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FACTORIZATION IN THE EXTENDED SELBERG CLASS 

JERZY KACZOROWSKI & ALBERTO PERELLI 

Abstract: We prove that every function in the extended Selberg class S# can be factored into 
primitive functions. The pi-oof is definitely more involved than in the case of the Selberg class S. 
Keywords: extended Selberg class, factorization, general £-functions. 

1. Introduction 

We denote by S the Selberg class of Dirichlet series with functional equation and 
Euler product. It is well known that S contains several classical £-functions, 
and it is expected that S essentially coincides with the class of automorphic £­
functions. We refer to the survey paper [5] for definitions, notation and basic 
properties of S and related classes of Dirichlet series, such as the extended Selberg 
class stt of Dirichlet series with functional equation, but not necessarily with Euler 
product. We recall that a function F(s) in S is primitive if F(s) = F1(s)F2(s) 
with F 1 , F2 E S implies F1 = 1 or F2 = 1. It is well known that every function 
in S can be factored into primitive functions; see Conrey-Ghosh [2]. The proof is 
an immediate consequence, by a simple induction on the degree, of the following 
three facts: 

i) the degree is additive, i.e., dFG = dF + dG for F, GE S; 
ii) there are no functions FE S with degree O < dF < 1 i 
iii) the only function of degree O in S is the constant 1. 

The notion of primitive function is defined in the extended Selberg class stt 
as well, and hence the problem of the factorization into primitive functions can 
al<10 be raised in the framework of stt . In view of Lemma 1 below, in this case 
we consider only factorizations up to constants, since the non-zero constants are 
invertible in stt. Note that the first two of the above facts still hold in S", see 
[4], but S~ is not any more reduced to the single function F(s) = 1 identically. 
We refer to Theorem 1 of [4] for the characterization of functions in S~. As a 
consequence, the above simple induction on the degree is not enough to show 
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the existence of the factorization in Sff. However, the argument can be suitably 
modified to prove the following 

Theorem 1. Every function in the extended Selberg class sU can be factored into 
primitive functions. 

The basic tools in the proof of Theorem 1 are the notion of conductor of 
FE Sff and the characterization of the functions of degree O in Sff, see [4J. Indeed, 
we recall that the conductor qp of F E Sff is defined as 

k 

qp = (21r)dFQ2 IT >.ti, 
j=l 

see [6]. Note that qp is multiplicative, i.e., qpe = qpqe if F, G E sU, and 
qp = Q2 if F E sg. Moreover, if F E sg then qp is a positive integer and F( s) 
is a Dirichlet polynomial of the form 

F(s) L a(n)n-s. (1.1) 
nlqF 

Further, s1 0 for O < d < 1, and F(s) is constant if and only if dp = 0 and 
qp = 1; see Theorem 1 of [4] for the above results. 

We call almost-primitive a function FE sU such that if F(s) = F1(s)F2 (s) 
with F 1 ,F2 E su, then dFi = 0 or dp2 0. We have 

Theorem 2. If FE sU is almost-primitive, then F(s) = G(s)P(s) with G, PE 
Sff , de = 0 and P( s) primitive. 

We remark that Theorem 1 is a simple consequence of Theorem 2 and of 
the above recalled results. In fact, an induction on the degree shows that every 
F E stt can be written as 

F(s) = F1(s) · · · Fk_(s), 

where each Fj(s) is almost-primitive. Therefore, by Theorem 2 we have 

F(s) = G(s)P1(s) • · · Pk(s) 

with primitive Pj(s) and de= 0. Since the functions in si have integer conductor 
and those with conductor equal to 1 are constant, an induction on the conductor 
shows that G(s) is a product of primitive functions, and Theorem 1 follows. 

A well known conjecture states that S has unique factorization into primitive 
functions. Moreover, it is well known that the Selberg orthonormality conjecture 
implies such a conjecture; see section 4 of [5]. Note that the analog of the Selberg 
orthonormality conjecture does not hold in SU . Indeed, let x1 ( n) and x2 ( n) be 
two primitive Dirichlet characters with the same modulus and parity, and consider 
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F(s) = L(s, x1) + L(s, x2) and G(s) = L(s, x1). Then F(s) and G(s) belong 
to sf and are primitive (since the functions of S are linearly independent over 
the p-finite Dirichlet series, see [3]), but it is easily checked that the Selberg 
orthonormality conjecture does not hold for F( s) and G( s). It remains open the 
problem of determining if the unique factorization holds in sU. We conclude with 
another interesting problem related with the factorization in SU: is it true that a 
primitive function in S is primitive in SU as well ? 

Acknowledgments. We wish to thank Alessandro Zaccagnini for suggesting some 
improvements in the presentation of the paper. This research was partially sup­
ported by the Istituto N azionale di Alta Matematica, by a MURST grant and the 
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2. Proof of Theorem 2 

We first characterize the invertible elements of sU . 

Lemma 1. The invertible functions in sU are the non-zero constants. 

Proof. Clearly, the non-zero constants are invertible in sU . Let now F E sU be 
invertible, and let G(s) = F(s)- 1 . Then dp + dG O, and hence both F(s) and 
G(s) are Dirichlet polynomials (see the Introduction). Denoting by no and mo 
the largest indexes of non-zero coefficients of F ( s) and G( s), respectively, we have 
that the coefficient of index nomo of F(s)G(s) is non-zero. Therefore nomo = 1, 
and Lemma 1 follows. • 

It is well known that every F E SU has a zero--free half-plane, say a > ap. 
By the functional equation, F(s) has no zeros for a < -ap, apart from the trivial 
zeros coming from the poles of the I' -factors. We denote by p = /3 + h the generic 
zero of F(s), and write 

Np(T) #{p: F(p) 0, l/31 ~ ap, l'YI < T}. 

The classical proof of the Riemann-von Mangoldt formula can be adapted to show 
that 

dp 
Np(T) = logT + cpT + O(logT) 

1[ 
(2.1) 

with a certain constant cp, for T ~ 2 and any fixed F E sU with dp > O; 
see section 2 of [5]. The proof of Theorem 2 is based on the following uniform 
estimate for the number of zeros of functions in sg, i.e., for Dirichlet polynomials 
of type (1.1). 

Proposition 1. We l1ave 

T 6 
Np(T) = logqp + o.,.F(log qp) 

1[ 

uniformly for T ~ 2 and F E sg witl1 a(l) 1 and qp ~ 2. 
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A similar result already appears as Proposition 1 of Bombieri-Friedlander 
[lJ. However, Proposition 1 of [1] deals with more general Dirichlet polynomials 
but gives only an upper bound for N p(T), while we need a lower bound. \Ve first 
show how Theorem 2 follows from our Proposition 1, and in the next section we 
prove Proposition 1. 

Assume that F E stt is almost-primitive. If F( s) is not primitive, it can be 
written as 

with dL 1 0, QL1 ~ 2 and Fi(s) almost-primitive. If Jii(s) is not primitive we 
apply inductively the same reasoning, and hence arguing by contradiction we may 
assume that for every n E N 

F(s) = L1(s) · · ·Ln(s)Fn(s) (2.2) 

with dLj = O, QLj ~ 2 and Fn(s) almost-primitive, j 1, ... ,n. Moreover, looking 
at the Dirichlet series of both sides of (2.2), we have that only a finite number of 
L;(s) can have first coefficient aLj(l) = 0. Therefore, by a normalization, for n 
sufficiently large we can rewrite (2.2) as 

F(s) = H(s)H1(s) · · ·Hn(s)Fn(s) 

with dn = 0, dnj = 0, QHj ~ 2, an;(l) = 1 and Fn(s) almost-primitive, 
j = 1, ... , n. Writing G,.,(s) = H 1 (s) · · · Hn(s), for large n we finally obtain 

F(s) = H(s)Gn(s)Fn(s) (2.3) 

with dn 0, dan = 0, qa,. -+ oo as n-+ oo, aa,. (1) = 1 and Fn(s) almost-
primitive. 

Since the conductor of the functions in sl is integer and s! 0 for O < 
d < 1, from (2.2) we immediately have that dp ~ 1. Hence we may use (2.1) and 
Proposition 1 to show that (2.3) is impossible. Indeed, for n sufficiently large we 
have 

and Gn(s) f:. 0 for a> ap. Therefore, from (2.1) and Proposition 1 we have 

dp 1 6 
-TlogT ~ -Tlogqan + O(log qan) 

7f' 21r 

for sufficiently large T, and hence we get a contradiction as n -+ oo by choosing 
T = T n = qb... with a small o > 0. 
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3. Proof of Proposition 1 

Since a(l) = 1, we can find a sufficiently large ao > ap such that 

1 
IF(s) -11 ~ 4 for a~ ao; (3.1) 

we will choose a0 later on. Moreover, we may assume that ±T is not the ordinate 
of a zero of F(s) and that qp ~ 2. Recalling that qp = Q2 for FE SA, by a 
standard technique based on the argument principle, the functional equation and 
(3.1) we have 

2
1 

Ll;marg (QB F(s)) .!:_LlL1 uL2 UL3 arg (QB F(s)) 
7r 7r 

T 
- logqp + 0(1) + O(ILlL1 uL3 arg (QB F(s))I), 
7r 

Np(T) 
(3.2) 

where R is the rectangle of vertices ao ± iT, 1 - ao ± iT and £ 1 U L2 U £3 is the 
right half of its perimeter, L 2 being the vertical side. 

The second error term in (3.2) does not exceed 1r times the number of zeros 
of 

½(F(s±iT) +F(s±iT)) 

in the circle with center a0 and radius a0 - ½ . Therefore, by Jensen's inequality 
such an error term is 

« ao log ( max !F(s ± iT)I), 
ls-O'ol~O'o 

and hence from (3.2) we have 

T 
Np(T) = -logqp +O(a0 log(max1F(s)I)). 

7r 0'~0 

Writing 
M maxla(n)I 

nlqF 

( and assuming that M ~ 2) we have 

max IF(s)I « qj;,M, 
0'~0 

and hence (3.3) becomes 

T 
Np(T) = -logqp +O(a0 log(qj;,M)). 

7r 

Suppose now that 
M <<O'F e10log

3 
qF. 

Then (3.1) holds with the choice 

ao clog3 qp 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

for a suitable constant c > 0, and hence Proposition 1 follows immediately from 
(3.5)-(3. 7). Therefore, in order to conclude the proof of Proposition 1 we need the 
following 

"'I 
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Proposition 2. Let FE sg have a(l) 1 and qp ~ 2. Then, with the notation 
in (3.4), we have 

M = OuF ( elOloga qF). 

We first prove a lemma. Let n(n) denote the total number of prime factors 
of n and, given 60 ~ 1, define the sequence a(n, 60) by induction as a(l, 60) 60 
and 

n(n) 

a(n, 60) 60 + L} L a(ni, 60) · · • a(n1 1 60) 
l=2 n1,···1"'t~2 

n1·••nr=n 

for n ~ 2, an empty sum being equal to 0. We have 

Lemma 2. For n ~ 1 
.l: ( £ ) 1:n(n)2n(n)3 

u0 ~ a n, uo ~ u0 • 

Proof. We first note that for l ~ 2 and a 1 , ... , a1 ~ 1 we have 

3 3 ( )3 ( )2 a 1 + · · · + a 1 ~ a1 + · · · + a1 - a1 + · · · + a1 . (3.8} 

Indeed, (3.8) holds for l = 2 since 3a1a~ + 3ara2 ~ ar +a~+ 2a1a2 (a1 + a2)2 . 
Moreover, by induction we have 

(a1 + · · · + a1 + a1+1)
3 ~ (a1 + · · · + a!)

3 + ar+1 + (a1 + · · · + a1 + a1+1)
2 

~ ar +···+at+ at+1 + (a1 + · · · + a1 + a1+1)2. 

Note that the lemma is trivial when n is a prime number. We prove the 
lemma by induction, and we may assume that n ~ 4 and n(n) ~ 2. Assuming 
that the lemma holds for m ~ n - 1 and using (3.8) we have 

60 ~ a(n, 60) 

n(n) l 
60 + L l L a(n1, 60) · · -a(n1, 6o) 

l==2 n1,--- 1nr~2 
n1• .. n1=n 

n(n) 

~ 60 +I:} 
1=2 n1, .. ,,n1;l:2 

n1 •··ni=n 

n(n) 
~ d + 0n(n) 2n(n)3-n(n) 2 ~ ! 
~ o o L l 

1=2 n1,, .. ,n1;l:2 
ni•••ni=n 

L 

Note that we have at most 2n(n) possible choices for each nj in the last sum, and 
hence 

n(n) 11(n) iJ(n)-1 n(n)2 
~ !l ~ 1 ~ ~ ! 2 n(n)l ~ ~ 2 n(n)l + _2 _ 
L L ~ L l "' L fl(n) 
1=2 n1 , ... ,nl ;l:2 £=2 £=2 

n1 ·••tt.1=n 

and the lemma follows. • 
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Proof of Proposition 2. For a sufficiently large we can write 

00 

logF(s) = I: b(n)n-8, (3.9) 
n=2 

the series being absolutely convergent. We may assume that ap > 1, and we first 
bound log F( s) for a ~ a p + o, o being a small positive constant. For a ~ a p + 1 
we have 

F(s) «.i M, 

and hence 
~logF(s)=loglF(s)l ~c1 (o)logM 

with some c1 ( o) > 0. Moreover, for every c > 0 there exists c2 ( c) > 0 such that 

F(s) = 1 + O(c) 

for a> c3 (c) log M, and hence 

logF(s) = 0(1). 

Therefore, by the Borel-Caratheodory theorem we have 

log F(s) = O.;(log2 M) (3.10) 

for a ~ ap + o. 
From (3.10) we deduce that the Lindelof µ-function of log F(s) satisfies 

µ(a)= 0 for a> ap. Moreover, logF(s) is holomorphic for a> ap. Therefore, 
by a general result in the theory of Dirichlet series, see chapter 9 of [7], we have 
that the Dirichlet series (3.9) converges for a > ap, and hence it is absolutely 
convergent for a> ap + 1. By the formula for the n-th coefficient of a Dirichlet 
series, see again chapter 9 of [7], for a> ap + 1 we have 

T 

b(n)n-o- = lim ~ 1 logF(a + it)nitdt « log2 M 
T->oo 2T -T 

in view of (3.10). Hence 

for some Oo ~ 1 and every a> ap + 1. 

(3.11) 

Now we express the coefficients b(n) in terms of the coefficients a(n). For 
a sufficiently large we have 

F(s) = 1 + G(s) with IG(s)I ~ ½, 
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and hence 

logF(s) log(l+G(s)) 
oo ( l)l+l L - l G(s)' 
l=l 

00 (-1i+1 
= L l L n-s( L a(n1) .. · a(nl)). 

l=l n n1,••·,nt?2 
ni···ni=n 

Therefore, comparing Dirichlet coefficients we obtain 

n(n) i+l 
b(n) = a(n) + L (-\ L a(n1) · · · a(nl)· 

l=2 n1,•··•"1?2 

(3.12) 

ni···ni=n 

By induction, from (3.11) and (3.12) we obtain 

(3.13) 

for a > ap + 1, where a(n, o0 ) is the sequence defined before Lemma 2, starting 
with the <5o in (3.11). Indeed, for n = 2 we have 

la(2)1 lb(2)j ~ o'o2o- log2 M ~ 20-a(2, o'o) log2
n(

2
) M. 

Moreover, assuming (3.13) for 2 ~ m ~ n - 1 we get 

n(n) 
1 

la(n)I ~ lb(n)I + L y L la(n1) · · · a(nt)I 
l=2 n1,···•"t?2 

n1·••ni=n 

n(n) 

~ <5ono-log2 M + L f L a(n1,oo)· •·a(nt,o'o)no-log2
n(n) M 

l=2 "'l•···,n1?2 
n1 "'"t=n 

~ no-a(n, o'o) log2n(n) M 

by the inductive definition of the sequence a(n, 60), and (3.13) follows. Note that 
(3.13) implies 

M ~ qp max (a(n, o0 ) log2n(n) M). 
njqF 

(3.14) 

Now we are ready to conclude the proof of Proposition 2. If M ~ exp(log3 qp) 
the result follows, and hence we may assume that M > exp(log3 qp), i.e., 

log M > log3 qp. (3.15) 
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Since O(n) ( ;:~ for n ( x, from (3.14), (3.15) and Lemma 2 we have 

2 log q F log log M log q F 3 « qFMr.;g'I logM 6~ e4log qF 

2 l logqF 3 

<< qF M log 2 log q F Do log 2 e 4 log q F 

1
1gqf 

«qFM½6o g e4Jog3qF. 

Therefore, choosing for example a= ap + 2 we obtain 

and the result follows. • 
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