

which by the Phragmen-Lindelof principle (convexity) implies the bound 

(1.1) 

where here and Later e denotes arbitrarily small, positive constants, not necessarily 
the same ones at each occurrence. It is also important to note that, from the work 
of Katok-Sarnak 19], it is known that Hj(½) ~ 0. 

The sharpest asymptotic formula for sums of Oj HJ(½) is due to Y. Moto
hashi [14]. His result is 

L cxiHJ(½) = 21f'-2T 2(LogT + 1 - ½ - log(211')) + O(T log6 T), (1.2) 
K.1-:(,T 

where I is Euler's constant, 

and {!j ( 1) is the first Fourier coefficient of "Pi ( z) . 
In what concerns known results on sums of cxiH](½) and OjHJ(½) we have 

(see 115, Chapter 3]) 
L cxjHJ(½) « K 2 Log15 K {1.3) 

K.1-:(,K 

and 
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with 

In 15] the author proved that 

Q' -H~(l) _,,,,, Kl+e 
J J 2 ''e" . (1.7) 

This result immediately implies, since H;(½) ~ 0 and a; » K:1€" (see H. Iwaniec 
[6]), that 

(
1 ½+€" H; 2) «€" K; , (1.8) 

which improves the convexity bound {1.1), and represents hitherto the sharpest 
known unconditional upper bound for H;(½). The bound (1.8) also follows from 
the result of M. Jutila 17], namely 

{1.9) 

and an extension of the bound (1.9) to sums of IH;(½ + it)l4 has been attained 
by Jutila-Motohashi !BJ. 

Note that (1.7) and (1.9) do not seem to apply one another, and that for the 
derivation of {1.8) from (1.9) the non-negativity of H;(½) is not needed. 

Our new results on sums of sums of a;HJ{½) and a;HJ{½) are contained 
in 

Theorem 1. We have 

L a;HJ(½) K 2Ps(logK) +O(K5l 4 Iog37
/

4 K), 
";,s;;,_K 

(1.10) 

where P3(x) is a polynomial of degree three with leading coefficient 4/(31r2), 

whose remaining coefficients may be explicitly evaluated. 

Theorem 2. We have 

L a;HJ(½) = K 2P5(logK) + O(K3l 2 Iog25l 2 K), (1.11) 
K.j,s;;,_K 

where P5(x) is a polynomial of degree six with leading coefficient 16/{151r4), 

whose remaining coefficients may be explicitly evaluated. 

The proofs of {1.10) and (1.11), which will be given in subsequent sections, 
depend on several ingredients. Besides the transformation formulas for sums of 
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OjHJ( ½) (see Section 3), two salient ones are the short interval bounds (1.7) 
and (1.9), and the estimates for the sixth and eighth moments of I((½+ it)I. 
Indeed, it is a deep and beautiful fact that sums of o:;HJ ( ½) and moments of 
I((½ + it) 12k ( k E N) are closely related, at least for k ~ 4. Both quantities tend 
to increase in complexity as k increases. One of the reasons why Motohashi was 
able to get the sharp error term O(T log6 T) in (1.2) was that the continuous part 
of his relevant formula, namely the integral on the left-hand side of (1.12) below, 

contained I((½+ it)l4. However, for J: I((½+ it)l4 dt we know that the correct 
order of magnitude is T log4 T, and actually the asymptotic formula with error 
term O(T213 logc T) is known (see e.g., [4] and [151). Unfortunately, to this day 
such type of result is not known for any power moment of I((½+ it)I greater than 
the fourth. 

Iv, to the true order of sums of O:j Hf ( ½), perhaps it is true that, for k E N 
fixed, 

~ Hk(1) 2 rT !((½ +it)12k d 2p (l . ) O(T1+ck+e) ( 1 ) 
L, O:j j z +; Jo 1((1 + 2it)12 t = T ½(k2-k) ogT + ' 1. 2 

Kj,s;,_T 

where Pi(k2-k)(z) is a suitable polynomial of degree ½(k2 - k) in z whose coef
ficients depend on k, and O ~ Ck < 1; perhaps even Ck O is true. We actually 
have c2 = 0 in view of (1.2), and from the proofs of Theorem 1 and Theorem 
2 it follows that we may take c3 = 1/7, c4 = 1/3. For example, (5.5) and (5.6) 
(for k 4) clearly show why the left-hand side of (1.12) appears, and in view 
of Hj(½) ~ 0 it is positive. It would be interesting to evaluate (or estimate) the 
sum in (1.12) when k 1 and k ~ 5. The case k = 1 will be briefly discussed 
at the end of the paper, while k ~ 5 lies outside the scope of this work. However 
the latter case is of potential importance since it could yield upper bounds for the 
2k-th moment of I((½+ it)I. Namely if for some k ~ 6 the right-hand side of 
(1.12) is bounded by T 2+e, this would essentially give a bound at least as strong 
as the (known) twelfth moment of I((½ + it)I (see (4.2)). If this bound holds for 
every k, then this implies both Hj ( ½) «e Ki and the Lindelof hypothesis that 
(( ½ + it) -«:., Jti":. It is yet unknown what is the connection between these two 
conjectures, namely whether one of them implies the other one. 

Conjectures for moments of various £-functions have been recently proposed 
by considerations from Random matrix theory (see J.B. Conrey [lj and the com
prehensive work by J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein and 
N.C. Snaith [2]). In all cases which can be predicted by this theory and where the 
asymptotic formula in question was rigorously proved, the main terms coincide. 
In our context this theory says that one should have 

L O:jHJ(½) = K 2 P½(k2-k)(logK) + o(K2
) (1.13) 

Kj(;K 
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for k EN fixed. The leading coefficient of P½(k2-k)(x) equals 

akgk 
Ck=-----

2(k(k-l))1· 1r 2 . 

(1.14) 

In the notation of this theory 9k is the so-called geometric part. In our case it is 

k-1 .1 
g = (lk(k _ l))l 2k(k+l)/2-1 II _J_. 

k 2 · . (2 ·)!, 
1=1 J 

(1.15) 

so that 91 1, g2 = 2, g3 = 8, g4 = 128. The constant ak is the arithmetic part. 
It equals 

= ( - ~) k(k-1)/2 oo (k + j - 1) (k + j - 2) 1 .. 
ak II 1 L . . ('+l)pJ 

p p j=O J J J 
(1.16) 

We have a1 a2 a3 = 1, a4 = 1/((2) = !,: . In general, ak can be expressed in 
terms of hypergeometric functions. Note that 

f (k + ~ - 1) (k + ~ - 2) ~ 
j=O J J J + 

(lxl < 1) 

is a rational function of ·x whose denominator is (1 - x) 2k-3 and numerator is 1 
for k = 2, 3, and is equal to 1 + x (k = 4), 1 + 3x + x 2 (k = 5) etc. This shows 
that, for k ~ 5, ak will not be expressible in a simple closed form, but as an 
Euler product over the primes. We have the values c1 = l/1r2, c2 = 2/1r2, c3 = 
4/(31r2), c4 16/(151r4 ), which coincide for k = 2, 3, 4 with the ones that follow 
from (1.2), Theorem 1 and Theorem 2. Note that Random matrix theory also pre
dicts the asymptotic formula for the sum in (1.13) without the normalizing factor 
a; . The shape of the conjectured formula will be similar to the above one, only 
the constants will be different, and somewhat more complicated. Unfortunately, 
the methods at hand permit one to deal only with the sum in (1.13). 

Acknowledgement. I wish to thank Prof. Brian Conrey and Prof. Matti Jutila 
for valuable remarks. 
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2. Kuznetsov's work on sums of HJ(½) 

N.V. Kuznetsov's preprint [12] states as the main result (Theorem 1 on p. 5) the 
asymptotic formula 

L O!jHJ(½) =T2P6(logT)+O(T4 /3+e:-), (2.1) 
"'-j~T 

where P6(x) is a polynomial in x of degree six whose leading coefficient is equal to 
29 /(lfr1r3

). This is actually stronger than our (1.11) of Theorem 2. Unfortunately, 
Kuznetsov did not prove (2.1), and even the leading coefficient of P6 (x) is not 
correctly stated (it equals 16/ (151r4

), see Section 9 for details). We shall analyze 
his preprint and substantiate our claim, using certain valid parts of his work, 
namely the derivation of the main term to shorten the proof of our Theorem 2. 
A complete list of misprints, errors etc. of [12] is not given, but just some of 
the important ones will be stated here. Further discussion concerning !12J will be 
given in subsequent sections. 

Page 8, line after (21) it is not shown why '1;(2w) is regular for ~ew > -5/2, 
which is claimed in the text. Namely 

¢(2w) = 1-: 1r-1 22
w-

1r(w - iu)f(w + iu)h(u)usinh (1ru) du (~ew > 0), (2.2)' 

where ( Q x T 113 ) 

h(r) = q(r+xp (- (r ~ T)') + exp (-(r~T)')}, 
(r2 + ! )(r2 + l!) 

q(r) _ 4 4 

- (r2 + ¼)(r2 + !) + 626' 

(2.3) 

so that h(r) is even, regular for 1~m wl ~ 3, h(±½) = h(±¥) = 0, and h(r) 
decays like exp(-clrl2). To analyze the function ¢(2w), note that from 

f{z)f{l - z) 
7r 

sin(1rz) 
(2.4) 

one obtains the identity 

r( . r( . 1ri { r(w + iu) r(w - iu) } 
w+iu) w-iu)= 2sinh(1ru)cos(1rw) f(l-w+iu)-f(l-w-iu) · 

Since h(r) is even, this gives 

A i22w 
'tjJ(2w) = ( ) h*(w), 

COS 7rW 
(2.5) 
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where (see Y. Motohashi [14, eq. (2.12)1) 

* 1= r(s + iu) h (s) := uh(u) (l . ) du 
-= r - s + iu 

- f wh(iw) r(s + w) dw 
J(o) r(l-s+w) 

(2.6) 

is regular for 3le s > 0, where f(a) means integration over the line 3le w o:. If 

h(r) is entire (cf. (1.6)), then in (2.6) the line of integration may be shifted to 
3le w C > 0. Thus h * ( s) is seen to be regular for 3le s > -C, and since C may 
be arbitrary, it follows that h*(s) is entire and of polynomial growth in isl for u 
in a fixed strip. In the case of (2.3) h*(s) is regular at least for 3le s > -3, and 
we have h*(±½) h*(±~) = 0. For example, by using taking 3le w = 2 in {2.6) 
and using the functional equation sr(s) = r(s + 1) one obtains 

r(-~+w) 

re!+ w) 

1 

Thus this cancels with the corresponding factor of h(iw), and h*(-~) = 0 follows 

since h(r) is even. Likewise it follows that h*(n + ½) = 0 (n EN), hence -i/i(2w) 
is indeed regular for 3le w > -5/2, the first pole at w = -5/2 coming from the 
zero of cos(1rw) in the numerator in (2.5). 

Page 9, in the formulation of Theorem 2 the numbering (27) is missing, and 
the condition ( contradicting 3le µ = 3le v = ½ ) 3le µ, 3le v =/= ½ should be µ, v =/= ½ . 

More importantly, Kuznetsov did not prove Theorem 2 ( which yields the 
spectral decomposition for the sum in (3.2), and is the basis of [121) in [lOJ as he 
claimed. The result was used there in his unsuccessful attempt to prove the eighth 
moment for the Riemann zeta-function, namely 

foT I((½ + it) 18 dt «: T loge T. 

The same formula was also used in [llJ in his failure to prove the Lindelof hy
pothesis that (( ½ + it) «:e IW. A corrected version of the formula is due to Y. 
Motohashi l13J in 1991, and recently this was updated and improved in ll6J. Hence 
due to Motohashi's work [16j this important obstacle in dealing with the asymp
totic evaluation of the sum in (2.1) has been removed but, unfortunately, this is 
not the only shortcoming of l12J as will be clear from the sequel. 

Page 10, I. 8. Kuznetsov chooses s v = e = µ = ½, which violates 
the assumptions of Theorem 2, without mentioning that first one has to take 
µ ½ + it, v = ½ + ir and then to take t, T ---+ 0. In (30), in the first line, 1 - 2s 
should be 1 - 2e. 

Page 14, in 1. 10 (32) should be (38), in ( 44) 45 = 1012 is false. 

Page 24, l. -5,6 it should be sh 17/2 = f. 
Page 25. 1. 2,4 of (91 ), { is repeatedly written in place of (. Formula (92) 

is incorrect, detailed discussion will be given below in Section 4. In (93), on the 
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right-hand side, Q is missing twice. In (94), in the exponent in the O-term, ve 

should be replaced by e. In (95), dt should be d:r, r312 should be K.}12 . Line 
below (91), ~ should be (6). 

Page 26, in {97) Q is missing once on both sides, ve should be e. 

3. Formulas for products of three and four Hecke series 

The essence to the approach of dealing with sums of HJ(½) and Hj(½) are the 
transformation formulas for the sums 

00 

C(K,G) L ajH](½)ho(Kj) (3.1) 
j=1 

with ho(r) given by (1.6), and 

00 

L O:jHJ(½)h(Kj), (3.2) 
j=l 

with h(r) given by (2.3). The notation in (3.2) corresponds to Motohashi !15], 
while that of (2.3) is from Kuznetsov !12]. We shall adhere to this for practical 
reasons, but of course it would have been possible to use ho(Kj) instead of h{Kj) 
etc. To obtain transformation formulas for the weighted sums (this facilitates the 
resolution of the problems involving analytic continuation) one starts from general 
expressions, namely Hj(u)Hj(v)HJ(½) in (3.1) and Hj(u)HJ(v)Hj(w)Hi(z) in 
(3.2) in the region of absolute convergence. In the former one replaces Hj ( ½) by 
an approximate functional equation (e.g., !15, Lemma 3.91) which reduces it to 
suitable sums of tj{/)J- 112 . The product of two Hecke series is transformed by 
the use of the identity (in the region of absolute convergence; see !15, (3.2.7)]) 

00 

n=1 din 

which is the analytic equivalent of the multiplicativity of the arithmetic function 
tj(n), namely (see e.g., [15, eq. (3.1.14)]) 

tj(m)tJ(n) = L tj (::). 
dl(m,n) 

(3.3) 

After this there is summation of tj{m)tJ(/) in both cases, which is effected by 
applying the Kuznetsov trace formula (see [15, Theorem 2.4]). It is here that 
delicate questions of analytic continuation arise. In !7J M. Jutila used a variation 
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of this approach in proving (1.9). Namely he used ([14, pp. 266-267] or [15, Lemma 
3.8]) Motohashi's formula for 

ex, 

L OjHJ( ½)tj(f)h(Kj) (/EN), 
j=l 

combined with his explicit expression for HJ(½) (see (9.2)). 

We shall present now Motohashi's explicit formula for sums of HJ(½), needed 
for the proof of Theorem 1. We have (see (3.1)) with >. ClogK (C > 0) (this 
is [15, (3.5.18)], with the extraneous factor (1 - (KJ/ K)2t omitted) 

~ 

C(K, G) L 1-½ exp(-({) )1t(f; ho) 
f~3K 

Ni 

-I: L 1-½u,,(IK)1t(f;h11 )+O(l), 
11:==0 f~3K 

with (ho(r) is given by (1.6)) 

h,,(r) = ho(r) ( 1 - (; )2) 11 

(v = 0, 1, 2 ... ), 

7 

1t(f; h) = L 1t,,(f; h), 
11=1 

ex, 

1t2(f;h)=1r-3 Lm-½d(m)d(m+/)w-+(;;h) (d(n) = I:1), 
m=l .Sin 

ex, 

(3.4) 

(3.5) 

1t3(f; h) = 1r-
3 L (m + f)-½d(m)d(m + /)w-(1 + 7 ;h), (3.6) 

m=l ,~1 
1t4 (1; h) 1r-

3 L m-½ d(m)d(f - m)w- 7; h), 
m=l 

1ts(/; h) = -(21r3 )-1 /-½ d(/)w--(1; h), 

1t6(/; h) -121r-2i(7-1 (/)/½ h' (-!i), 

-11= !((½ + ir)J4 ( ) -ir ( ) d 
1t1(/; h) -1r -= l((l + 2ir)l2 0-2ir / / hr r, 

where (see (2.6)) 

w-+(x;h) f r2 (½-s)tan(1rs)h*(s)x 8 ds, 
J{~) 
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and 

1 r 2 ( l _ s) h*(s) :1:8 ds 
(/3) 2 cos(1rs) 

with -J < f3 < ½. In (3.4) N1 is a sufficiently large integer and 

I 1 W ( X ) lo;k 2 ~ (41r2 K- 2x)1-0 uv(w)r( "T) dw « K 2 log K, (3.7) 
27flA (->,-1) I\ 

where uv(w) is a polynomial in w of degree ~ 2N1, whose coefficients are 
bounded. A prominent feature of Motohashi's explicit expression for C(K, G) 
is that it contains series and integrals with the classical divisor function d(n) 
only, with no quantities from spectral theory. Therefore the problem of evaluating 
C(K, G) is a problem of classical analytic number theory. 

As for (3.2), we adopt the notation of l12J, primarily since we intend to 
correct Kuznetsov's proof. As already stated, a correct and rigorous proof of 
the spectral decomposition for (3.2) is given by Y. Motohashi [13] and [16]. The 
formulation is technically complicated, and for the sake of brevity will not be 
reproduced here. 

4. The asymptotic formula for sums of HJ(½) 

We shall provide in fact two completely different proofs of Theorem 2. The first is 
obtained by correcting and simplifying the proof given by N.V. Kuznetsov in [12]. 
The second approach consists of elaborating the method of M. Jutila [7], used in 
the proof of the bound (1.9), which is one of the crucial ingredients in the proof 
of Theorem 2. It will be outlined in Section 9. 

We shall begin now with the proof of {1.11) of Theorem 2, correcting and 
simplifying [12]. We remark first that one obtains (1.11) from 

L OjHJ(½)+O (log2 T 1T I((½+ it)18 dt) = T 2 P6(logT)+O(T4 /3+,;). (4.1) 
K-;~T 

Namely one has (e.g., see [31) the bounds 

T 1 I({½+ it)/4 dt « T1og4 T, 
T 1 I((½ + it) 112 dt « T2 log11 T. (4.2) 

Hence by the Cauchy-Schwarz inequality for integrals it follows from (4.2) that 

1T I((½ + it) Is dt « T3/2 Jog21/2 T, (4.3) 
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which is still the sharpest known upper bound estimate for the integral in (4.3). 
In [12J N.V. Kuznetsov assumed that the bound 

for I((½+ it)l8 dt « T log0 T (4.4) 

holds for some C > 0. This is what he claimed to have proved in [10]. Although he 
never officially withdrew the claim (the proof was faulty), this fact was mentioned 
in the review in the Zentralblatt (Zbl.745.11040). The asymptotic formula (4.1) 
shows clearly that one cannot attain the exponent 4/3 + ~ in (4.1) unless it is 
attained in (4.3). This, however, would be a big achievement in zeta-function 
theory. · 

The plan of the proof is as follows: from the fundamental formula for sums 
of products of four of Hecke series ([12, Theorem 2] or [16, Theorem]) one obtains 
first the formula 

(4.5) 

j'~l 
00 

1 j I((½+ ir)l8 
6 +; l((l + 2ir)l2 (ho(r) + h1(r)) dr + R + O(Q log T). 

-00 

Here h(r) is given by (2.3), the quantities in 

(4.6) 
k;;;,12,k:0(mod)2 

which are associated with holomorphic cusp forms are precisely defined in [12] or 
[15], 

(4.7) 

1 /r(k-l+w) A 

g(k)=-
3

. i r 4 (½-w)sin(1rw)1p(2w)dw, 
21r i r(k + 2 + w) 

(.S) 

ho(r) ~ J r(w + ir)r(w - ir)r4 (½ - w) sin(21rw)1,b(2w) dw, (4.8) 
1T i 

(.S) 

1 f . sin
2

(1rw) + 1 A 

h1 (r) 21r3i r(w + ir)r(w - ir)r4 (½ - w) cosh(1rr) cos(1rw) 1p(2w) dw, 

(.S) 
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where 1/J is given by (2.2) and 6 > 0 is a small constant. The choice of Q in 
(4.7) seems optimal, and any improvements (namely Q = Ta with a< 1/3) will 
require the use of new methods. Actually, instead of ( 4. 7) the correct choice of Q 
is Q = CT113 with some C > 0, since we shall integrate (4.5) over the interval 
[To, 2T0J, so Q should ultimately depend on To and not on T; e.g., one can take 
Q TJ 13 (this fact is not mentioned in [12]). The symbol R in (4.5) stands for 
the residual (main) terms. This has been calculated by Kuznetsov in [12j to be 
equal to 

6 

L ak1/J(6-k) ( 1) + 0( Q log6 T) 
k=O 

( = 1024) 
ao 1 3 • 571' 

(4.9) 

It can be shown that the contribution of (4.6) is O(Qlog6 T) (note that the sum 
with Oj,kHJk(½) is easily majorized; see [15]) and so is the contribution of g(k) 
and h0 in t4,5) (see (6.2) and (6.3)). What remains then is the basic formula 

L OjHf(½) exp (-( Kj; T) 2) 
J;;?:1 

21= I({½+ ir)l8 
( (r - T) 2 ) +; 1((1 + 2ir)l2 exp - Q dr 

0 

6 (4.10) 

= L ak1/J(6-k)(l) + L ajHJ(½)h(Kj) 
k=O j;;?:1 

00 

1 j I((½ +ir)l8 ~ 6 + - I ( . )l 2 h(r) dr + O(Qlog T), 7r ( 1 + 2ir 
0 

where h(r) is the oscillatory integral transform obtained by replacing sin2 (7rw) + 1 
in the definition of h1(r) (see (4.8)) by sin2 (7rw). The terms containing this 
function will be small, while 1/J will give rise to the main term T3 P6(logT) in 
(4.1). 

In the relevant range one has (this follows from Kuznetsov's Lemma 4.7) 

(C > 0). (4.11) 

Hence by the non-negativity of the integral on the left-hand side of (4.10), (1.3) 
and (4.11) it follows that 

« QTlog6 T + Q 
"'-;"-TQ-1 logT 

H4( 1) -1/2 
O'.j j 2 Kj 

« QTlog6 T + T 312Q- 112 log16 T « T 413 Iog16 T. 

(4.12) 
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Observe that {4.12) is a sharpened variant, in view of {4.7), of (1.9), as it gives 
{1.9) with the right-hand side replaced by K 413 log16 K. By UBing {4.3) and {4.11) 
it follows that the integral on the right-hand side of {4.5) is < T 1+c. Also note 
that we have ( Q = T 113 ) 

['::,o IC(½+ ir)l
8 

( (r -T) 2
) T4/3 16 Jo 1((1 + 2ir)l2 exp - Q dr < log T, {4.13) 

which can be easily obtained from the mean square bounds for (( ½ + it) over short 
intervals (see [3, Chapter 15]) and the classical bound((½+ it)< 1tl116 • One also 
has to use e.g. the standard bound 

1 
+ it)I < log !ti. (4.14) 

After these considerations it remains to integrate the basic formula (4.10) 
over T from To to 2To and then to replace To by To2-i, and sum the resulting 
expressions for j ~ 1. This will lead to ( 4.1). The technical details are given in 
the next section, as well as the calculation of the main term. 

We have restrained ourselves from analyzing the difficult lemmas of [12, 
Section 4], especially of the Lemma 4. 7 which claims an asymptotic formula for the 
crucial function h.{r) appearing in (4.10). The function h1(r) in 112, Lemma 3.2J 
is first transformed into a complicated expression involving the hypergeometric 
function. This is said to follow from the UBe of Parseval's formula for Mellin 
transforms. The author was unable to follow the proof of Lemma 4.7, which 
claims an asymptotic expansion of h(r). However, this asymptotic expansion 
will be proved, in Section 6, by a method which is different and simpler than 
Kuznetsov's. 

5. Integration of the basic formula and the main term 

We shall deal first with the main term in (1.11). One way to obtain this expression 
is to go through Kuznetsov's paper [12]. Therein he claimed (eq. (92) on p. 25) 
that 

(m = 0, 1, 2, · · ·), (5.1) 

where ,Ji is defined by {2.2). On the right-hand side of (4.10) there appears 

6 I: ak~(6-k)(l), 

k=O 
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which will give rise to the main term K 2P6 (logK) in (2.1). Hence we have to 
evaluate explicitly ~(m)(l) for m 0, • • •, 6. 

The case m O. From (2.2) we have, on using (2.4) and recalling that h(r) 
is given by (2.3), 

~(1) = ~ ('° f(½ +iu)r(½-iu)uh(u)sinh(1ru)du 
7r Jo 

l oo uh( u) loo 
= 2 . ( 1 . ) sinh ( 1ru) du 2 uh( u) tanh ( 1ru) du 

o sm 7r 2 + iu o 

2 exp(-(u -T)2Q-2)uh(u) tanh (1ru) du+ O(e-2 10
g

2 
T), l

T+QlogT 1 

T-QlogT 

where 
h(r) 1 + O(r-4 ). 

Change of variable u T + Qx gives then 

J
logT 

~(1) = 2Q e-x
2 
(T + Qx) tanh 1r(T + Qx) dx + 0(1) 

-logT 

2Q( ynT(l + O(1/T)) + O(Q)) = 2ynQT ( 1 + 0 ( ~)). 

(5.2) 

The case m ;;:i: 1. We need the formula (see e.g., [4, p. 272]) 

f(k)(s) ~ b ( ) l ,,j -1 -r O (I 1-r-l) 
f(s) = ~ j,k S Oc, S + C-1,J.S + · · · + C-1,rS + r S 

J=O 

(5.3) 

for fixed integers k ;;:i: 1, r ;;::: 0, where each of the functions b;,>.(s) (~ b;,k for a 
suitable constant bi,k as s - oo) has an asymptotic expansion in non-positive 
powers of s. As in the case m = 0 the main contribution to ~(m)(2w) will come 
from an interval of length « Q log T, when w lies in a neighbourhood of ½ . 
Namely we have 

T+QlogT 

2m~(m)(2w) = .!:. j a_m (22wr(w + iu)f(w - iu)) uh(u)sinh (1ru) du 
7r dwm 

T-QlogT 

1 2 + O(e-2 log T). 

To calculate the derivatives in the above integral we apply Leibniz's rule. We have 
to evaluate (r 0, 1, • • •, m) 

d
d! f(w + iu)f(w - iu) 
wr 

w=½ 

u T+O(QlogT). 
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By using (5.2), (5.3) and (2.4) it is seen that this expression equals 

t (~)r(j)( ½ + iu)r(r-j)( ½ - iu) 
j=O J 

= cosh1r( 1ru) (t de,r logr u + O(T-
1 

logr T)) 
i=O 

with suitable constants de,r. Proceeding as in the case m = 0, we obtain 

,_i;(m)(l) QT (t. c;,m logm T + Om( QT-1 logm T)) (m E N) (5,4) 

with suitable constants Cj,m, which may be explicitly evaluated ( Cm,m = 22-m-y'1r). 

From (5.2) and (5.4) we see that Kuznetsov's claim (5.1) is incorrect. 

Now we integrate (4.10) over T from To to 2T0 , taking Q T~/3 (cf. (3.7)), 
which clearly may be done. We have first 

'I>~jHJ(½) 12To exp (-("'j Q Tf) dT 
f~l To 

= L O:jHf(½) 12To exp (-('~j -Tf) dT + o(l). 
To-QlogTo~K3 ~2To+QlogT0 To Q 

By change of variable and (4.12) (or (1.9)) the sum on the right-hand side equals 

To +Q log To ~K; ~2To -Q log To 

-y'1rQ L a1HJ(½) + O(Q2TJ+e;). 
To~K3~2To 

In a similar fashion, by using (4.3) and (4.13), it follows that 

12To 100 I((½ +ir)l8 ( (r-T)2) -~-- exp - -- dr dT 
To o 1((1 + 2ir)l2 Q 

12To I(( 1 + ir)l8 
= ../irQ 2 dr + 0( Q2T1 +£) 

To 1((1 + 2ir)j2 
(5.6) 

1
2To 

« Q log2 To I((½ + ir)l8 dr + Q2Tl+e; « QTt12 log2512 T0 . 
To 
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To bound the second sum on the right-hand side .of (4.10) we use Lemma 4.7 
of 112}, or the discussion on h1(r) in Section 6. We need especially the terms 
(T - r) log(T - r) - (T + r) log(T + r) in (6.10), in conjunction with the first 
derivative test (Lemma 2.1 of 13}) and (1.3). The derivative in question is » r/T, 
and we shall obtain (h( Kj) = h( K;, T)) 

L et;Hj( ½) f 2To h(Kj, T) al' 
j~l To 

~ 4 1 -3/2 ( Q
2K;) « ~ a;H; ( 2 )QT0Ki exp -

4
T.2 + 1 

j~l 0 

« QTo L et;H1(½)K;3
12 + 1 

";~ToQ- 1 logT 

« QTl+e. 

Finally from (5.2) and (5.4) we have 

{2To 6 

}To E ak..p(6-Jc)(l) dT 

(5.7) 

{2To 6 6-k 

= Q }7 TL a,. L e;,m logm Tai'+ O(QTo!+e) (5.8) 
To k=O j:=0 

6 

= QT2L!JclogkT 
k=O To 

with effectively computable constants e;,m and /k . Therefore ( 4.1) will follow 
from (5.5)-(5.8) when we divide by Q, replace To by r0 2-j and sum over j. 

6. The estimates for the oscillatory terms 

In this section we shall complete the proof of Theorem 2 by estimating the os
cillatory functions defined by (4.8). We shall use the function h*(s), defined by 
(2.5)-(2.6) to simplify the functions in (4.8). We obtain 

g(k)= ~'l/22111- 1 r~: t + w) r4(½ - w) tan('rrw)h*(w) dw (k ~ 12), 
7r- r + 2 + w) 

(o) 

ho(r}= :3 f22111+1r(w + ir)r(w - ir)r4 (½ -w)sin('irw)h*(w)dw, (6.1) 

(o) 

1 / . . sin
2

(1rw) + 1 
h1(r) 

2
,r3 22111r(w + ir)r(w - ir)r4 (½ - w) cosh{1rr) cos(1rw) h*(w) dw, 

(o) 
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where 6 > 0 is a small constant, and we may assume r > 0 , since both ho and 
h1 are even. From sr(s) = r(s + 1) and Stirling's formula it follows that 

r(k - ~+iv) 
2 « k-5 

r(k + i + iv) 
{12,;;;; k,;;;; ko). 

In the integral for g(k} we shift the line of integration to mew = -2, taking 
mew= 2 + e: as the line of integration in (2.6}. Using Stirling's formula and the 
above bound we obtain 

(6.2) 

and this bound can be further sharpened. Moreover directly from (6.1} we have 

{6.3} 

From {6.2) and (6.3) it is easily seen that the expressions in (4.5) containing the 
functions g(k} and ho(r) contribute O(Qlog6T}. It remains to deal with the 
contribution of hi{r). Since h*(w) is entire (to be rigorous, one has either to 
work with h defined by (1.6}, or replace the constant 626 in (2.3} by a larger 
constant), it transpires from {6.1} that in the expression for h1{r} the poles of the 
integrand are at w ½-n (n 3, 4, 5, ... } and at w m±ir (m = 0, -1, -2, ... ) . 
The former ones are harmless and could be avoided by inserting factors r2 + n2 + ¼ 
in the numerator and denominator of q(z) in (2.3}. We shift the line of integration 
in the expression for h 1 (r) to mew= -N, letting eventually N - oo. The main 
contribution will then come from the poles at w ±ir {these contributions are 
evaluated analogously), since the residues at other poles are evaluated similarly, 
only they will be of a lower order of magnitude. The residue at w = -ir will be 

with .. . 1 r(-ir + iz) 
h (-tr) = zh(z) r( . . } dz, 

!;)mz=-e: 1 +tr+ tZ 

where h* is given by (2.6). Since q(z) = 1 + O(lzl-4
), it is seen that h*{-ir) is 

majorized by two similar expressions, one of which is ( z = T + Qy - ie:) 

Q 1100 

T + Qy _1?+2ie:Q-1u r(iT- ir + iQy + e:) d I 
_ 00 T+r+Qye r(iT+ir+iQy+e:) y' 

(6.5) 

where we used sr(s) r(s+l). For IYI ~ log(rT) the portion of the above integral 
is negligible, as is also the portion for r ~ T + TeQy, by Stirling's formula. Also 
note that IT+r+QyJ-IT-r+Qyl,;;;; 2r, so that the exponential function coming 
from e-1rr in (6.4) and the gamma factors will have a non-positive exponent. If 

(6.6) 
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holds, then from (2.2) and ( 4.8) we have 

h1 (r) « r-1
/ 2e-n l.l r(-ir - iz)r(-ir + iz)zh(z) sinh(1rz) dzl, (6.7) 

where £ is the real line with small indentations above and below the points z = -r 
and z r, respectively. It follows (by Stirling's formula) that the right-hand side 
of (6.7) is of exponential decay if (6.6) holds. Hence we are left with the most 
interesting range, namely 

1 « r ::;; T - T"'Q. (6.8) 

Recall that the gamma-function admits an asymptotic expansion, for t ~ t0 > 0, 
whose first two terms are 

r(u +it)= Jz;;:c(T-½ exp{-½1rt + i(tlogt- t + ½1r(u - ½))}· 

· (1 + ½iC1 (u - u 2 
- ¼) + O(T(C2

)). 

The quotient of gamma factors in (6.5) thus equals 

1 

( 1 + O(~)) (~ ~ ~: ~~) e-z e1rr exp(icp(T, r, Q, y)), (6.9) 

where the term 0(1/T) admits an asymptotic expansion, and by Taylor's formula 
we obtain 

cp(T, r, Q, y) 

= 2r + (T- r) log(T - r) - (T + r) log(T + r) 

- 2Qy (; + } (; )3 + ~ (; )5 + . ·) 

(Qy)2 ( 1 (Qy)2 1 (Qy)3 ) 
+ T-r +(T-r+Qy) -2(T-r)2 +3(T-r)3 +··· 

(6.10) 

(Qy)2 ( 1 (Qy)2 1 (Qy)3 ) 
-T+r+(T+r+Qy) -2(T+r)2 +3(T+r)3 +"· · 

By (6.8) we have Qlyl/(T ± r}::;; T-½e for IYI ~ logT, so that we may truncate 
the contribution of the last two series above in such a way that the tails will make 
a negligible contribution. The remaining terms are inserted in 

j logT -1l+2~Q-1yf(iT r+iQy+e)d Joo o(-l)og2T) 
e . . y= + e 2 , 

-logT r(iT + r + iQy + e) _00 

where the term in (6.9) with the exponent e ) is again simplified by Taylor's 
formula. The integrals with the remaining terms are evaluated by using the formula 

(j = 0, 1, 2, ... , Po(A) J;r), 
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where Pj(z) is a polynomial in z of degree j, which may be explicitly evaluated 
by successive differentiation of the classic formula 

considered as a function of A. The major contribution will come from the term 

(r 1 (r)3 1 (r)5 ) 
- 2Qy T + 3 T + 5 T + ... 

in 'P(T, r, Q, y), hence the total contribution will be, in view of (6.9), 

(C > 0). 

The analogous bound follows for the residue at w = ir. In fact, it follows that 
by the above procedure we obtain not only an upper bound, but an asymptotic 
expansion of the h1 (r) in the range (6.8). This proves then the key bound (4.11), 
establishes (5.7), and completes the proof of Theorem 2. 

7. The asymptotic formula for sums of HJ ( ½) 

We shall present now the proof of the asymptotic formula (1.10) of Theorem 1. 
We start from (3.4)-(3.6), restricting ourselves as to the range 

(7.1) 

and follow the approach developed in [5]. It is seen that it is the term v = 0 in 
(3.4) whose contributions should be considered, because the bound for the v-th 
term will be essentially the same as the bound for the term v 0, only it will 
be multiplied by ( G /Kt. We note that the factors exp(-(// K)>.) and Uv (I K) 
in (2.1) can be conveniently removed by partial summation. Next we follow the 
analysis carried out in "[15, pp. 120 and 128-129] to show that the contribution of 
v = 3, 5, 6 in (3.4) to (2.1) will be small. Indeed, we have ., 

1-fa(f; ho) « e-Olog
2 

K (C > 0) 

and 
'Hs(/; ho) « d(f)J- 112

, 'H,5(1; ho) « tL1 (f)J 1l 2 
~-

The contribution of 1t4 (J; hv) was shown in [5] to be « GK1+e. To estimate the 
contribution of 1t7(/; ho) we note (see [3, Chapter 11) that 

00 

I: 0"2ir(n)n-ir-s = ((s - ir)((s + ir) (r ER, ~es> 1). 
n=l 
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Consequently by the Perron inversion formula (see e.g., [3, p. 486]) 

L l1ur(J)J-½-ir «e: K2µ(½)+e: 

f~3K 

(K « lrl « K), 

where as usual the Lindelof function µ(a) is given by 

( ) Ii 
logl((a+it)I 

µ a = msup 
1 

. 
t-+oo og t 

(7.2) 

Instead of using directly (7.2) it is more expedient to use the main contribution 
to the left-hand side of (7.2), which is 

1 le:ttU ~ 
-. ((s + ½ - ir)((s + ½ + ir)K8

-

21n e;-iU s 

and obtain a contribution which is, by the residue theorem, 

l

e:+iU 1= I((½+ ir)l4 1 . 1 . s ds 
. I(( 2 . )l 2 h(r)((s + 2 - ir)((s + 2 + ir)K - dr 

e:-iu _ 00 1 + ir s 

Joo 1((1 + ir)l6 1-e:+iU loo 2 
• 

2 
h(r) dr + • · · ds dr 

-oo 1((1 + 2ir)I -e:-w -oo 
(7.3) 

= J1 +J2, 

say. After evaluating (3.1), we shall integrate it over K from Ko to 2Ko, similarly 
as was done in Section 5. The integral J1 in (7.3) is the analogue of the integral 

on the left-hand side of (4.5). Its total contribution will be O(GK~3
/
4 log37/4 Ko), 

since (4.14) holds and we use the best known estimate 

T 1 I((½ + it) 16 dt « T5/4 log37 /4 T, (7.4) 

which follows by Holder's inequality from (4.2). The contribution coming from 
J2 will be analogous. Namely note that the relevant range of r in 'H1(J; ho) is 
Ir± Kl ~ Glog K, hence it follows from (7.3) and the argument given below that 
the total contribution of 'H7(J; ho) to the integrated version of (3.1) is 

« K~/2+e:cu-1(G + K5/3) + GK~3/4 log37/4 Ko 

plus a quantity which is 

J
U f2Ko Joo 

« -U {1Ko -oo K
2

-e; exp(-(r - K)
2c-2

) log
2 

Kox 

I((½+ ir)l4 1((½ - c: + iu - ir)(( ½ - c: + iu + ir)I dr dK} 1 :~ul. 
(7.5) 
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We shall take the maximum over u in the integral in (7.5) and then integrate; 
this will account for a loss of a log-factor in the final bound. The integral in curly 
brackets resembles the one in (5.6), only it has six and not eight zeta values, since 
now we are dealing with HJ(½) and not with Hf(½), It equals O(exp(-clog2 Ko)) 
plus 

1
2Ko+GlogKo 

I((½+ ir)l4 1(( ½ - £ + iu - ir)((½ - £ + iu + ir)!x 
Ko-GlogKo 

1
2Ko 

exp (-(r - K)2c-2) dK dr 
Ko 

{12Ko-GlogKo 1Ko+GlogKo 12Ko+GlogKo} 
= + + ··· dr 

Ko+GlogKo Ko-GlogKo 2Ka-GlogKo 

= Ii +l2 + l3, 

say. The integrals I2 and I3 are estimated similarly. By Holder's inequality for 
integrals we have 

b b b 

I2 « c(j l((½+ir)l 6 dr) f (j l((½-c+iu+ir)l 6 dr) ½ (j !((½-c+iu-ir)l6 dr) ½ 

a a a 

with a= Ko - GlogKo, b =Ko+ GlogKo. Therefore we have to estimate 
the integral of I((½ + it) 16 over a short interval. By using the trivial estimate 
for !((½ + it)l2 and the asymptotic formula for the integral of I((½+ it)l4 ([4, 
Chapter 51) it follows that 

(7.6) 

There remains ( on this occasion we fix £) 

1
2Ko-Glog Ko 

Ii =G I((½ +ir)l41((½-c+iu-ir)((½-c+iu+ir)lx 
Ko+GlogKo 

f 
(2Ko-r)/G 

2 
x e-x dx • dr 

(Ko-r)/G 

1
2Ko-GlogKo 

= ..firG 1(14 1(11(1 dr + O(exp(-clog2 Ko)) 
Ko+GlogKo 

« G (L~" I((½ +ir)l 6 drr

3 

u:.Ko l((½-e+iu+ir)l 6 drr

6 

X 

X u:· I((½ - e+ iu - ir)l
6 

dr r6 

« GK}+f log37/4 Ko, 
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on using the functional equation for ((s) for the factors with" -e" and the bound 
(7.4). The gain of l and one log-factor is more than compensated by KJ-e log2 Ko 

in (7.5). We choose now U = Kt12-e and note thatµ(½)< 1/6 and G ~ K~/l-e. 
It follows from (7.6) and the last bound that the total contribution of 1t7(J; ho} 
to the integrated version of (3.1) is 

« GK~3/4 log37/4 Ko. (7.7) 

It remains to deal yet with the contribution of 'H2 (f; ho) and 1t 1 (f; ho), which 
will produce the main term. We have that the latter contributes 

where 

41r-3/ 2 K 3G {G;(K, G) + Ci(K, G)} + O(Ki+ec3), (7.8) 

Ci(K, G) = L f- 1d(J)(log K + 'Y log(21r\/7) exp(-(!/ K)A), 
/)1 

Ci(K, G) = - L f- 1 d(J)(log K + ,y- log(21r\/7)Uo(f K), 
/~1 

and the function Uo is given by (3.7). As in [15] we note that c;(K, G) equals 

2 
1
. \ [ ((log K + 'Y - log(21r))(2(w + 1) + ('(w + l)((w + 1)) Kwr(w/..\) dw, 

7riA J(l) 

and likewise q ( K, G) can be represented by a similar type of integral. The line 
of integration is shifted to mew = -1, where the integrand is regular. There is a 
pole of order three at w = 0, hence by the residue theorem and Stirling's formula 
for r( s) we obtain 

3 

c;(K,G) = LA; logj K +O(Ke-1
), 

j=O 

3 
(7.9) 

Ci(K,G) = LB; logi K + O(Ke- 1
), 

j=O 

with A3 = B3 = 1/3. The O-term in (7.8) comes from the fact (see the definition 
of 1t1 (f; h) in (3.6)) that we have 

(ho)'(½)= 2i7r312K 3G + O(KG3), 

(ho)"(½)= 8i1r312 K 3G log K + O(KG3 log K). 

From (7.3)-(7.9) we obtain ( G G(Ko) (~ K~/l-e) will be suitably chosen 
a little later; see (8.9)) 

2Ko 2Ko 

[ C(K, G) dK = GK4 A(log K) 
J Ko Ko (7.10) 

+ O(GKci314 log37/4 Ko)+ O(G3 KJ+e), 
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where A is another cubic polynomial, this time with leading coefficient 2/(31r3l 2). 

Here we have assumed that the total contribution of 1-i2(/; h) can be absorbed in 
the error terms in (7.10), which will be shown in Section 8 with suitable G. 

On the other hand, applying (1.7) in the form 

(1 « H ~ K) 

and using the method of proof of Section 5, it is seen that 

(7.11) 

o: _ H3(1 )"-2 + O(K3+e 0 2) 
:J j 2 :J O • 

Therefore we obtain from (7.10) and (7.11) 

L O:jH;(½)"-; 
Ko(K-j(2Ko 

= K 4 
( 

3
!2 log

3 K + a2 log
2 K + a 1 log K + ao) 

Ko 

2Ko 
(7.12) 

+ O(K5314 log3714 Ko)+ O{GK~+e) 

plus the contribution of 1-i2(/; h). We apply partial summation (to get rid of KJ}, 
replace Ko by Ko2-i, and sum over j. The 0-terms will be absorbed in the 
0-term of Theorem 1 if G = Kg with any O < o: < 1/4. 

8. The contribution of 1-i2(/; h) 

To complete the proof of Theorem 1 it remains to show that the total contribution 
of 'H2(/; h) is absorbed in the 0-terms in (7.12) with suitable G. We follow, as 
before, the proof given in [5J. We use the observation made in [7J which states 
that the relevant sum to be estimated is, after integration over [Ko, '2K0 j , 

GKg12 L 1-1l 2 L (m/ J) 1l 4 d(m)d(m + J)x 
/(3Ko m(JG- 2 log2 K 

( 
§_ ~-2iKo ( §_ ~)-1 

X V 7 + V 1 + 7) e -CG2mr1 log V 7 + V 1 + 7 
(8.1) 
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Note that (8.1) corresponds to (3.1) of [SJ with the· additional factor (m/ !) 114 , 

namely to (16) of [7j. As in (3.2) of [SJ we replace m + f by n and consider 
subsums of the sum in (8.1) where m ~ M (meaning M < m ~ 2M), n ~ N. 
If we get rid of the last two factors in (8.1) by partial summation and Taylor's 
formula, respectively, we are left with the sum 

GKg12 L d(n)n- 1l 4 L d(m)m-3l4 exp(iF(m, n)), 

F(m,n) := -2Kolog (✓ m + ✓ n ) , n-m n-m 

and we have, with effectively computable constants b; , 

( ~ frz) ~ (m)i/2 
log y~+y~ = kib;-;; . 

As in [5, eq. (3.4)J, we have the conditions 

By applying the Cauchy-Schwarz inequality we see that the sum in (8.2) is 

1/2 ( 2) 1/2 ~ ( L d2 (n)n- 1l 2
) L L d(m)m-3/4 exp(iF(m, n)} 

n"'N n~N m~M 

1/2 
« N 1l 4 log2 NL , 

where we have set 

L L L d(m)m-3l 4 exp(iF(m, n)) 
n~N m~M 

2 

(8.2) 

(8.3) 

(8.4) 

+ L d(mi}d(m2)(m1m2)-3l4 L exp(iF(m1,n) iF(m2,n)) 
m1#m2 n~N 

« N Me-1/ 2 + Me-3/ 2 L L exp(iF(m1, n) -iF(m2, n)) . 
m1#m2 n~N 

The effect of this procedure is that the exponential sum over n does not contain the 
divisor function, and consequently can be estimated by the technique of exponent 
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pairs (see e.g., [3, Chapter 21). Note that by (8.3) we have (in the relevant range 
form, n) 

8 
(F( ) F( )) I m 21KOM-1/2N-3/2_ on m1,n m2,n x m1 

Thus if ( K-, >.) is an exponent pair, then we have 

Hence in view of (8.4) the expression in (8.2) is bounded by 

GK}+e (N¾M-¼ + NK;;½ + K/ M¼+t N½+¼-¾") 
5 +e 3 1 11 +e 3 1 « GKJ N 4 M-1: + GK5+.: + GK-;f Ms Na 

« GKj+.:N¾M-¼ +GK5+.: + GKJ+eKJ(NG- 2 )iN¼ 

« GKg+eN¾M-¼ +GKg+.: +cK:t+ec-¾ 

(8.5) 

with (K-,>.) = (½,½)-The bound in (8.5) will be used for large M. For small M 
we shall transform the sum 

S(N) := L tp(n)d(n)n- 1!4 exp(iF(m, n)) 

by Voronoi's summation formula (see e.g., [3, Chapter 3l), treating the real and 
imaginary part separately. Here tp( x) ~ 0 is a smooth function supported in 
[½N, !NJ such that it equals unity in [N, 2NJ and 'P(r)(x) «r N-r (r = 0, 1, ... ). 
Then we have 

~N 
S(N) = · f 2 

(logx+2,)x-114 tp(x)exp(iF(m,x))dx 
j½N 

oo 11N 

+ L 12 

tp(x)x- 114 a(nx)exp(iF(m,x))dx, 
n=l 2N 

where a( nx) admits an asymptotic expansion whose first term is 

By the first derivative test the first integral in (8.6) is 

N 514 logN 
« M1/2Ko , 

(8.6) 
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hence it contributes to (8.2) 

« GK~12N 5l 4M-1!4 1og2 Ko= GKt114 log2 Ko. 

Further consider the main contribution of the terms in (8.6), which is a multiple 
of 

(8.7} 

The case of the "minus" sign is less difficult, and in the case of the "plus" sign, let 

/(x) 
oo m 13 

f(x; m, n, Ko) := 41ry'nx + Ko Lb; ( ;-) 2 
, 

3:=l 

so that 

8/ 21r {n - Ko I: ½jb3mjf2x-jf2-1 _ ax y;; 
j==l 

If n > CK5M N-2 with sufficiently large C > 0, then ~ x ~- Therefore the 
above integral becomes, on integrating by parts, 

[iN (rp(x)x-1/2)' 
in-1!4 }1,, 8 exp(i/(x)) dx. 

2N * 
But as 

(
i,p(x}x-1

/
2
)' 1 

£1. « r-,.,N' ax vnx1v 

it follows by repeated integration by parts that the contribution of n > C KJ M N- 2 

is negligible. If n::;;; CK5MN-2 , then the exponential integral in question may 
have a saddle point xo, namely the solution of ~ = 0. Hence 

2 
~

- T/ ~ l .b. j/2 -j/2-1 1r - no L..., 2J 3 m x 0 , 
Xo j:=l 

giving (since b1 = 1) 

xo ~ Ko fm, 
21r y-; 

and Xo E [½N, ~NJ for n :;::::: K5M N- 2
. By the saddle point method (see [3, 

Chapter 21) the main contribution comes from the saddle point and is 

1

82 ,-1/2 ( 1 ~)-1/2 « _11 « _ ~ « N3/4n-1/4_ 
8x2 x==xo N N 
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Thus the integral in (8.7) is « N 114n-112 , and consequently the sum in (8.6) is 

« Nl/4 

and the total contribution is therefore 

« GK~114 log2 Ko+ GK'(/2 M 314 N-3/ 4 log2 K0 . (8.8) 

Hence for M ~ N 312 / Ko we use (8.5) and otherwise we apply (8.8); if N ~ K~/3 

then N 312 / K 0 ~ 1, but then we can simply use (8.5). We obtain, in view of (7.11) 
and (7.12) and the discussion thereafter, that the total contribution of the error 
terms in Theorem 1 will be 

for 
(8.9) 

This completes the proof of Theorem 1. Note that, apart from the contribution of 
the integral with six zeta values (cf. (7.3)), the remaining terms are of the order 

~/
7+e with the choice G KJ17 , and more refined exponential sum techniques 

could yield even smaller values of G. From (7.12) it follows that the leading 
coefficient of P3(x) in (1.10) is 4/(31r2

). 

9. Another proof of Theorem 2 

We shall sketch now another proof of Theorem 2 (cf. (4.1)), namely 

L ajHf(½) + 0 (log2 K 1K I((½+ it)1 8 dt) 
~;~K (9.1) 

= K 2 P6(logK) + O(K4
/
3+e). 

The argument is based on M. Jutila's proof 17] of (1.9), and will be outlined below. 
Similarly as in the proof of Theorem 1, it is the contribution of 'H.2(/; h) (see (3.6)) 
that is the essential one. To introduce HJ(½) in Motohashi's transformation 
formula for sums of HJ(½) (115, Lemma 3.8]) and obtain the formula for sums of 
Hf(½), one uses 17, Lemma l]. This formula says that 

HJ(½)= L tj(m)tj(n)(mn)-112 exp(-(mn/K2)>.) 
mn~3K2 

L tj(m)tj(n)(mn)-1!2 Rj(mnK2
) + 0(1), 

(9.2) 

mn~3K2 
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for IKj - Kl ::;:; GlogK with log2 K < G < K 1- 0 for 0 < 6 < 1, ,\ = ClogK 
with sufficiently large C > 0. The function R1 in (9.2) comes from the squaring 
of the functional equation for H1 ( ½ + w), namely 

->..-l+i>,2 
ll,(x) = 

2 
~-\ 1 (l61r4x)wf2 (½ w+iK1)f2 (½ w iKj)X 

7f 'tA ->..-1-i)..2 

X (cosh(1fKj) + sin(1fw))2r(w/ ..\) dw. 

In the context of [71 the error term 0(1) in (9.2) suffices, but similarly to [15, 
Lemma 3.9J this error term can be considerably sharpened. The main term (i.e., 
K 2 P5(log K) in (9.1)) is derived analogously as was done in the proof of Theorem 
1; it is obtained in terms of the expressions resembling the functions CJ (j = 1, 2) 
in (7.8), only in this case they will be somewhat more complicated. Namely to 
obtain the asymptotic formula for the sum 

00 

L Oj Hf(½ )ho(Kj) (9.3) 
j=l 

with ho given by (1.6), we use the Mellin relation 

exp(-x>..) 
2 

1
. \ 1 f(z/-X)x-z dz 

'TftA (1) 
(x,-X>0) 

in conjunction with (9.2) and 115, Lemma 3.SJ. We use the identity (3.3) to 
transform the product of two t1-functions into one, and extend summation over all 
values of m, n, producing a negligible error. Then we obtain two divisor functions, 
and we use the classical identity 

It follows that, similarly to the case of Theorem 1, the main term for (9.3) will be 
of the form 

47r-3
/

2 K 3G(Vi(K, G) + V2 (K, G)), 

where Vi(K, G) comes from the first sum on the right-hand side of (9.2). We have 
( 'Y is Euler's constant) 

* 1 1 { (4
(w + 1) V1 (K, G) = ~ (logK + 'Y- log(27r)) ( ) 

2mA (l) ( 2w + 2 

1 ( (
4 

( W + 1) ) I} 2w 
+ 2 ((2w + 2) ((2w + l)K r(w/ .X) dw, 

(9.4) 

and analogously Vi(K, G) comes from the second sum on the right-hand side of 
(9.2). The integrand in (9.4) has a pole of order six at w = 0. We shift the line of 
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integration to ~e w = -1, developing the integrand into power series to calculate 
the residue. The coefficient of log6 K is found to be 4/(1511'2), and clearly the 
coefficients of lower powers of the logarithm can be also evaluated explicitly. This 
is the analogue of A3 = 1/3 in (7.9). The coefficient of log6 K coming from 
v;(K, G) will be the same. Proceeding as was done in Section 7, we see then that 
the leading coefficient of P6 (x) in (1.11) is 16/(1511'4), as claimed. 

We continue now the second proof of Theorem 2. From the discussion above 
it is seen that the relevant sum to be estimated (this corresponds to [7, eq. (16)]} 
is, up to a constant factor, 

GKs/2 L v(/)d(/)/-3/4 
f«K2 

I: 
m.,;;,/G- 2 log2 K 

m-114d(m}d(m + /) 

x (VY+ A)-2

iK exp (-G2
log

2 (VY+ A)) 
x (1og(VY+A))-

1

, 

where v is a smooth weight function supported in [F, 2F] with F « K5 , and 
Ko ~ K ~ 2K0 . A new ingredient is the last log-factor ( coming from integration), 
which is of the order « ,J77m. Consider now the sum over / ;:::: F and m :=: M. 
Then, by the above remarks, the final estimate in [7], namely 

« GKE(F-1/2 KMl/2)3/2, 

should be modified by cancelling the factor G and multiplying by JFTM. There
fore the contribution coming from ?-l2(/; h} will be 

since M/ F « c-2 log2 Ko and G = K~ 13 (::::: Q of Section 4}. This finishes the 
discussion concerning the second proof of Theorem 2. 

10. The first moment of Hj( ½) 

As promised in the Introduction, we shall say a few words at the end on the sum 

L O:jHj(½), (10.1) 
"';.,;;_T 

In conjunction with the conjecture (1.12} I expect the sum in (10.1) to be equal 
to 

AT2 + O(T log3 T) (A= 1 ), (10.2) 



78 A. Ivie 

where the error term in (10.2) comes from the integral with !(( ½ + it)12 in (1.12), 
and the value of A is provided by Random matrix theory (see the discussion at 
the end of Section 1). However obtaining (10.2) is rather difficult. Namely, simple 
specialization (simplification) of the procedure used by Y. Motohashi [14J for sums 
of HJ ( ½) does not work directly. In any case it can be shown that 

T 2(logT)-7/
2 « L a3H3(½) « T 2(logT)112 . (10.3) 

K-;~T 

The upper bound in (10.3) follows from the Cauchy-Schwarz inequality and (1.2). 
To derive the lower bound, let 

S(T) := L O!jHj(½), 
T~K-J~2T 

For a given V > 0 we have (since H3(½) ~ 0) 

and we obtain 

S(T) ~ V L O!j, 
1 

T~K-; ~2T,H; ( 2 )'~ V 

T 2 
log T « L a3 HJ ( ½) = L + L 

Here we used the best possible bounds (cf. [4, eq. (5.48)j and (1.11)) 

L ai « T2' L O:j Hf ( ½) « T2 log6 T. 
K-;~T K.;~T 

The choice V = b'y'logT for sufficiently small 6 > 0 yields then 

T 4 log2 T « v- 1 S(T)T2 log6 T, 

giving the lower bound in (10.3). 

One way to tackle the sum in (10.1) is to take n = 1 in Kuznetsov's trace 
formula ([14, eq. (2.5)]) and multiply by m-u to obtain 

00 
L eja3t3(m)m-uh(K3) 

j=l 

1100 ( ) -u-ir h(r) d 
7f -oo u2ir m m 1((1 + 2ir)l2 r 

(10.4} 

+ f: m-ur1S(m, -l;i)1/1(41r ~), 
l=1 
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where S(m, n; £) is the Kloosterman sum, h(r) is given by (2.3), while with h"'(s) 
given by (2.6) we set 

1/J(x) = _!__ { (x/2)-
2

s h"'(s) ds 
71"2 lea> cos( 71" s) (-3/2 < a < 3/2). (10.5) 

We proceed now, assuming that 1Reu > 2 and a= -2/3 in (10.5). Using 
the trivial bound IS(m, -1;£)1 ~ £, we note that summation over m in (10.4) 
yields, by absolute convergence, 

(10.6) 

By deforming suitably the contour and applying the residue theorem, we see that 
the integrated term admits analytic continuation to the region 1Re u < 1 which is 
of the form 

1 Joo . . h(r) h(i(u - 1)) 
; -oo ((u + ir)((u - ir) 1((1 + 2ir)l2 dr + 4 ((3 2u) . 

Since H1(½) = 0 if E:3 = -1 and h(±½i) 0, (10.6) reduces to (compare with 
(1.12} when k 1) 

~ (1) ( 1 Joo I (1 . )12 h(r) - (1 ~ ajHj 2 h K-j} +; -oo ( :i + ir 1((1 + 2ir)j2 dr - L 2), (10.7) 

where L( u} is the analytic continuation of the function 

00 00 rm I: m-tl I: r 1s(m, -1;£)1/)(471" ;") 
m=l l=l 

(1Reu > 2). (10.8) 

One can try to transform the expression for L(u) by using the properties of the 
Kloosterman-Selberg zeta-function 

00 

Zm,n(s) := (271"v'mn)28
-l L S(m, n; l)r2

s (1'Re s > 1). 
l=l 

Namely one has the spectral decomposition (see [4, eqs. (5.65)-(5.68)1 of Zm,n(s). 
This can be used in (10.8), and one expects that the main contribution will come 
from the discrete spectrum (i.e. [4, (5.66)l). However this will lead eventually to 
the same type of sum as the one we started from. 
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One can follow the approach of [14] and write (-3/2 <a< -1/4) 

00 

L(u) = 1r-2 I:r1P(u;£), 
l=l 

P(u;i) f (21r/i)-28 h*(s) Q(s;u,i)ds, 
J(a) cos(1rs) 

00 

Q(s;u,i)= I:m-u-ss(m, 1;£) (10.9) 
m=l 

e(-a/i)E(u+ s; e(a/i)), 
(a,l)=l,aii=!l (modi) 

where E is the Lerch zeta-function ( 1 ~ h ~ k, k ~ 2, h, k EN, e(z) = e21riz) 

initially defined for iRe s > 1. It can be expressed in terms of the Hurwitz zeta
function, defined for O <a~ 1, u > 1 by ((s, a)= I::=0 (n + a}-s. Since ((s, {) 
has a only the simple pole at s = 1 with residue 1, it follows that E is entire, and 
satisfies the functional equation 

E (s;e (t)) 
= r(l - s) {e '~i'(l-s);-(1- s !!:.) + e "2'(s-l);-(1- s 1- !!:.)} 

(21r)l-s '> , k '> , k . 

(10.10) 

This means that the second expression in (10.9) provides the analytic continuation 
of Q(s; u, £) as an entire function of both u and s, of polynomial growth in lul+lsl. 

This, however, differs from Motohashi's situation [14], where he obtained the 
Estermann zeta-function D, represented in the region of absolute convergence by 
the series 

00 

D(s, ~; e(b/i)) ·- L n-8 u{(n)e(nb/i) (1 ~ b ~ i, b,i EN). 
n=l 

This function has two simple poles ( at s = 1 and 1 + 0 which are (in part) 
responsible for the main term (2.34)i in [14]. But we do not have such a term 
here! What we get is simply, since E is entire, 

L(l) = __!_ f (21r)-28 h*(s) ~ ~ e(-a/i)i28- 1E(s+ l;e(a/i))ds. (10.11) 
2 1r2Jr cos(1rs) L., L., 2 

(a) l=l (a,l)=l 
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In (10.11) we have -3/2 <a< -1/2. To transform further L(½) we make the 
change of variable s = ½ - w in (10.11) and use the functional equation (10.10). 
It follows that L{½) is a linear combination of 

I+ := 1 {21r)wh*{½ -w) . \\w) ) M+{w) dw {1 < {, < 2) 
(/3) sm 21rw 

and 

L 1 (21r)wh*(½ -w) r(;v) M_(w) dw (1 < {, < 2), 
(/3) cos( 21rw) 

where for ~e w > 1 

00 

M+(w) := L 
l=1 (a,l)=l,aii=cl(modl) 

00 

M_(w) := L 
l=l (a,l)=l,aii=cl(modl) 

e(-a/f.)l-2w ((({w, a/£)+ ((w, 1 - a/£)), 

e(-a/f)l-2
w ((((w, a/£) ((w, 1 a/£)). 

The problem is to obtain analytic continuation of the functions M±{w) to the left 
of the line ~e w l, since one would like to move the contour of integration in 
I+ and L to the left. 

It transpires that in any case it seems difficult to show that the sum in {10.1) 
equals the expression in (10.2). 
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