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ON THE MOMENTS OF HECKE SERIES 
AT CENTRAL POINTS II 
ALEKSANDAR IVIC & MATTI JUTILA 

Abstract: We prove, in standard notation from spectral theory, the asymptotic formula ( B > 0) 

L O:jHj(½) = (;r -BTlogT+ O(T(logT)112
), 

K;$T 

by using an approximate functional equation for Hj( ½) and the Bruggeman-Kuznetsov trace 
formula. We indicate how the error term may be improved to O(T(logTY:)-
Keywords: Hecke series, Maass wave forms, mean values. 

1. Introduction and statement of results 

The purpose of this paper is to continue the work begun by the first author in [6]. 
Therein he obtained asymptotic formulas for sums of HJ(½) and HJ(½), where 
I/1 (s) is the Hecke series ( s = <r + it will denote a complex variable) 

00 

H1(s) = L tj(n)n-s (<r > 1), {1.1) 
n=l 

associated with the Maass wave form '¢1(z), where p1(1)t1(n) = Pi(n) and p3{n) 
is then-th Fourier coefficient of '¢1{z). The function Hj{s) can be continued to 
an entire function. It satisfies the functional equation 

Hj(s) 22s-11r2s-2r(1 - s + iKj)r{l - s - iKj) 

x {e.i cosh(1r1,;1) - cos(1rs))H1{1 - s), 
{1.2) 

where Ej {= ±1) is the so-called parity sign of 1pj(z). By {.r\3 = KJ + ¼} U {O} 
we denote the eigenvalues (discrete spectrum) of the hyperbolic Laplacian 

~ = -y2 ( ( ! ) 2 + ( ~) 2) 
2000 Mathematics Subject Classification: 11F72, 11F66, 11M41, 11M06 
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acting over the Hilbert space composed of all r-automorphic functions which are 
square integrable with respect to the hyperbolic measure (r = PSL(2, Z) ). For 
other relevant notation involving spectral theory the reader is referred to [5], [6] 
or Y. Motohashi's comprehensive monograph [12]. The method used in [6] could 
not furnish the asymptotic formula for sums of Hj ( ½) , but only the bounds 

T 2 (logT)-7
/

2 << L OjHj(½) << T 2 (logT) 112 

K.j5;T 

were obtained, where as usual we set 

(1.3) 

The aim of this paper is to improve {1.3) to a sharp asymptotic formula, 
given by 

Theorem 1. We l1ave 

1T 1 ·( 1 "t)l2 (T) 2 1 2 ~ 2 + 't - 1/2 
K.~T °'iHj( 2) + 7r o 1((1 + 2it)l2 dt - 7r + O(T(logT) ). 
J_ 

(1.4) 

It remains yet to evaluate the weighted integral of the mean square of I((½+ 
it)I in (1.4). The evaluation of this integral is given by 

Theorem 2. There exist constants A(> 0) and B which are effectively com
putable sucl1 that 

I((½+ it)l
2 

dt = T(AlogT + B) + O (T~+e). 
1((1 + 2it)l2 e 

(1.5) 

Corollary. If A is the constant appearing in (1.5), then 

L CljHj(½) 
K.j5;T 

(T) 2 
2A 

1r - -;-TlogT + O(T{logT)112). (1.6) 

In {1.5) and later c denotes positive, arbitrarily small constants, not nec
essarily the same ones at each occurrence. The formula {1.6) shows that there 
are actually two main terms in the asymptotic formula for the sum of aj Hi ( ½). 
Although the error term in (1.6) is probably too large by a factor of ✓logT, the 
method of proof of Theorem 1 does not allow any further improvement, if we use 
the weight function (2.14). However, by a suitable choice of the weight function 
the error terms in {1.4), {1.6) {and (1.7)) may be improved to O(T(logT)e). We 
preferred to work directly with the Gaussian weight function (2.14) because of its 
classical flavour. This already leads to (1.6) with two main terms, which is the 
novelty of the paper. 
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It may be remarked that, with our method of proof, we can obtain the 
asymptotic formula 

(~)' + O(T(log T)1l 2
). (1.7) 

This should be compared to a result of N.V. Kuznetsov (see [12, p. 92] with 
m = 1 ), who had (1.7) with the error term O(T logT), so that our result is 
somewhat sharper. 

In what concerns the true order of sums of n1HJ ( ½), it was conjectured in 
f 6J that, for k E N fixed, 

where P1(k2-k)(z) is a suitable polynomial of degree ½(k2 k) in z whose coef
ficients Jepend on k, and O ::; Ck < 1. We actually have c1 = c2 0, and even 
sharper results in these cases by (1.6) and Y. Motohashi's result [11], respectively. 
Namely he proved the asymptotic formula (, = 0.5772157 ... is Euler's constant) 

L o.1HJ(½) = 21r-2T 2 (logT 1 - ½ - log(21r)) + O(Tlog6 T), 
K-1 '5:T 

while the proofs in [6], in the cases k - 3, 4, show that (1.8) holds with C3 -

1/7, c4 = 1/3. We also note that the main term in Theorem 1, namely (T/r.)2, is 
exactly of the form predicted by Random matrix theory (see J.B. Courey [1] and 
the work by .J.B. Courey et aL [2]). This theory also gives the correct value of the 
leading coefficient of the polynomial P½0,2-k)(z) for the cases k 2, 3, 4, when 
the asymptotic formulas for the sums in question are known. 

Our method of proof consists of using the Bruggeman-Kuznetsov trace for
mula ( cf. Lemma l), coupled with a simple approximate functional equation for 
HJ ( ½) ( of length x K]) for Theorem 1 ( cf. Lemma 2). This is proved in Section 
2, which contains the necessary lemmas. The crucial lemma is Lemma 3, which 
shows that, in our case, the contribution of the Kloosterman sum part in the trace 
formula is negligible. Theorem 1 is proved in Section 3, and Theorem 2 in Section 
4. Finally in Section 5 we discuss how the error terms in (1.4), (1.6) and (1.7) 
may be improved to O(T(log T)'°). 

2. The necessary lemmas 

Lemma 1. (The first Bruggeman-Kuznetsov trace formula). Let J(r) be a.n even, 
regular function for !!:Jm rl ::; ½ such that J(r) ~ (1 + jrl)-2- 5 for some 6 > 0. 
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Then 

1 Joo = 2 6m,n r tanh(1rr)f(r) dr 
7r -00 

~1 (41rymn) ~ tS(m, n; f)f + f , 

(2.1) 

where 6m,n = 1 if m = n and zero otherwise (rn, n > 0 ), <Ta(d) = I:dln d", 
S(m, n; f) is the Kloosterman sum and 

2i Joo r 
f+(x) = - l ( ) J2ir(x)J(r)dr. 

1r _ 00 cos 1 7rr 
(2.2) 

The J-Bessel function is defined (see e.g., N.N. Lebedev [9]) as 

oo (-l)k(z/2t+2k 
Jv(z) = ~ r(k + l)r(k v 1) (I argzl < 1r). (2.3) 

The proof of Lemma 1 is to be found e.g., in Y. Motohashi [12, Chapter 2]. 

Lemma 2. Let Kj = (1 + o(l))K, r = (1 + o(l))J( (r E R) as J( -+ oo, Y = 
(1 + 6) !~ , with 6 > 0 a given constant. Then, for any fixed positive co11stant 
A> 0, tl1ere exists a constant C = C(A, 6) > 0 such that, for h = ClogK, we 
have 

and 

Hj(½) = L tj(n)n-lf2e-(n/Yl + O(J(-A), 

n~(l+<>)Y 

(2.4) 

(( ½ + ir)(( ½ - ir) = L <T2ir(n)n-½-irc-(n/Y)" + O(1(-A). (2 . .5) 
n~(l+<>)Y 

Proof. We start from the Mellin inversion integral (see e.g., [41 (A.7)]) 

( / Y)" 1 1 (y)w w dw e-n · =-. - r(l+-)- (c>O,Y»l), 
21rz (c) n h w 

(2.6) 

where f(c) denotes integration over the line ~ew = c. We use (1.1) and (see [4, 
Chapter 1]) 

00 

((s)((s - a)= L <Ta(n)n-s (u > max(l, 1 + ~Rea)), (2.7) 
n=l 
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to obtain from (2.6) 

~ t ·(n)n-1f 2e-(n/Y)h = ~ 1 H-(l + w)f(l + w) yw dw (2.8) 
L 3 27ri 3 2 h w n=l (1) 

and 
00 L lT2ir(n)n-½-ir e-(n/Y)h 

n=l 

1 1 1 -. ((w+ 2 
2m (l) 

ir)((w + ½ - ir)f(l + :) : dw. 

(2.9) 

We shall give only the detailed proof of the more complicated formula (2.4). The 
proof of (2.5) is analogous, being based on the use of (2.9). The series in (2.8) can 
be truncated at n = (1 + 6)Y with the error << K-A. On the right-hand side 
of (2.8) we replace the line of integration by £, = ,1 U ,2 U 13 U 14 U 1'5, where 
11 is the line from -1 - ioo to -1 - ih2 , 12 is the line segment from -1 - ih2 

to -½h - ih2 , 13 is the line segment from -½h - ih2 to -½h + ih2
, 14 is the 

line segment from -½h + ih2 to -1 + ih2 , and 1'5 is the line from -1 + ih2 to 
-1 + ioo. In doing this we pass the pole w O which, by the residue theorem, 
gives us the desired contribution Hi(½). By the functional equation (1.2) we have 

with 
X;(½ w) = (27r)2w7r- 1f(½ - w + iKj)f(½ -w - iKj) 

x (c:i cosh(7rKj) + sin('1rw)). 

To bound the gamma factors on £, we use Stirling's formula in the form 

(ltl ;::: to), 

which is valid uniformly for O ~a~ 1tj213 . To see this, note that 

~e {log f(a + it) - log f(it)} 

= ~e ( {u r'(x + it) dx) 
} 0 f(x + it) 

= ~ {1u (1og(x + it) - 2(x ~ it) + 0( (x: it)2 )) dx} 

~ ½a log(t2 + a 2
) + O(at-2

) ~ a log ltl + O((a + a 3)t-2
), 

(2.10) 

(2.11) 

(2.12) 

hence (2.12) follows from Stirling's formula for f(it), and can be used to bound 
the gamma-factors appearing in the expression for Xi(½+ w). 

We have first 

1 W yw foo ( 7rV) 
'>'

1

Hi(½+w)f(l+,;)-;-dw<<}h
2 

exp - 2h (K 2 +v2 )dv<<K-A, 

, 
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if C in the formulation of the lemma is sufficiently large, and an analogous bound 
holds for the integral over 'Ys . 

Next, on 72 and on 74 , the integrand is 

so that the corresponding integrals are of the desired order of magnitude. 

Finally, on 'Y3, the integrand is 

for any fixed A> 0. Combining the above bounds we obtain (2.4). • 
Lemma 3. For C Jlog K :s; G s K and a sufficiently large coustant C > 0 we 
have 

(2.13) 

Proof. First we remark that the slightly weaker bound GK Jlog K for the sum in 
(2.13) follows by applying the Cauchy-Schwarz inequality and the bound for sums 
of O:j and O:jHJ( ½) in short intervals; such bounds are given by Y. Motohashi [12, 
pp. 121-122 and (3.5.13)]. 

Secondly, in the proof of Lemma 3 we may restrict G to G = G0 C Jlog K. 
For larger G we divide [K, I(+ G] into ~ G /Go subintervals of length Go, to 
each of which we apply (2.13) with suitable K and G G0 . Adding up all the 
results we arrive at (2.13). 

The idea of proof of (2.13) is actually the same as the one that will be used in 
the proof of Theorem 1, and for the proof of Theorem 1 we need (2.13) only with 
G = C Jlog K0 , I<o :s; K :s; 2K0 • Lemma 3 is in fact a local version of Theorem 1. 
Thus let, for G = C Jlog K, 

This function, which is a Gaussian weight function and a slightly modified function 
of the function used systematically by Y. Motohashi [11], [12], clearly satisfies the 
conditions of Lemma 1. To begin the proof, we apply Lemma 1 (taking n l ) 1 

combined with Lemma 2, where t5 > 0 is a small constant. This yields, since 
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Hi(¼) 2 0 (see S. Katok-P. Sarnak [8] for a proof), 

00 

L a;fI;(½) :s; 2LaiH;(½)J(K3·,K) 
KSt.;SK+G j=l 

2 Joo 2 Joo =--;- r tanh(1rr)f(r, K) dr - -
1r- -oo 7r -oo 

I((½+ ir)l2 
1((1 + 2ir)l2 f(r, K) dr 

+ 2 L m- 1!2e-(m/Y)hf ~S(m, l; f)f + ( ~7r rm) + o(l), 
mS(lH)2J(2/(411"2) l=l 

(2.15) 
where f+ is given by (2.2) with f(r) = f(r, K). 

We have first 

Joo JK+Glog
2 

K 
r tanh(1rr)f(r, K) dr « J( e-(r-K}2/G

2 
dr + 1 « GK. (2.16) 

-oo K-Glog2 K 

The crucial step in the proof is to show that, for any fixed A> 0, 

1 47r -A 
00 ( ) E fS(m, l;f)f+ fv'm « K , (2.17) 

provided that we choose G 2 C Jlog K . 
To begin with, we may truncate the f-sum in (2.17) to the range 1 ::;; .e::;; J( B 

for some constant B > 1 . To see this, we move the line of integration in the integral 
defining f+ (cf. (2.2)) to ~mr = -1. Since f(-½i,K) 0, there is no pole of 
the integrand. Then we use the series representation (see (2.3)) 

00 (-l)k(z/2)2+ix+2k 
h+ix(z) = E f(k + l)f(k + 2 +ix+ 1) (z 41ry'm/f « 1(1-B), 

which shows that the contribution of f > KB is « K-A for any fixed A > 0, 
provided that B B(A) is sufficiently large. 

In the remaining sum, we substitute (see e.g., [9, p. 139]) 

hir(x) - l-2ir(x) = _: sinh(1rr) cos(xcosh u) cos(2ru) du. 2· Joo 

7r -00 
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Integration by parts shows that, for x > 0 and r 2 0, 

2· Jlog2 K 
J2ir(x) - J-2ir(x) = ~ sinh(1rr) cos(xcosh u) cos(2ru) du 

7r - log2 K (2.18) 

+ 0 (x- 1(r + 1) exp(1rr - ½ log2 K)). 

The error term in (2.18) clearly contributes « K-A to the sum in (2.17). The 
main term in {2.18) will contribute to f + 

4 Jlog2 K 100 
- 2 cos(xcosh u) r f(r, K) tanh(1rr) cos(2ru) drdu. 

7r -Iog2 K 0 
(2.19) 

In the inner integral we use 

rtanh{1rr) = rsignr + O{lrlexp(-1rlrl)), (2.20) 

and make the change of variable r K + Gx. The x integral can be truncated at 
lxl = log2 K with error « K-A. The rational function in x in the integrand is 
expanded by Taylor's series, taking so many terms that the error will again make 
a contribution which will be « K-A. Then {2.19) will become 

j
log2 K 

= ~e P(u, K, G)cos(xcoshu) exp(-(G2u 2 + 2iKu)) du+ O(K-A), 
-Iog2 K 

{2.21) 
where P(u, K, G) is a polynomial in u, K and G. Here we used the familiar 
integral 

i: exp(Ax - Bx
2

) dx = Ii exp ( :; ) (~eB > 0), (2.22) 

and P( u 1 K, G) may be evaluated by successive differentiation of (2.22) as the 
function of A. 

If G 2:: Cy'log K with large C > 0, then the integration in (2.21) can be 
restricted to the interval luJ ::; u 0 , where Uo is a small positive constant, and the 
error thus made will be << K-A . Then the relevant exponential factor will be of 
the form 

exp(ig(u)), g(u) ±xcoshu+2Ku, g1(u)=±xsinhu+2K>>K 

for lxl ::; BK and any constant B > 0, and lul ::; uo with sufficiently small Uo, 

since sinhu = u + O(lul3
) for small u. In our case X = 41rvm/l::; 2(1 + c5)K 

by (2.4). Thus the corresponding integral will have no saddle points, and by a 
large number of successive integrations by parts it transpires that the integral in 
question will be« K-A, and so will also be f+(41rJ'm,/£). Therefore (2.17) holds, 
and Lemma 3 follows from (2.15)-(2.17). • 
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Lemma 4. If A(s) = Lm~M a(m)m-s with a(m) «e me, then we have 

lT I((½+ it)l2 IA(½ + it)l2 dt 

T " a(h)a(k) (h k) (1 T(h, k) 2 - 1) E(T A) 
L hk ' og 21rhk + 1 + ' ' 

h,k~M 

with E(T, A) «e T 1l 3+e M 413 if M << Tc for some C > 0. 

This mean value result was proved by Y. Motohashi [10]. 

3. The proof of Theorem 1 

(2.23) 

As in the proof of Lemma 2, we let /(r, K) be defined by (2.14). We suppose 
additionally that Ko $ K $ 2K0 , and that G = G(Ko) is a function of Ko (later 
we shall choose G = Cy'logK0 ). We apply Lemma 1 and Lemma 2, similarly as 
in (2.15). Then we divide by ,jirG and integrate the resulting expression over K 
from Ko to 2Ko. It follows that 

oo i 1100 I((½+ ir)l2 
~ajHj(3)w(Kj) +; -oo 1((1 + 2ir)12 w(r)dr 

1 100 

7r2 -oo rtanh(1rr)w(r)dr+ o(l) 

:a 12Ko L m-1/2e-(m/Yl f }s(m, 1; f)f + (4; rm) dK, 
,fir, Ko m~(l+o)2K2/(4,r2) i=l 

(3.1) 
where we set 

1 [2Ko 
w(r) := ,/irG }Ko f(r,K)dK. (3.2) 

Since w(r) is even, it suffices to consider r 2: 0. From (2.14) we obtain, with the 
change of variable K = r + Gx, 

1 

1
(2Ko-r}/G 2 

w(r) = - e-x dx 
-fir (Ko-r)/G 

(3.3) 

If r E [Ko+ CGy'logKo, 2Ko -CGy'logK0] with large C > 0, then the integral 
in (3.3) equals 1 + O(K02

). If r > 2K0 + CGy'log Ko or r < Ko - CGy'log Ko, 
the integral is O(Ko2

). Otherwise note that, for X 2". o, we have 2ex 2". 2+2x+x2
' 

which implies that 
(x 2". 0). (3.4) 
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Hence using (3.2)-(3.4) we obtain (xr(x) is the characteristic function of the set 
I), for r ~ 0, 

w(r) X[Ko,2Ko](r) + O(Ko2) + o{ G3 (G + min(lr - Kol, Ir - 2Kol))-3 
}· (3.5) 

Using (3.5) and Lemma 2 we have, for C > 0 sufficiently large, 

00 
La3Hj(½)w(K3) = 0(1) 

j=l Ko-CGJlog l(oS'-iS2Ko+cGJlog Ko 

L ajHj(½) + 0(1) 
KoS'-iS2Ko 

+ 0 (G3 L a1H1(G + Ko - Kj)-
3

) 

Ko-cGJ!og Ko-5.t.;'5.Ka 

(3.6) 

+ 0 (G3 L a1H1(G + Kj - 2Ko)-3
) 

2Ka<'-i'5.2Ko+cGJlog Ko 

L a1H1(½) + O(GKo). 
KoS'-iS2Ko 

Sin1ilarly we obtain, since w(r) = w(-r), 

1100 I((½+ ir)l2 - 2 {2Ko I((½+ ir)l2 
7r -oo 1((1 + 2ir)l2 w(r) dr - ; }Ko 1((1 + 2ir)l2 w(r) dr + O(GKo), (3.7) 

on using 1/((1 + it) << logt and ,a+ it) «:: t1l6
. Finally we have, since (2.20) 

holds, 

~ 100 

rtanh(1rr)w(r)dr 
2
2 

f
2

Ko rdr + O(KoG) 
7r -oo 7r j Ko (3.8) 

= \ { (2Ko)2 
- K5} + O(GKo). 

7r-

We note that the contribution of the Kloosterman-sum part in (3.1), analogously 
to (2.17), is << K0A for any fixed A> 0. Therefore from (3.1) and (3.6)-(3.8) it 
follows that 

1 2 {2Ko I((½+ ir)j2 
L a1H1( 2) + 7r J11 1((1 + 2ir)l2 dr 

Ko<'-j$2Ko Ko (3.9) 

= ~ {(2Ko)2 -KJ} +O(GKo). 
1f 

Theorem 1 follows now from (3.9) if we choose G = CJlogKo with a sufficiently 
large constant C > 0, replace Ko by r2-1 and then sum over j = 1, 2, .... The 
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asymptotic formula (1.7) follows similarly as the proof of Theorem 1, if one uses 
the technique of proof of Theorem 2. One simply takes m = n = 1 in Lemma 
1 and proceeds as in the proof of Theorem 1, only the argument is simpler and 
the details are thus omitted. Namely the integral in (1.4.) will appear without 
!((½ + it)1 2

, and will be asymptotic to CT. 

4. The proof of Theorem 2 

In the general problem of evaluating I:K.j~T ajH}( ½) one encounters the integrals 
(see (1.8)) 

IT I((~ +it)l2k 
h(T) := Jo 1((1 + 2it)12 dt (k EN), (4.1) 

where k is fixed. By general convexity results for Dirichlet series one has (see K. 
Ramachandra [13]) 

k2 h (T) >>k T(log T) . (4.2) 

Although one expects the lower bound in ( 4.2) to be of the correct order of mag
nitude this, like in the case of the integral without the zeta-factor in the denom
inator, seems at present impossible to prove for k ~ 3. In fact, even for k = 2, 

when precise results on Jt' I((½ + it)j'1 dt are known (see e.g., [5] and [12]), an 
upper bound for / 2 (1') corresponding to the lower bound in ( 4.2) seems diffi
cult to obtain and represents an open problem. A slightly weaker bound, namely 
T2 (T) « T(logT)4 (log logT)2, follows from [14, eqs. (3.34)-(3.36)] by a method 
similar to the one used in the proof of Theorem 2. 

What we can obtain, though, is the asymptotic formula (1.5) of Theorem 2, 
which will be proved now. We remark that the exponent of the error term is by no 
means best possible, and the use of optimal known zero-density estimates would 
certainly lead to small improvements. 

We start from 

J1 (T) := <;, 2 + z dt = 12T I ~( i ·t)l2 1 
T 1((1 + 2it)l2 A(T) 

(4.3) 

Here A(T) is the subset of points t E [T, 2T1 such that there are no zeros p = 
,B + i1 of ((s) satisfying ¾ s ,B s 1, 2t - log T s I s 2t + log4 T, and B(T) = 
[T, 2T] \ A(T). From M.N. Huxley's zero-density estimate (see [4, Chapter 11]) 

N(a, T) = L 1 << r(3 - 31T)/(31T-l) loge T 
~::,.IT,l,l~T 

it follows that 
µ(B(T)) « T 315 logc T, 

(C > 0, j Sa S 1) 

(4.4) 

l 
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where µ( ·) denotes measure. Thus, by the Cauchy-Schwarz inequality for integrals, 

f I((½ + it)l2 < { f'XI' I((½+ it)l4 }112 
JB(T) 1((1 + 2it)l2 dt - lr 1((1 + 2it)14 dt · µ(B(T)) 

<< T4l5 togc T, 

where C denotes generic positive constants, and where the integral with the fourth 
moment of I((½+ it) I was estimated trivially as << T Iog6 T, using 1/ ((1 + 2it) << 
logt. If t E A(T), then l/((a+2it+iv) <<e: te for a> 3/4 and lvl :5 ½ log4 T (e.g., 
by the technique of [15, Chapter 14]). Hence from (2.6) we obtain ( h = log2 T, 
Te<< y << Tl/2) 

00 L µ(n)n-1-2ite-(n/Y)" 
n=l 

J 
1 !Rew=l,l9mwi:S: 2h2 

1 J yw w dw 
21ri ((1 + 2it w) r(t + h )-;-

(1) 

yw r(t + w) dw + O(T-10) 
((1 + 2it + w) h w 

1 1 / 
- ((1 2it) + 21ri 

!Rew=e:-¼,l9mwls½h2 

1 0(y-1/4Te:) 
((1 + 2it) + 

(4.5) 

Set a(m) = µ(n) if m n2 and a(m) = 0 otherwise. From (4.5) it follows that, 
fort E A(T), 

1 . = L a(m)m-1/2-it exp(-( ym/Y)h) + O(Te:y-1/4). (4.6) 
((1 + 2it) m54Y2 

We then obtain, using (4.4), (4.6) and the Cauchy-Schwarz inequality, 

1 ... dt = {2T I((½+ it)l21 L a(m)m-1/2-itexp(-(ym/Y)h)l2 dt 
A(T) lr m54Y2 

+ Oe:(T1+e:y-i/4) + O(T415 togc T). 

To evaluate the last integral we use (2.23) of Lemma 4. We obtain 
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Setting d = (l, k), l dl1, k = dk1, (l1 , k1 ) 1, we see that the double sum above 
equals 

"µ
2(d) " 1i(k1)µ(f1)x 

L <P L k2,e2 
d~2Y k1~1_f,l1~1_f 1(k1,l1)=(k1,d)=(l1,d)==l 1 1 

xe-(dl.1/Yt-(dk1/Y}" {tog ( ~ ') <fJ) + 2.,, 1}. 
, 21rk1lj ~ 

The terms k1 > Y/(2d), and then l 1 > Y/(2d) are estimated trivially, producing 
an error which is O(TY- 1 log2 T). In the remaining terms we get rid of the 
exponential factor by using e-x l+O(x) for x > 0. In the inner sum we extend 
the summation to all k1 , l 11 obtaining again an error which is O(TY- 1 log2 T), 
and similarly we extend the summation over all d. Finally we obtain that the 
double sum above equals 

(l 
2 T) A logT + B + 0 °~ , (A> 0), 

where the constants A and B may be explicitly evaluated. Putting together all 
the expressions we wind up with 

IT K(½+it)l2 
} 0 1((1 + 2it)l2 dt 

T(AlogT + 13) 

+ Oe(T1/3+ey8/3) + Oe(T1+ey-1/1) + O(T4/5logc T). 

The choice Y = T 8135 completes the proof of (1.5) of Theorem 2. 

5. The choice of the weight function 

We shall discuss now how the error terms in (1.4:) (and thus also in (1.6) and 
(1. 7)) can be improved to O(T(Iog TY:). Let sg he the class of smooth functions 
f(x) ( E C00

) introduced by I.M. Gel'fand and G.E. Shilov [3J. The functions f(x) 
satisfy for any real x the inequalities 

(5.1) 

with suitable constants A, B, C > 0 depending on f alone. For a= 0 it follows 
that f(x) is of bounded support, namely it vanishes for !xi ~ A. For a > 0 the 
condition (5.1) is equivalent (see [3]) to the condition 

(5.2) 

for all x and q ~ 0. vVe shall denote by Eg the subclass of sg with a > 0 
consisting of even functions f(x) such that f(x) is no1; the zero-function. It is 
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shown in [3] that S~ is non-empty if /3 2 0 and a+ /3 2 1. If these conditions hold 
then Eg is also non-empty, since f(-x) E sg if f(x) E sg, and f(x) + f(-x) is 
always even. If 

denotes the Fourier transform of f ( x), then a fundamental property of the class 

sg (see op. cit.) is that "sg = SJ;, where in general fJ = {J(x) : f(x) E U}. 
Henceforth let cp(x) E Ef_., be non-negative, where 8 > 0 is a small constant, 
and set 

where 
C(log K)" :5 G :5 'VK, (C = C(o) > 0). (5.4) 

The function cp(x) is of fast decay by (5.2), and moreover by the general theory (op. 
cit.) the analytic continuation of <p(z) certainly exists in the strip IYI IS'm zl :5 
C (C > 0), where it is of rapid decay, so that /,.p(r) satisfies the assumptions of 
Lemma 1. 

Our main task is to show that (2.17) holds with / + ( cf. (2.2)) relating to 
/rp(r), as given by (5.3), and G satisfying (5.4), where of course it is the lower 
bound that is critical. We follow the reasoning given from (2.18)-(2.22) in the proof 
of Lemma 3, but make the following observations. The reason G C Jlog K was 
the limit in Lemma 3 (and indirectly in the proof of Theorem 1) is the appearance 
of exp(-(G2u2 + 2iKu)) in (2.21). With /t.p(r) replacing f (cf. (2.14)), the 
integral over r in (2.18) can be truncated at lrl = log2 K with negligible error. 
While the term 2iKu in (2.21) (which comes after the change of variable r = 
K + Gx) cannot be avoided, the term -G2u2 comes from the fact that essentially 

e-x
2 

( E sU;) is the Fourier transform of itself, which is embodied in the formula 

(2.22). This factor sets the lower bound G CJlogK. However, in this new 
situation we shall obtain, instead of exp(-G2u2), the function <7'1(x) E sg-8

, 

which by (5.2) satisfies 

<7'1(Gu) « exp(-a!Gul 118
). (5.5) 

Thus we may truncate the integration in the analogue of (2.21) now at lul :5 uo, 
provided that G 2 C(log K)", C = C( o) > 0 sufficiently large, and the analogue 
of (2.17) will hold again. 

It only remains to check that the integration over [Ko, 2Ko] in the proof of 
Theorem 1 will go through. To do this, instead of (3.2) consider 

1 12Ko 
w,.p(r) := BG Jrp(r, K) dK, 

Ko 
(5.6) 
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where B = ip(O) = f~
00

1p(x)dx. Since <p(x) E EL6 , we have 

<p(x) << exp(-alxlI/(1-6)) (a> 0). 

Therefore by using e.g., the inequality 

(x ~ 0), 

we obtain the analogue of (3.5) for w4'(r). This means that the choice G 
C(logK0) 6 is permissible in the proof of Theorem 1, which ends our discussion. 
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