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COMPACT EMBEDDINGS BETWEEN BESOV SPACES DEFINED 
ON h-SETS 

MICHELE BRICCHl 

Abstract: We study the compactness of the embedding between Besov spaces defined on some 
type of isotropic fractal sets in the Euclidean space. The "degree of compactness" of such an 
embedding is expressed in terms of its entropy numbers. 
Keywords: generalised Besov spaces, entropy numbers, fractal sets. 

1. Introduction 

This paper is a natural continuation of our previous work [7): there we have dis­
cussed in detail the definition of generalised Besov-type spaces B;,q(r) on a class 
of isotropic fractal sets r in ]Rn; more precisely, we have taken into consideration 
the class of h-sets, which we have introduced and studied in [8], [6], [5]. 

The term "generalised" used in this context of function spaces means that we 
are considering a real sequence o- = { O"j bENo as a regularity index and not only a 
number s. This "scalar" case is however subsumed in the general setting, letting 
tJ'j 2is, j E N0 . We shall be more precise in the sequel, here we remark that as 
a further specialization of the scale B;,q(r), one has also a suitable definition of 
H 5 (r) ( that is, of course, W:f (r) ), for s ~ 0. 

Here we wish to present an application of the theory developed so far: we 
examine namely the compactness of the embedding between two spaces of this 
kind, say, B;,q(r) and B~,v(r). 

The main assertion of this note (Theorem 7.12) on the one hand shows that 
our definition of the scale B;,q(r) is reasonable (and in some sense optimal) and, 
on the other hand, provides an useful tool for further applications (we have in 
mind spectral properties of pseudo-differential fractal operators and PDE's on 
bounded regions with fractal boundary) which will be the subject of our study in 
forthcoming papers. 

This article is written in a self-contained way, that is, we summarize also the 
main results proved in [7] and [6], although we shall omit related details. 

2000 Mathematics Subject Classification: 46E35, 28A80. 
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The proof of the main theorem 7.12 exploits essentially the possibility to 
represent the elements in B;,q(DP) as a sum- of localized smooth building blocks 
(quarks). That is why we shall briefly present also the quarkonial representation 
theorems for these spaces (subsections (5.1) and (5.2)), which, apart from their 
own interest, turn out to be powerful tools in applications. 

2. General notation 

In this note we shall adopt the following general notation: N denotes the set of all 
natural numbers, N0 = NU {O}, Rn, n E N, denotes the Euclidean n-dimensional 
space, IR = IR 1 , N0 is the set of all multi-indices a = ( a1, ... , an), with ai E No 
for i = 1, ... , n. In this case we also define la! a1 + • • • + Ctn. Finally, zn 

denotes the set of all x = (x 1 , ... , xn) E Rn with integer coordinates. Throughout 
this work we use the equivalence "~" in 

cp(r) ~ '1/J(r) or µ(A)~ v(A) 

always to mean that there are two positive numbers c1 and c2 such that 

for all admitted values of the discrete variable k or the continuous variable r or for 
all admitted Borel sets A C Rn, respectively. Here ak, bk are positive numbers, 
cp, '1/J are positive functions and µ, v are (positive) finite Borel outer measures. 
From now on we shall speak simply of measures instead of outer measures. The 
word "positive" is always used to mean "strictly positive", both for functions and 
for real numbers. 

If not otherwise indicated, log is always taken with respect to base 2. All 
unimportant constants are denoted by c, occasionally primed or with subscripts. 

3. Sequences and related indices 

Definition 3.1. Let a = {a1 hENo be a sequence of positive numbers. We say 
that a is an admissible sequence if there are two positive constants do and d1 
such that 

j E No, (3.1) 

Remark 3.2. If a and T are two admissible sequences, then, for a E IR, also 
ao. { a1 hENo and O"T = { O"jTj} jENo are admissible sequences. 
Examples of admissible sequences are a = {2sj rhENo, for any s, a E IR and 
a {h(2-i)}jENo, if h: (0, 1] - IR is a measure function (see Definition 4.2 below). 
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Definition 3.3. Let er be an admissible sequence. Then we let 

and we define 

. erj+k 
er•=tnf-­
-J kENo erk ' 

er· k 
a'j = sup --1±_ 

kENo erk 

l
. loga'j 

0:17 = 1m --. -
j-+00 J 

(3.2) 

(3.3) 

We refer to (3(1 and a:17 as to the lower and the upper Boyd index of er, respectively. 

Remark 3.4. The sequence log a'j is sub-additive, thus the definition of a:17 is 
well posed. Since /317 -a:17 -1 , also {317 is well defined. Of course, these indices 
are finite for any admissible sequence er. 

The use of the name Boyd indices in this context is justified: we do not want 
to go into details and we refer to [2] where we have treated with some care this 
aspect. We remark only that the following identities hold true for any admissible 
sequence er and r and any £ > 0 (see also [23]): 

C 2((3,,-e:)j & erj+k & C 2(a,,+e:)j 
1 ---: ---: 2 , 

erk 

for some positive constants c1 c1(.::) and c2 c2(c:). 

j,k E No, 

(3.4) 

(3.5) 

(3.6) 

We shall also adopt the following convention: if h: (0, 1] -" IR is a positive 
function such that h(2-j) ~ h(rj- 1 ), i.e., such that the sequence {h{2-j)}jENo 

is admissible, then we let 

and (3.7) 

4. h-sets 

In this section we specify the class of compact fractal sets we shall take into 
consideration. In what follows we refer closely to [6], [5] and [8j. 

Definition 4.1. We denote by the class of all positive non-decreasing con­
tinuous functions defined on (0, lj. We refer to lHI as to the class of all gauge 
functions. 

Definition 4.2. Let h be a gauge function. Then a non-empty compact set 
r C !Rn is called h-set if there exists a finite Radon measure µ with 

1. suppµ= r, 
2. µ(B('-y, r)) ~ h{r), for 'YE r, r E (0, ll, 

where supp denotes the support of the measure µ and B('Y, r) is the closed ball 
centered at "/ with radius r. 
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Any finite Radon measure fulfilling the above two conditions will be called 
h-measure ( related to r). Any gauge function h for which there exists an h-set 
(in ]Rn) is called measure function ( in ]Rn). 

Remark 4.3. This definition generalises the notion of d-sets, introduced by A. Jon­
nson and H. Wallin in [171, and the definition of (d, \J!)-sets, considered by D. Ed­
munds and H. Triebel in [13]. The former are subsumed in the above definition 
choosing h(r) =rd, the latter are obtained letting h(r) ~ rd\Jl(r) (we shift to the 
next subsection the necessary explanations). 

The structure of h-sets has been extensively studied in [6] and [8], whereas 
unbounded versions of h-sets have been taken into consideration in [5]. 

Here we summarize the main results concerning these sets. 

Theorem 4.4 (Characterization). Let h be a gauge function. Then h is a 
measure function in ]Rn if, and only if, 

j,k E No. ( 4.1) 

Remark 4.5. Here we have used a compact notation. The symbol ,?:: in ( 4.1) is 
to be understood in the following way: there exists a gauge function h' ~ h which 
satisfies the above estimation with the symbol ~ in place of ,?:: . 

Notice that if ( 4.1) holds only definitively in k, then again one can conclude 
that h is a measure function: this turns out to be particularly useful when dealing 
with concrete examples. 

Remark 4.6. Observe that if h is a measure function, then the sequence 
{h(2-j)}jENo is admissible and one has 

-n ~ /3h ~ 0:h ~ 0, 

according to the notation introduced in (3.7). 

( 4.2) 

Proposition 4.7. Let r be an h-set. Then the following assertions hold true. 
(i) All h-measures related to r are equivalent to rthlf; 

(ii) For any t E (0, 1] and 'YE r one has 

and 

dimu(rnB('Y,t)) =liminf
10f h(r) (4.3) 

r-+0 og r 

dimp(f n B(,, t)) 1
. log h(r) 
1msup 

1 
, 

r-+0 ogr 
(4.4) 

where dimu A and dimp A denote the Hausdorff dimension and packing 
dimension of the set A, respectively. 

Remark 4.8. The measure rthlf appearing in (i) above is the restriction to r 
of the generalised Hausdorff measure ,th related to the gauge function h. If 
h(r) =rd, this measure coincides with the usual d-dimensional Hausdorff measure 
,td. We refer to [26] for definitions and properties of Hausdorff-type measures and 
to [22] for results concerning Hausdorff and packing dimensions. 
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We remark here that one always has 

0 ~ dim,H A~ <limp A~ n, (4.5) 

for any AC JR.n. Therefore (4.3) and (4.4) can be regarded as further necessary 
conditions on the decay of h near 0 . 

Later on we shall restrict our attention to those h-sets which fulfill a certain 
"porosity" condition. We quote the necessary definition. 

Definition 4.9. A non-empty Borel set r satisfies the ball condition if there exists 
a number O < 17 < 1 with the following property: 

for any ball B(,, r) centered at I E r and of radius O < r ~ 1 there is a 
ball B(x, ryr) centered at some x E ]Rn, such that 

B(,, r) :> B(x, ryr) and B(x, ryr) n f = 0. (4.6) 

This definition coincides essentially with [28, Definition 18.10, p. 142]. 
In [29, Proposition 9.18, p. 139] one finds a necessary and sufficient condition 

on a measure function h under which an h-set r satisfies the ball condition. 
As a straightforward consequence of this statement we have the following useful 
proposition. 

Proposition 4.10. Let r be an h-set in ]Rn. Then r fulfills the ball condition 
if, and only if, f3h > -n. 

Moreover, any h-set with the ball-condition has Lebesgue measure zero. 

4.1. Slowly varying functions 
The aim of this subsection is to provide a class of examples of measure func­

tions. The material presented here will be used effectively in Subsection 7.3. We 
shall rely on the beautiful theory of regular variations, pioneered by J. Karamata 
in the early 30's, following closely the monograph [lj. 

Definition 4.11. Let H be a positive and measurable function defined on (0, lj 
satisfying 

lim H(sr) = 1 
r-+O H(r) ' 

for every s E (0, 1]. (4.7) 

Then H is said to be a slowly varying function (in Karamata's sense). 

Proposition 4.12. Let H be a slowly varying function. Tlwn the following prop­
erties hold true: 

(i) There exists a C00 slowly ~arying function H ~ H. Moreover, if H is 
eventually monotone, so is H (see /1, Proposition 1.3.4, p. 15}). 

(ii) For any d > 0 there exists a C00 non-decreasing function h(r) ~ rdH(r), 
r E (0, lj (see [1, Proposition 1.8.2, p. 45}). 

(iii) There exists a uniquely determined (up to equivalence) slowly varying Junc­
tion Ht such that H(r)Hfl(rH(r)) ~ Hfl(r)H(rHU(r)) ~ 1 (see fl, Proposi­
tion 1.5. 13, p. 29}). The function HU is called Bruijn conjugate of H. 

The following theorem characterizes all slowly varying functions (see [1, The­
orem 1.3.1, p. 12]). 
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Theorem 4.13. A positive function H defined on (0, 1] is slowly varying it: and 
only if, 

H(r) c(r) exp{-f 1 E(u) d: }, r E (0, 1], (4.8) 

where c and E are measurable functions with c(r) -. b E (0, oo) and E(u) 0, 
asr--.0. 

Remark 4.14. As an immediate consequence of this theorem we have that given 
a function l(r) with rl'(r)/l(r) continuous in (0, 1] and o(l), as r-. 0, then l is 
slowly varying. To see this consider simply c(r) = 1/l(l) and E(u) = ul'(u)/l(u) 
in the above representation theorem. 

Example 4.15. Using this representation theorem, specific examples of slowly 
varying functions can be constructed at will (in the following examples r is to be 
taken small enough to avoid awkward formulations). Trivially, positive measurable 
functions with positive limit at O (in particular positive constants) are slowly 
varying. The first non-trivial example is £ 1 (r) I log rl. The iterated logarithms 
L2(r) logjlogrl, 

Lk(r) =log·· - log I log rl 
_____ 
k-l times 

( 4.9) 

are also slowly varying, as the powers of Lk, rational functions with positive 
coefficients formed with Lk, and so forth. Non-logarithmic examples are given by 

0 < Xk < 1, 

and 

Note that a slowly varying function may oscillate, an example being 

H(r) = e! logr!! cos([ logrf!) _ 

We make now a short digression. 

(4.10) 

( 4.11) 

( 4.12) 

In [13], [14] D. Edmunds and H. Triebel have introduced the class of ad­
missible functions as the class of all positive monotone functions W: (0, 1] -. R. 
satisfying 

j E No. (4.13) 

In [13], [14], [24], [25] this class of weights is extensively studied in connection to 
function spaces ofBesov and Triebel-Lizorkin type. We also contributed in [3j and 
[4] to this subject. Presently, we want to show that any admissible function is 
essentially a slowly varying function (see [8, p. 37-38j for the proof). 

Proposition 4.1~: Let W be an admissible function. Then there exists an ad­
missible function W equivalent to W wliicl1 is slowly varying. 
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Finally, we remark some elementary, but significant, properties of slowly 
varying functions (see [1, Proposition 1.3.6, p. 16]). 

Proposition 4.17. The following properties hold true: 
l. If H varies slowly, then log H ( r) o(log r) , as r - 0. 
2. If H varies slowly, so does Ha(r), for any a E JR and H(ra), for any 

a> 0. 
3. If H1 and Hz vary slowly, so do H1 Hz, H1 + H2 and H1 o Hz (provided 

H2(r)---, 0 in this last case). 

We quote now the main theorem concerning slowly varying functions and 
h-sets (see [8, Theorem 1.9.15]) 

Theorem 4.18. Let H be a slowly varying function. Then 
(i) h(r) ~ rdH(r) is a measure function in Rn, for all O < d < n; 
(ii) h(r) ~ r" H(r) is a measure function in Rn, provided H is non-increasing; 

(iii) h(r) ~ H(r) is a measure function in Rn, provided H is non-decreasing. 

Remark 4.19. The ~ in assertions (i), (ii) and (iii) means 'after appropriate 
replacement with an equivalent gauge function', which is possible by the Proposi­
tion 4.12. 

Remark 4.20. There are measure functions h in Rn which are not of the form 
rd H(r), with O ~ d ~ n and H slowly varying. We refer to [8!, [5] for details. 

5. Besov spaces in Rn 

Besov and Triebel-Lizorkin spaces defined in terms of a perturbed smoothness 
have been already considered in some generality: see for instance [23!, [lOJ, [19], 
[18] and [16]. We shall follow closely the recent work [15] of W. Farkas and 
H.-G. Leopold which represents a general and unified approach. 

Remark 5.1. \Ve mention here that in complete analogy to the theory of Besov 
spaces with generalised smoothness briefly presented in this section, one can con­
sider the generalised variant of the other famous scale of function spaces: the 
F-scale of Triebel-Lizorkin spaces (this is done in the papers mentioned above). 
However, although what follows in this section has indeed a perfect counterpart 
for the F-scale, we prefer, in view of our application to fractal sets, to restrict our 
attention to the B-scale only. 

Before the main definition, we collect usual notation and basic concepts. 
S(llln) denotes the Schwartz class of all C 00 rapidly decreasing functions together 
with all their derivatives and S'(Rn) is the space of all tempered distributions. 
The Fourier transform and the inverse Fourier transform of a tempered distribution 
f are denoted by :Ff and by :;::- 1 f, respectively. 
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Definition 5.2. By a resolution of unity <I> = { <pj} jENo (in !Rn) we mean a 
sequence of compactly supported smooth functions, such that 

supp<po C {€ E !Rn : 1€1 ~ 2}; 

supp<pj C {€ E !Rn: 2J-l ~ 1€1 ~ 2H1 
}, 

DO 

j=O 

sup IDQ<pJ(€)1 ~ carJlcrl, 
,;ER" 

a EN~. 

j = 1,2, ... ; 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

Definition 5.3. If <I>= {<pj}jENo is a resolution of unity and f E S'(!Rn), then 
we set, for j 0, 1, ... , 

'PJ(D)J = F- 1 (<pJFJ). (5.5) 

Definition 5.4. If { aj(x)}jENo is a sequence of functions defined in !Rn, then we 
put, for O < p, q ~ oo, 

(5.6) 

Now we are ready for the main definition. 

Definition 5.5. Let <I> { 'PJ} jENo be a resolution of unity. Consider an admis-
sible sequence a { aj} jENo and fix O < p, q ~ oo. Then 

B;,q(!Rn) = {J E S'(!Rn): IIJ I B;,q(JR,.)11 llajtpj(D)J I Rq(Lp)II < 00 }. (5.7) 

Remark 5.6. (i) As for the classical Besov spaces B;,q(lR?.n) (subsumed in the 
above definition for a= {28i}jENo ), also the spaces B;,q(!Rn) are independent, up 
to equivalent quasi-norms, from the chosen resolution of unity appearing in their 
definition. 

(ii) If '1i is an admissible sequence in the sense of [13], then 
a = {28i'1i(2-i)}jENo is an admissible sequence and the resulting Besov spaces 

coincide with the perturbed spaces called Bt:t) (!Rn) in [131, [14]. 
In both cases (classical and perturbed spaces) we stick at the original nota­

tion. 

Some known facts valid for the classical spaces remain valid, after adequate 
modifications, also in this generalised context. We quote only those results we 
shall use in the sequel and we refer to the list of works quoted above for specific 
results and comments. 

If O < q,r ~ oo we let 1 ~(qr)'~ oo defined by 

{ 

1 1 1 . 
--+-=- 1f q>r 
(qr)' q r' ' 
oo, otherwise. 

(5.8) 

Then one can easily prove the following assertion. 
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Proposition 5. 7. Let O < p, q, r =s; oo be fixed indices and Jet a and r be two 
admissible sequences. Then 

(5.9) 

The result concerning the embedding in Lp(lRn) reads as follows. Remember 
that for a E JR, a+ means max( a, 0). 

Proposition 5.8. Let O < p =s; oo, 0 < q =s; 
sequence with /3<1 > n(l/ min(l,p) -1). Then 

oo and let a be an admissible 

B;,q(lir) C Lp(IRn), if p ~ 1, (5.10) 

and 

if p < 1. (5.11) 

This assertion can be easily proved using the atomic representation theorem 
formulated in full generality and proved in [15]. 

5.1. Quarks and quarkonial decompositions: the regular case 
Quite recently H. Triebel has introduced in [28] the idea of quarks as refined 

building blocks in the function spaces B;,q(!Rn) and F;,q(IRn). In what follows we 
present on the one hand the quarkonial representation theorem for B;,q(!Rn) in 
the case where no moment conditions are needed. On the other hand, in the next 
subsection we shall consider the general case. The main theorems 5.13 and 5.17 
are stated and proved in !8] (where we also consider the F-case), since they do 
not appear in the paper [15]. However, our proof is mostly indebted to the results 
contained in that paper on the one hand and on the techniques used by H. Triebel 
in his new book [29] on the other (see later on for specific references). 

This decomposition theorem will turn out to be extremely useful in order 
to deal with the estimation of entropy numbers of compact embeddings between 
Besov spaces defined on h-sets (Section 7). 

We begin with some preparations. 

Definition 5.9. A mother function e is a non-negative smooth function with the 
following properties: 

1. supp0 C {x E !Rn: lxl < 2l1}, for some(!> O; 
2. I:mEZn 0(x - m) = 1, for all XE !Rn. 
If 0 is a mother function and /3 E N~, we let 

0"(x) = :z:"0(x), x E ]Rn, (5.12) 

where x" = xf1 
• • • x~" if x (xi, ... , Xn). 

Definition 5.10. Let er be an admissible sequence, 0 < p =s; oo and consider a 
mother function 0 as in 5.9. Then the expression 

/3-quj,m(x) = cr_;-I2iie13 (2jx m), /3 EN~, j E No, m E zn, (5.13) 

is called (cr,p)-/3-quark. 

Occasionally, we prefer the less rigorous notation "(aj,p)-/3-quark" to 
"(a,p)-/3-quark", mostly if er= {cr1hENo is explicitly given. 
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Remark 5.11. The quarks are well localized: we have, for some d > 1, 

(5.14) 

where j E No and m E zn. Moreover, one has, for every x E !Rn, 

/3 EN~. (5.15) 

The factor a_;-12:i is a normalising term by which quarks become building blocks: 

(5.16) 

for some positive constants c{ and c{ which are independent of j E No and 
mE'lln. 

Quarkonial decompositions rely on an interplay between sufficiently smooth 
building blocks (the quarks) and some sequence spaces. In the following definition 
we precise the type of sequence spaces we need. 

Definition 5.12. Let O < p, q ~ oo and 

(5.17) 

Then we define 

(5.18) 

(modification if p and/or q is infinite). 

We can now state the quarkonial representation theorem for the spaces 
s;,q(!Rn). 

Theorem 5.13. Fix a mother function e as in 5.9, in particular with (! given by 
5.9-(i). Let O < p, q ~ oo and consider an admissible sequence a with 

(5.19) 

Fix a number K > (!. Then the following assertion holds true. 
Any fin S'(!Rn) belongs to s;,q(!Rn) if, and only if, there exists a sequence 

>. {..\/3} ,BEN;;' of elements of bp,q such that 

CXl 

f = L L L >.fm,6-quj,m(x), in S' (!Rn) (5.20) 
{3EN0 j:=cO mEZ" 

and 

(5.21) 
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Moreover, 

(5.22) 

Further, the coefficients A = { Aj,m} can be chosen linearly dependent on f. 

Remark 5.14. We do not want to go into details and we refer to Chapter 1, espe­
cially Sections 1, 2 and 3 of [29] for heuristics, motivations, results and comments 
on quarkonial expansions. We only remark the convergence in S' (IR) of the sum 
(5.20) is not an additional requirement of the theorem, but it is always implied 
by (5.21). Moreover the convergence of this sum is unconditional and hence we 
shall briefly write form now on (and also in the general case, where an analogous 
assertion holds true) 

00 

in place of (5.23) 
/3,j,m 

5.2. Quarkonial decompositions: the general case 
The quarkonial representation theorem 5.13 cannot be applied to B;,q(IRn) 

if f3o- ::;;; n(l/p - 1)+. This is due to the lack of quarks with moment conditions, 
which cannot be avoided for general sequences a. Here we point out the necessary 
changes in order to deal with the general case. Again, we follow 129, Section 3]. 

Remember that, for k E N0 , 

k n f)Z k (-~) ~ (- L axz) 
l=l l 

(5.24) 

Definition 5.15. Let 8 be a mother function, a an admissible sequence and 
0 < p ,-:;; co. Let (L + 1)/2 E No and consider f3 EN~. Then 

(5.25) 

is called (a,p)L-{3-quark. Here j E N0 and m E zn. 

Remark 5.16. If L = -1, then the above definition coincides with Definition 5.10. 
In particular, (3--quj,~ (3-quj,m are called as before (a,p)-(3-quarks. If L > 1, 
then moment conditions up to order L 

j x"/3--quf.m(x) dx = 0, lal ,-:;;L, (5.26) 

are ensured. 
The general decomposition theorem reads as follows. 
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Theorem 5.17. Fix a mother function e as in 5.9, in particular with f2 given 
by 5.9-(i). Let O < p, q ~ oo and consider an admissible sequence u. Choose a 
nwnber L and an auxiliary admissible sequence T such that (L + 1)/2 E N0 and 

(5.27) 

and Jet t,--quj,m and ,6--quf.m be (T,p)-/3-quarks and (u, p)L-/3-quarks generated 
by 0, respectively. Fix a nwnber K > f2. Tlien the following assertion holds true. 

Any f in S' (llln) belongs to s;,q (lRn) if, and only it: there exist two se-
quences >. { >,/3} ,BEN~ and T/ = { TJ/3} /3EN~ of elements of bp,q such that 

f = L (TJfm/3-quj,m(x) + Aj,m/3-quJ'.m(x)), (5.28) 
,8,j,m 

and 

(5.29) 

Moreover, we have that 

(5.30) 

Further, The coefficients >. and T/ can be chosen linearly dependent on f. 

6. Function spaces on h-sets 

In this section we give the definition of s;,q(f), where r is an h-set. We follow 
closely [ 8], [7J. 

First, observe that we can canonically define the spaces Lp(f), for O < p ~ 
oo. The related measure is any h-measure associated to r by its definition: since 
any two such measures are mutually equivalent (by virtue of Proposition 4.7-(i)) 
and sufficiently regular, they originate the same space ( up to equivalent quasi­
norms). We shall always think of Lp(f) endowed with one of these measures, say 
Jthlf. 

Suppose now that there exists a positive constant c such that 

(6.1) 

Then, for max(p, q) < oo, exploiting the density of S(JRn) in s;,q(lRn), we 
can define by completion the trace of any function f E s;,q(lRn) on r and denote 
it by trrf (trace of J on r). We have that the following optimal assertion holds 
true ([7, Theorem 5.9l). 
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Theorem 6.1. Let O < p < oo, 0 < q:,:;; min(l,p) and let r C !Rn be an h-set 
satisfying the ball condition, according to Definition 4.9. Then 

(6.2) 

Here we have used the following compact notation for the admissible se­
quence hp, for O < p :,:;; oo which will be also exploited throughout this note: 

denotes the sequence (6.3) 

Notice that h= is the constant sequence (1, 1, ... ) . 
Theorem 6.1 gives the motivation for the following definition, which is at the 

heart of this section. 

Definition 6.2. Consider an h-set r C ]Rn satisfying the ball condition. Let a 
be an admissible sequence with f3cr > 0 and let O < p, q:,:;; oo. Then we define 

B cr (f) tr B t7h" (m,n) p,q r p,q ir.. ' 

endowed with the quasi-norm 

where the infimum is taken over all g E n;}' (!Rn) with trr g f. 
By Theorem 6.1 we can complement this definition letting 

for all O < p, q :,:;; oo and all admissible sequences a with f3cr = 0. 

Remark 6.3. If f3cr > 0, then by Proposition 5.7 

Bcrh"(!Rn) C Bh" . (!Rn). 
p,q p,mm(p,l) 

(6.4) 

(6.6) 

(6.7) 

Therefore the above definition makes sense also for q = oo, at least if p < oo. But 
if p = oo we have that 

(6.8) 

where C(JRn) is the space of all bounded and uniformly continuous functions in ]Rn, 
normed in the usual way. This follows from 5.7 and the known (sharp) embedding 
of B~ 1 (!Rn) in C(!Rn) (see, for instance [27, Thoerem 1, p. 32]). Therefore the 
trace ~perator, in this case, is simply the pointwise restriction. 

Remark 6.4. Definition 6.2 generalises the definition of the Besov-type spaces 
nt/")(r), which are defined in [14] for a (d, w)-set r as follows: 

n(s,\Jl")(r) = tr B(s+ n;d ,wi+")(!Rn) 
p,q r p,q (6.9) 
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(quasi-normed analogously to (6.5)), where O < p,q ~ oo, s > 0, a ER and 
0 < d < n. In fact, these spaces are clearly obtained with a-= {2iswa(2-j)}jENo 
in 6.2 (remember that in this case h(2-i) = 2-diw(2-1), j E N0 ). 

There is the possibility to provide more direct characterizations of the spaces 
B;,q(f), relying on atoms, quarks, local polynomial approximations and differ­
ences. Some of these procedures are described in [8J. 

7. Compact embeddings 

Here we present an application of the theory developed so far, which is the heart 
of this note: we shall examine under which condition the embedding 

BC! (f) id BT (f) 
P1,q1 ----, p2,q2 (7.1) 

turns out to be compact. Moreover, in this case we shall study the entropy numbers 
ej(id), j E N0 related to this embedding. 

In order to get the main result (Theorem 7.12) we present basic definitions 
and results on compact embeddings between weighted sequence spaces, which play 
a decisive role in what follows. As it will be clear the quarkonial representation 
theorem 5.17 also plays an outstanding role, reducing the problem of the upper 
estimation of the entropy numbers of (7.1) to the known estimation of the entropy 
numbers of the embeddings between the mentioned weighted sequence spaces. 

References on this subject are given below. 

7.1. Sequence spaces 
In this subsection we collect definitions and results for weighted sequence 

spaces. Their importance, apart from their own interest, will appear in subsec­
tion 7.2. 

The material presented in this subsection closely refers to the articles of 
H.-G. Leopold [20J, [21]. 

We give the general definition of the spaces we have in mind, later on we 
shall restrict ourselves to a particular class of sequence spaces. 

Throughout this chapter, by a genernl weight sequence {pj}jENo we mean a 
sequence of real non-negative numbers pi. 

Definition 7.1. Let O < p ~ oo, 0 < q ~ oo, let {pi }jENo be a general weight 
sequence and { Mi };EN be a sequence of natural numbers. Then 

Eq(P/:,) { ( · ( ={ (j,m}jENo, m=J, .. ,MJ with 

II( I Eq(P/:j)II = (f PJ(I: l(j,mlp)*) ¼ < oo }(7.2) 
J=O m=J 

(with obvious modifications if p and/or q are infinity). 
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It is clear that these sequence spaces are quasi-Banach spaces. This definition 
coincides with [28, (8.2), p. 38], with pj 28i and Mj ~ 2id. 

We are interested in the embedding 

(7.3) 

The following theorem clarifies when such an embedding makes sense. We recall 
again that a+ = max( a, 0), for a E JR. 

Theorem 7.2. Let O < P1,P2 ~ oo and O < q1,q2 ~ oo. Let {PjhENo be a gen­
eral weight sequence and { Mj LEN be an arbitrary sequence of natural numbers. 
Then the embedding (7.3) is bounded if, and only u; 

where 

1 
q* 

i.e., q* 

if O < ql ~ q2 ~ 00, 

j[ 0 < q2 < q1 < 00' 

if q1 00. 

(7.4) 

(7.5) 

Moreover, if this embedding is bounded, the norm in fq• of the sequence appearing 

in (7.4) is an upper bound for [lid I fq 1 (pjf:;;) ........ fq2 (£:!; )II -

When the identity operator id in (7.3) exists, one may ask for the compact­
ness of this operator. The following theorem provides the answer. 

Theorem 7.3. Let O < p1,P2 ~ oo and O < q1,q2 ~ oo. Let {pj}jENo be 
a general weight sequence and { l\tlj }jENo be an arbitrary sequence of natural 
numbers. Then the embedding (7.3) is compact if, and only if, 

if q* < 00 (7.6) 

or 

if q* = 00. (7.7) 

The next step is the calculation of the entropy numbers of the above embed­
ding. We briefly recall the definition and some properties of entropy numbers. As 
far as this topic is concerned, the reader may refer, for instance, to [llj or [12J. 

Recall that if A and B are two quasi-Banach (complex} spaces, then .C(A, B) 
denotes the space of all linear and bounded operators normed in the natural way. 
For short, we let C(A, A) = C(A). 
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Definition 7 .4. Let A and B be two quasi- Banach complex spaces and let 
T: A -. B be a linear and bounded operator. Then for all j E N, the j-th 
(dyadic) entropy number of T is defined by 

zi-1 

ej(T)=inf{e>O:T(BA) C LJ(b1+eBs), forsomeb1 , ... ,b23 -1 EB}, (7.8) 
1=1 

where BA and Bs denote the closed unitary balls in A and in B, respectively. 

The main properties of entropy numbers are summarized in the following 
proposition. 

Proposition 7.5. Let A, B and C be three quasi-Banach complex spaces. Let 
S, TE £(A, B) and RE £(B, C). Then 

1. IITII ~ e1(T) ~ e2(T) ~ ... (e1(T) = IITII if Bis a Banach space); 
2. for all j,l EN 

3. if A B, 

T is a compact operator if, and only if, ej (T) -. 0, as j -. oo. (7.10) 

Let T E £(A) be a compact operator. Then the spectrum of T, apart 
from the point O, consists solely of eigenvalues of finite algebraic multiplicity: let 
{ Aj (T)} jEN be the sequence of all non-zero eigenvalues of T, repeated according 
to their algebraic multiplicity and ordered so that 

(7.11) 

If T has only m di,.<;tinct eigenvalues and M is the sum of their algebraic multi­
plicity we put An(T) = 0, for all n > M. 

Then the following theorem (proved by B. Carl in [ 9] in the context of Banach 
spaces and in [12] in the context of quasi-Banach spaces) sheds some light on the 
connection between entropy numbers (which express a geometrical property of the 
compact operator T) with the eigenvalues of T ( which are related to the spectral 
properties of the operator). 

Theorem 7.6. Let T and {-Xm(T)}mEN as above. Then 

j 1 

(IJ I-Xm(T)1)
7

:,;; inf 2:fren(T), 
nEN 

m=l 

j EN. (7.12) 

As a consequence of (7.11) and 7.6 we get the famous Carl's inequality 

(7.13) 
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which is a clear example of the above mentioned connection between entropy 
numbers and eigenvalues of a compact operator. 

Let us come back to the estimations of the entropy numbers related to the 
operator 

(7.14) 

It turns out that under some restrictions on the weight sequence {p1 JiENo and 
the sequence { M 1 }jEN, the entropy numbers of the above embedding can be com­
pletely estimated (up to equivalence). For the following definition and the next 
relevant Theorem 7.9 we refer to [21, Theorem 3]. 

Definition 7. 7. A sequence { a1 hENo of positive real numbers is called almost 
strongly increasing if there is a constant K.o E N such that 

for every j and k with k ~ j + K.o . (7.15) 

Geometric sequences, i.e., sequences of the form a1 2bj, b > 0, are clearly 
almost strongly increasing. 

More generally, if we consider a measure function h which does not decay 
too slowly near zero, then it turns out that {h_;-1 }jENo is an almost strongly 
increasing sequence, where h1 = h(2-i), for j E No, as we point out in the 
following proposition. The reason for considering this type of sequences will be 
clear in the next subsection. 

Proposition 7.8. Leth beameasurefunction with o:h < 0. Then {h(2-i)-1 hENo 

is an almost strongly increasing sequence. 

Proof. Let hj = h(2-j), for j E N0 • In order to prove the assertion we have to 
find K.o E N such that 

hj+l+K-o 1 ~--~-
h· "'2' J 

j, l E No. (7.16) 

Let c: > 0 be chosen such that o:h + c: < 0. By assumption and the definition of 
O:h there exists a constant c = c( c:) > 0 such that 

j, l E No, (7 .17) 

holds for any K.o E No. Choosing now K.o big enough we conclude the proof. • 
The role played by almost strongly increasing sequences is explained by the 

following relevant theorem. 

Theorem 7.9. Let O < P1 ~ P2 ~ oo and O < q1,q2 ~ oo. Let {p1}jENo be 
an almost strongly increasing weight sequence and let { M1} jENo be an almost 
strongly increasing sequence of natural numbers. Then 

LE No. (7.18) 
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Unfortunately, this theorem is not completely sufficient for our later pur­
poses. We need something like an lu -version of the above assertion. But fortu­
nately, it comes out that these generalisations are nothing more than a technical 
appendix to the just mentioned result. 

Let again iq(p,£f;) be the sequence space introduced in Definition 7.1. Let, 
in addition, e > 0 and O < u :;;; oo. Then 

M· I denotes the linear space of all iq(pjiP ')-valued sequences x {x }iENo endowed 
with the quasi-norm 

00 .l 

llx I lu[2et.eq(p/fi)] II= (L 2elullx' I fq(pjf:i)llu) "' (7.20) 
1=0 

with obvious modification if u = oo. For these spaces one can prove the following 
theorem. 

Theorem 7.10. Let O < P1::;; P2 ~ oo, 0 < u1, u2 ~ oo and O < q1, qz ~ oo. Let 
{pj bENo be an almost strongly increasing weight sequence and let { Mj }jENo be 
an almost strongly increasing sequence of natural numbers. Then, for fl > 0, the 
embedding 

iu1 [ 2e1iq1 (P,£!':i)] C fu2 [lq2 ( f:!j)] (7.21) 

is compact and for the related entropy numbers we have 

(7.22) 

The proof can be given following the analogous proof of [28, Theorem 9.2, 
p. 47] and the estimates of entropy numbers given in Theorem 7.9. 

7 .2. Compact embeddings between Besov spaces 
In this subsection we consider the embedding id between the Besov spaces 

(7.23) 

where a and T are admissible sequences with /3(I and /1,. ~ 0. If f is a d-set, then 
the above embedding is studied in [28] and the outcome is the following important 
theorem ([28, Theorem 20.6, p. 166] is even more general). 

Theorem 7.11. Let r be a compact d-set in Rn with O <ti< n. Let 

0::;; 81 < 82 < 00 

1 < P1iP2 < oo, 0 < q1,q2 ~ oo, 

(7.24) 

(7.25) 
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and 

S1 s2 d (_!_ - I.) > 0. 
P1 P2 + 

(7.26) 

Then the embedding of B;~,q
1 
(r) into B;;,q)I') is compact and for the related 

entropy numbers one has: 

e. (id: B s1 (r) -1' B 82 (f)) rv J Pl ,q1 P2 ,q2 j EN. (7.27) 

Recently, S. de Moura has proved an analogous theorem for a (d, w)-set r 
(see [25] and also the discussion on this subject after Proposition 7.16). Accord­
ingly, the Besov spaces on r taken now into consideration are defined via trace 

(s ,vl/p) 
procedures from the tailored spaces Bp,q (Rn), as we have remarked in 6.4. 

In both cases, the underlying main tool exploited in the estimations for 
the entropy numbers of these embeddings is the quarkonial representation of the 
elements in the considered Besov spaces and the results concerning compact em­
beddings for the sequence spaces studied in Subsection 7.1. 

Thanks to 5.13 and 5.17, we have also a characterization of B;,q(Rn) with 
quarks and this allows us to state and prove the following theorem. 

Remember that to avoid awkward formulations we agree on 

(7.28) 

for all O < p, q ~ oo, if /3"" 0, simply as a notation. Moreover, if { °'i} is an 
unbounded increasing sequence of positive numbers we write for entropy numbers 
e°'i instead of e[aj], where I·] denotes the integer-part function. 

Theorem 7.12. Let r C Rn be an h-set, with -n < /3h ~ °'h < 0 and let 
d = dimp r. Let <Y and T be two admissible sequences with /3,,,. ~ 0. Consider 
0 < Pl, P2 < oo, 0 < q1, q2 ~ oo and suppose 

/3"" - a:,,,. > d(_!__ - _!_) . 
Pl P2 + 

(7.29) 

Then the embedding of B;
1 

,qi (r) into B;
2 

,qz (I') is compact and for the related 
entropy numbers one has: 

(7.30) 

where hj denotes the sequence {h(2-i)}jEN•• 

Remark 7.13. Before giving the proof of the above theorem we point out some 
comments: the assumption -n < /3h ~ o:h < 0 is in some sense necessary: it guar­
antees that the fractal r preserves the ball condition (Proposition 4.10) and that 
the sequence { h_t} is almost strongly increasing (Proposition 7.8). The relevant 
assumption is of course (7.29). One could prove that this condition (which is a 
generalization of (7 .26)) is necessary. If it fails, then either one has no embedding, 
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or the embedding turns out to be non-compact. We refer to [28, 20.7, p. 169] 
where this last observation is discussed in detail for d-sets, but with immediate 
modifications one could treat the general case. The asymptotic behaviour (7.30) 
is also a generalization of (7.27): we shift to Remark 7.14 more detailed comments 
about its structure. 

Proof of Theorem 7.12. Step 1. Let p2 ;;:: p1. Let us consider J E B;
1

,q
1 
(r). 

Then there exists a (non-linear) bounded extension operator g = ext f such that 

trr g = J and 0 
. 1 n., 

We recall that for p E (O,oo] the sequence <Yhp stands for {<Yjh(2-J)ii2v1 }jENo, 

according to Remark 3.2 and formula (6.3). 
To fix the imagination we may assume that g is zero outside of a fixed 

neighborhood of r. We expand g according to 5 .17 in terms of ( Cf'i, p1 )-/3-
quarks and (<YjhYP1 2P"1 i,p1)L-f3-quarks, where cp is an admissible sequence with 
appropriately big index /3r;,, according to 5 .17. The idea of the proof is to reduce 
everything to the building blocks introduced in 5.15 a.nd to the knowledge that 
the involved sequences of complex numbers in (5.28) belong to the space bp 1 ,q1 . 

Hence, it does not matter very much to look at one of the two terms of (5.28) and 
we assume that we can apply the somewhat simpler situation of 5.13 to B;

1
,q

1 
(f) 

and B;
2 
m (r) . The necessary technical modifications are dear in all case.s. 

Hence, without restriction of generality, we assume 

(7.32) 
[3,j,m 

with 
(7.33) 

where e is a fixed mother function, according to 5.9 and h':1 > {!, where {! is the 
number related to e according to 5.9-(i). 

We decompose the embedding id as id = trr o B o idseq o A o ext, according 
to the following commutative diagram. 

B;1,q1 (f) Bt1hp1 (Rn) £00 [2Kil/3lfq
1 
(l.1j£~j)] P1,q1 

id 1 1 idseq (7.34) 

B;MJr) f-- B-rhv2 (l~n) f-- foo [ 21<2 lf31 fq2 ( c:;J ) ] 
trr 

p2,q2 
B 

..L-..L 
where pi <YjTj-

1hJ' 1 1
'
2 and Mi ~ h-;1. Now we clarify the definition of the 

operators involved in the above path. 
• The operator ext has been already taken into consideration. Notice that, 

although not linear, ext is bounded and maps the unit ball B(O, 1) in B;
1
,q

1 
(f) 

into the ball B(O, 2) of B;::~~ (Rn). 
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• As far as A is concerned, we let 

f = >.. a. h. L {j -1 -
J,m J J (7.35) 

{j,j,m 

where, 
l 1 

r,{j,r = {a-: 1r·hp 2 -pt ;.f1 ' CQ · n f ....l O} 
·1 J J 1 1 ,m · J,m 1 · (7.36) 

We may assume that C > l is fixed and sufficiently large such that what follows 
is justified. By usual arguments we have that, for each fixed j E N0 , the number 
of indices m such that CQj,m n r :/: 0 is equivalent to h;1. 

The space.s .C00 [2eif1l(.Cqp,£fj)] have been essentially introduced in (7.19) 
with (7.20), based on 7.1: of course we adapt these definitions to our present 
situation. 

We have (modifications if p and/or q is infinity): 

00 Mj !.!.. 1 

= sup" 2"1 lf1I (L ( L !>.j,m 1v1) vi ) n 
{jENo j;=O m= 1 

:f; ii>. I bp1,q1ll"1::;; cijf I B:~4i(Rn)II- (7.37) 

Consequently A is a bounded operator which maps the unit bali B(O, 2) in 

B;~q~ (Rn) into the ball B(O, c) of f 00 [2"ilf1lfq1 (P/~j )] . 
• The linear and bounded operator idseq is the embedding between the 

sequence spaces which are shown in the Diagram (7.34). Of course, we assume 
1-,;1 > 1-,;2 > 0. In this case the embedding makes sense: by 7.3 we claim that 
the embedding idseq is compact. First of all notice that by 7.8 {h;1 }jENo is an 
almost strongly increasing sequence, and the same holds for the weight sequence 
{pj}jENo. Then the non immediate case to check in (7.4) of 7.3 occurs if Pl < p2: 
we verify this one. In this case (7.6) reduces to 

(7.38) 

By assumption 0:,,.-1 7 < -d(l/p1 - l/p2), where 

d = <limp r limsuplogh(r)/ logr. (7.39) 
r->0 

Hence, there is some /j > 0 such that 

j E No. (7.40) 
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Therefore, 

(7.41) 

Choosing c:: appropriately small, we have that (7.6) or (7.7) are satisfied. Therefore 
the embedding idseq is compact and, by (7.22), we have: 

(7.42) 

for j E No. 
• The operator B is then defined by 

I 

{ • 8 } . B ~ 8 -1h-P2 c:,.f3(2j ) 
X'j,m f3,J,m---+ L.., X'j,m Tj j o X - m , (7.43) 

/3,j,m 
(Thp2 )-,B-quarks 

where the sum over m is taken only for those indices rn with CQj,m n r i- 0. As 
we said, we may assume without loss of generality that Theorem 5.13 is applicable 

to B;:~; (iRn) . Then B is a linear and bounded map. 
• The trace operator trr is linear and bounded. If ,B,,. 0, then by con-

vention we have set B;
2
,q(f) = Lp2 (f) for all O < q ~ oo. Therefore we can take 

q2 min(l,p2) and then, by 6.1, trr is always well-defined. 
We make the point of the situation: the linear and bounded operator id is 

factorized through 
id trr oB o idseq o Ao ext, (7.44) 

where A is bounded, idseq is linear bounded and compact and, finally, B is a 
linear and bounded operator. Taking / in the starting space and following the 
indicated operations, we end up with / again when we finish. In particular the final 
outcome is independent of ambiguities in the nonlinear construction of ext and A. 
The unit ball in B;

1
,q

1 
(f) is mapped into a bounded set in £00 [2K.iifJlfp 1 (p/:,;i)]. 

By idseq this bounded set is mapped into a pre-compact set in £00 (2K.2 if3i£p2 (£~J)] 

which can be covered by Nj ~ 2h;1 balls with radius ceh-1 (idseq ) , with 
J 

j E No. (7.45) 

Afterwards the two linear and bounded maps B and trr do not change this 
assertion ( not to speak about constants). This is one half of the desired estimation, 
in the case P1 ::;;; P2. 

Step 2. If p1 > p2, then we have 

(7.46) 
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To see this, let us reason as follows: let f E BP(J' q (r) and we take an extension 
1, l 

extn f off in B;~~i (Rn) with suppextn f CD, where n is an open set including 
r. By the characterization via local means of the spaces B;,q(l.Rn) ([15, Theorem 
4.3.4]) and the monotonicity of the Lp spaces on bounded domains, the embedding 
(7.46) follows. Now the desired (half) assertion in this case follows from (7.46) 
and the previous step applied to PI = P2 . 

Step 3. Now we have to show that there exists a positive constant c such 
that 

eh-;1 (id: B;
1

,q
1 
(f)----+ B;2 ,q2 (r)) ~ cci-;1Tj, j E No. (7.47) 

Suppose that this is false. Then there exists a subsequence { h"i/} kENo of { h71
} jENo 

such that 

k----+ oo. (7.48) 

By the multiplicative property 7.5- (ii) of the entropy numbers and thanks to 
the previous step we can assume B;

2
,q

2 
(f) Lp2 (r). In particular, we can also 

assume 1 < p1 ( oo. Therefore, we have 

(7.49) 

and 
eh~' (id: B;1,q1 (r) -4 Lp2(r))a]k o, 

Jk 
k oo. (7.50) 

Suppose P2 < 1. Then for every f E Lp1 (r) we have 

(7.51) 

where 

0 < 0 < 1, and 
1 1- 0 0 
-=--+-. 
P Pl P2 

(7.52) 

By the property of entropy numbers with respect to interpolation spaces (see [12, 
1.3.2, p. 13]) we infer 

e2h;1(id:B;1,q1(r)- Lp(r))a]k 
k 

( c(eh-1 (id: B;l qi (r) -4 £Pl (r))) l-O (eh-1 (id: B;l ,qi (r) -4 LP2 (r) )) O O'jk 
Jk ' 1k 

k----+ oo. (7.53) 

Since we can choose p > 1, we can without loss of generality suppose p 2 > 1 in 
what follows. 

We make the point of the situation: in order to prove the desired inequality, 
we have to disprove that there exists a subsequence {.ik hENo such that 

k----+ oo, (7.54) 
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for 1 < p1,p2 ~ oo and fJu > d(l/p1 - l/p2)+. In other words, we have to show 
that there exists a constant c > 0 with 

j E No. (7.55) 

Since r is compact we can surely assume µ(f) = 1, where µ is the related h­
measure. Let us choose a disjoint collection of balls B3,m = B(13,m, 2-3). with 

13,m E r, for m 1, ... , Mj ~ h"i 1 (this is surely possible). Let us choose two 
smooth functions ({) and 1/J with support in the unit ball, such that 

(7.56) 

for some positive constants Cj,m . We can assume that 

c ~ Cj,m ~ c\ j E No, m = l, ... , Mj, (7.57) 

for some c, d > 0 independent of j and m as above. Now we consider the following 
commutative diagram: 

Pll M; A 
CYjhj ip1 -

idj l 
I 

h P2 oMj 
j {,P2 

(7.58) 

The operators A and B are defined as follows ( where the source and target spaces 
are shown in the above diagram): 

Mi 

A({am}:~1) = L llm({J(23('y- ,j,m)), 1 E f (7.59) 
m=l 

and 

(7.60) 

We interpret the right hand side of (7 .59) as an atomic representation with ( a, p )­
atoms. Therefore, 

l 

IIA({am}:~1) I B;1 ,q(f)I! ~ COjhf ll{am}:~1 I fpJ- (7.61) 

Therefore A is a linear and bounded operator with 

(7.62) 

where c does not depend on j E N0 . As far as B is concerned, let us call 
b3,m the terms in brackets in (7.60). Then by virtue of Holder's inequality with 
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l/p2 + 1/p; 1 we infer 

lbj,mlP2 ~ ch"72 (fr lfb)l¢(2j('Y - /j,m)) dµ('y) f2 

~ c'h?
2 (lnBj,,n lfh)I dµ('y) f 2 ~ c11

h?
2 frnBj,,n lfb)IP2 

dµ('y). 1i;! 
~ c11 h-; 1 r lfb)!P2 dµ('y). (7.63) lrnB,.= 

Hence, remembering that the balls Bj,m are pairwise disjoint, we get 

I 

11 8 1 I h;2 £~i II 

l Mj ...L 

hJ2 (L lbj,mlP2
) v

2 ~ cllf I Lp2(r)II 
rrt=l 

(modification if P2 oo ). 
Therefore, also B is a linear and bounded operator with 

I 

11 8 I Lp2(r)-. h'j2 £~i II~ c, 

where c is independent of j E N0 . Now we factorize idj through 

idj = BoidoA. 

Notice that by (7.56) the above factorization is justified. 
Then, by the above arguments, we have 

k E No, 

(7.64) 

(7.65) 

(7.66) 

(7.67) 

for a positive constant c independent of j E N0 • But this is the conclusion: 
exploiting 7.9 with the admissible choices 

and (7.68) 

we finally get 

(7.69) 

Clipping together (7.68) and (7.69) we conclude 

j E No, (7.70) 

which is what we claimed. • 
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Remark 7.14. We preserve the notation and the assumptions of7.12. 
One may argue that the knowledge of ek(id) given only through the sub­

sequence { ekj (id)}jENo, where kj ~ hj1
, j E N0 is not sufficient to provide the 

complete description of the asymptotic behavior of the sequence { ek(id)}kENo. 
This is not the case: since { h/ hENo , { a i hENo and { 1"j }jE!"io are all admissible 
sequences, we have 

(7.71) 

for some constants c1 and c2 independent of j E No . 
Therefore, the knowledge of ek

3 
(id) is actually sufficient to describe com­

pletely the behavior of the whole sequence { ekhEN. 
Consequently, an explicit description of ek(id) can be obtained "solving" 

k- 1 h1 , i.e., "inverting" hj. If Jk is such an essential inverse, say, hjk ~ k-1
, 

then 
(7.72) 

for all k EN. 

We make clear with an explicit class of examples an application of the last 
consideration. 

7.3. Some explicit cases 
We restrict our attention to those h-sets r C Rn whose measure function h 

is of type 
h(r) ~ rd H(r), 0 < r ~ 1, (7.73) 

where O < d < n and H is a slowly varying function according to Definition 4.11. 
As we have pointed out in 4.12, we can assume without loss of generality that 
rdH(r) is a smooth monotone function. We refer to this special class of h-sets 
as to the class of regular h-sets and correspondingly measure functions h of type 
h(r) ~ rd H(r), with O < d < n and H slowly varying, are called regular measure 
functions. 

By the property of slowly varying functions, if h(r) ~ rdH(r) we have 

logh(r) logh(r) . 
dimrtr liminf l =limsup l =dtmpr=d, (7.74) 

r-+O og r r-+O og r 

and hence regular h-sets are dimension regular sets. 
Notice also that by 4. 10 any regular h-set fulfills the ball-condition, since in 

this case o:h f3h -d > -n. 
As an additional simplification, we restrict our attention to the following 

tuned spaces on a regular set r. 
Definition 7.15. Let h(r) ~ rd H(r) be a reguhtr measure function. Let s ;,:::: 0, 
a E R and O < p, q :s:; oo. Then we let 

Bi~q°)(r) = s;,q(f) ( = trrB;,~i,(l~n) ), (7.75) 
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It is ea.;;;y to show that actually {3('}' > 0 for s > 0. Otherwise we agree always 
on 

s(s,a) (f) = L (f) 
p,q p ' for s O and a E R . (7.76) 

The exponent a represents an extra-tuning parameter for the usual Besov scale 
on r (i.e., with "scalar regularity"). The proposition concerning this concrete 
situation is the following. 

Proposition 7.16. Let r be a regular h-set in Rn, where h(r) ~ rd H(r) for 
0 < d < n and a slowly varying function H. Let 

0 < P1, P2, q1, qz :::;; oo, 

a1, a2 ER and 

s1 - Sz > d (..!.. - ..!..) . 
Pl P2 + 

Then the embedding 

(7. 77) 

(7.78) 

(7.79) 

(7.80) 

is compact and for the related entropy numbers one bas the explicit behaviour 

(7.81) 

where H! is the Bruijn conjugate of H(rd), according to (iii) of 4.12. 

The proof of this assertion is easy: one has simply to use the Main Theorem 
7.12, the inversion formulas stated in (iii) of 4.12 and the special form of the terms 
involved. So it seems reasonable to skip this proof and we provide instead some 
concrete examples. 

• In the case where H(r) is (equivalent to) an admissible function in the 
sense of the definition given by D. Edmunds and H. Triebel in [13] and quoted 
briefly in (4.13), one can easily see that Hj(r) ~ H(r)-1 . Hence, the above 
estimation of entropy numbers (for the prescribed range of the parameters) results 
m 

(7.82) 

which was established by D. Edmunds and H. Triebel in [13], [14] for p1,p2 ~ 1 
and generalised to the full range of parameters by S. de Moura in [25}. 

• We consider now the case where H(r) ~ exp{bl logrl"'}, for b ER\ {O} 
and O < x < 1. This is a slowly varying function which is not admissible in 
the sense specified above. This is a more intricate example, since there is not a 
universal formula for the Brujin conjugate of H for all O < x < 1 : as a matter 
of fact as x tends to 1 the related functions H tend to a forbidden border case 
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which is not a slowly varying function. We list three cases and we refer to [l, 
p. 435] for details and proofs 

exp{-bd-"'I logrl"'}, 
exp{ -bd-"'I logrl"' + bd-x xi logrl 2x-l }, 

exp{ -bd-"'I logrl"' + bd-"'xl logrl2"'- 1 -

- ½bd-"'x(3x - l)j logrl3"'-2 }, 

for O < x< 1/2, 
for 1/2 ~ x< 2/3, 

for 2/3 ~x< 3/4, 

(7.83) 

Hence, taking for simplicity only the case O < x < 1 /2 1 the above estimation of 
entropy numbers (for the prescribed range of the parameters) results in 

(7.84) 

Remark 7.17. Also in this rather particular situation it is not always straightfor­
ward to calculate the Bruijn conjugate of a given slowly varying function. We refer 
to the already quoted monograph [1], especially to Appendix 5, for some methods 
of calculating the Bruijn conjugate of a given slowly varying function H. For 
instance, if H ( r) is the restriction of some holomorphic function H ( z) to the real 
axis, then we may assume H( ez) exp{h(z)}, where h is holomorphic. Under 
a rather strong condition on h one obtains a series expansion of hU (in additive 
notation), and hence an approximation of HU {[1, Proposition A5.l]). 
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