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THE WALSH TRANSFORM: OF WAVELET TYPE SYSTEMS: 
DIVERGENCE ALMOST EVERYWHERE 

ANNA KAMONT & BARBARA WOLNIK 

Abstract: The main result of the paper is the following: for the Walsh transform of a wavelet. 
type system on [0, lj, there is an integrable function whose Fourier expansion with respect to 
the trnnsformed system is divergent almost everywhere on [0, lj. This is an extension of the 
result by K. S. Kazarian and A. S. Sargsian [9] for the bounded Ciesielski system, i.e. the Walsh 
transform oft.he Franklin system. 
Keywords: Walsh transform, wavelet, divergence a.e. 

1. Introduction 

In 1975 S.V. Bockariev [1] has proved that for any uniformly bounded ONS 
Un}nEN on [O, 1] there is a function f E L1(0, 1) whose Fourier series in the 
system {/n}nEN diverges unboundedly at every point of a set E C [O, 1] of pos
itive measure. In general, it is not possible to assert the existence of a function 
f E L1 (0, 1) whose Fourier series in the system Un}nEN diverges a.e. on [O, 1] 
this follows from KS. Kazarian [8], where he has proved that for any set G C [O, lj, 
0 < IGI < 1, there is a uniformly bounded CONS {/n}nEN with the property that 
for any function f E L1 (0, 1) the Fourier series off in {fn}nEN converges to f 
a.e. on G. 

However, for certain uniformly bounded ONS one can find a function whose 
Fourier series diverges unboundedly a.e. For the trigonometric system, the exis
tence of such a function is a classical result by A.N. Kolrnogorov [11]. An analogous 
result for Walsh system has been obtained by E.M. Stein [17] (see also [16]). More
over, I<.S. Kazarian and A.S. Sargsian [9J have proved the same for the bounded 
Ciesielski system here, by the bounded Ciesielski system we mean the bounded 
system of polygonals which arises from Franklin system in the same way as Walsh 
system arises from Haar system (this system was introduced by Ciesielski in [4]). 
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In this paper we extend the result of K.S. Kazarian and A.S. Sargsian to 
the Walsh transform of wavelet type systems on [O, 1]. By a biorthogonal wavelet 
type system on [O, 1] we mean a system { 1/Jn, ¢n}~=-N of functions in L2(0, 1), 
biorthogonal with respect to the scalar product in L2 (0, 1), where N ~ - l is 
given, and such that for any x E [O, 1] 

{ 
I1/Jn(x)I, l¢n(x)j ~ C, 

11/12,+k(x)I, l¢21+k(x)I ~ 2f S(2jlx 

-N ~ n ~ 1, 
t I), j ~ 0, 1 ~ k ~ 2j, 

(1) 

where S : [O, oo) - JR is a nonincreasing function satisfing some kind of integral 
condition. In this paper we assume that 

fo00 

log(l + x)S(x)dx < +oo. (2) 

In our main result Theorem 1. 1 below we assume condition (2), the linear 
density of {1/Jn}~-N in £2(0, 1) and the Riesz system property in L2(0, 1) for 
{ 1/Jn}~=-N. These assumptions guarantee in particular that for any f E £ 1(0, 1) 

{Pj/}jEl'I converges to f in £1 - norm, (3) 

where Pj denote the partial sum operators on L1(01 1), i.e. PJf(x)=E~=i(f, ¢n)1Pn. 

Indeed, one can show for the kernels KJ(x, y) = E:=l ¢n(x)1/Jn(Y) for almost all 
x E [O, 1] there is a set Ix C [O, l] with !Ix!= 1 such that for y E Ix 

00 

IKJ(x, y)I ~ C2j R(2Jjx yl), where R(t) = L iS(2i-l max(t, 1)), 
i=O 

and condition (2) implies that ft R(t)dt < oo, so consequently IIPJlli ~ C for 
all j ~ 0, and the system {1/ln}~-N is a basis in L1(0, 1) (more details can be 
found in [18] or [10], which contains an earlier analogous result for wavelets on 
R). Moreover, under these assumptions it follows that {¢n}~-N is also a Riesz 
system in £2(0, 1). 

Let us note that if we know (3) in advance, then it is enough to assume 

1= S(x)dx < +oo, (4) 

and moreover, the assumption on linear density of {1/Jn}~-N in £2(0, 1) is 
not needed (however, then we need to assume the Riesz system property for 
{¢n}~-N ). 

The current paper should be considered as a complement to B. Wolnik [19], 
where the convergence a.e. of Fourier series with respect to Walsh transform of 
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wavelet type systems is studied. The main results of [19] are the convergence 
a.e. of the Fourier series with respect to the Walsh transforms of wavelet type 
systems for f E Lp(O, 1), p > 1, and Cesaro summability of such expansions for 
f E L1(0, 1). 

Let us mention some examples of systems satisfying assumptions of Theorem 
1.1, other than Haar system or the Franklin system. This list includes e.g. both 
orthonormal and biorthogonal spline systems, see e.g. [5], [6], Carleson's system 
(see [3] for the construction, and [13] for the estimates for the biorthogonal system), 
the orthogonal system of trigonometric conjugates to the Franklin functions (see 
[2], and [18J for estimates (1)), various adaptations of Daubechies' wavelets to 
the interval [O, 1] (see e.g. [12]) or biorthogonal systems consisting of rational 
functions of uniformly bounded degrees [14]. 

We consider uniformly bounded systems which arise from { '1/Jn, ¢n}~-N in 
the same way as the ·walsh functions are obtained from the Haar functions. 

Let {Xn}nEN and {wn}nEN denote the Haar and Walsh functions, respec
tively. For any j ~ 0 we define the matrix 

k, l = 1, 2, ... , 2i (5) 

which is orthogonal and symmetric (see [4] or [16]). 
Now, the Walsh transform of the wavelet type system { t/Jn, ¢n};;°=-N is de

fined by the formulae 

'Ip~= '1/Jn, ¢~ = ¢n for n = -N, ... , 1 

and for j ~ 0, 1 ~ k ~ 2i 

2i 

¢t+k(x) = LA~l¢2i+L(x). 
l=1 

Recall that if { '1/Jn}nEN is Franklin system then { '1/J!}nEN is Ciesielski bounded 
system. One should remark that some questions concerning the Walsh transforms 
of spline systems of higher order have been first discussed in [15]. 

Let us recall that the series I::: 1 an is said to diverge unboundedly if 

N 

limsup IL anl oo. 
N-+oo n=l 

The main result of this paper is the following: 
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Theorem 1.1. Let the biorthogonal wavelet type system { Wm <Pn}~-N satisfy 
conditions (1) a:nd (2). If {'1/Jn}~=-N is both linearly dense and a Riesz system in 
L2 (0, 1), then there is a fu:nction f E L1 (0, 1) whose Fourier series in the system 
{1µ~}~=-N unboundedly diverges a.e. 011 [0, lj. 

Let us recall that by a Riesz system in L2(0, 1) we mean a system of 
functions { Xn}nEN such that for any sequence of coefficients { an}nEN we have 

1 l 

5f (LnEN a;)2 ~ II LnEN anXn 112 ~ A (LnEN a;,)2, with the constant A inde
pendent of the coefficients. 

1.1. Idea of the proof of Theorem 1.1 

In [9} KS.Kazarian and A.S.Sargsian have proved that there is a function from 
L1 (0, 1) whose Fourier series in Ciesielski bounded system diverges a.e. on [0, l]. 
One of the crucial steps in their proof is the following lemma concerning Franklin 
system: 

Lemma 1.2. Let {/n}nEN be the Franklin system. There is a constant a > 0 
such that for all m E N and x E [O, 1] 

2=+1 

L J~(x)~a-2m. 
n=2""+1 

Their proof of this lemma depends heavily on the concrete formulae for 
Franklin functions and is rather technical. 

In general case we do not have such precise informations on { 7Pn, </Jn }~=-N. 
However, in the general situation, we can prove weaker version of Lemma 1.2 
(see Lemma 2.3 below) which is also sufficient for the proof of Theorem 1.1. The 
method we use is simpler and transparent. 

Once we get Lemma 2.3, the rest of the proof is the same as in [9] but we 
sketch it for the reader's convenience. 

2. Proof of Theorem 1.1 

2.1. Auxiliary results 

We introduce some notation. By Ij,k we will denote the interval ( k27
1 

, f,] and 

for n E N we define n * Ij,k as the set { x E [O, 1] : Ix - 2~ I ::,;;; ;, } . The ball 
B(xo,h) is defined similarly, i.e. B(xo,h) = {x E [O, l]: Ix -xol::,;;; h}. 

We start from an easy fact concerning systems { 'ljJ~, ¢~} ~ -N : 

Lemma 2.1. Let {wn, <Pn}~=-N satisfy conditions (1), (2). Then {7P~, ¢~}~=-N 
is a uniformly bounded biorthogonal system. 

If {¢n}~-N• {w~}~=-N are Riesz systems in L2(0, 1), then {¢~J~=-N• 
{'ljJ~}~-N are also Riesz systems in L2(0, 1). 
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Proof. Using (5), the fact that lwn(x)I = 1 and the properties of S we get 

The biorthogonality of {¢~,<P~}~"'-N and the property of being a Riesz system 
follows by the orthogonality of the Walsh matrix. • 

The next two results concern the systems { "Pn, <Pn}~=-N. 

Lemma 2.2. Let {1/Jn,<Pn}~=-N satisfy conditions (1), (2). Tl1ere are constants 
a > 0 and 1 > 0 such that for each O < h < ¾ there exists Jh E N such tl1at for 
any xo E [O, 1] and j > Jh -

2j 

l{x E B(xo, h): L "Pii+k(x) ~ a2J}I ~ 1I B(xo, h)I. 
k=l 

Proof. Conditions (1) and (2) imply that there is a constant A > 0 such that 
ll<!>nll2, 111fanllz ~A, n ~ -N. In turn, this and the biorthogonality condition gives 

1 

Let Jo be any fixed natural number for which we have 

(6) 

then 

If a= 8 .~oA and 'Y 16_2fo_~2 (o)A then for Dj,k = {x E 210 * lj,k : 1fat+k(x) ~ 
~ a21} we can write 

Thus 
1 . 

IDj,kl ~ 4S2(0)2JA ~ 211210 * Ij,kl-

Now we fix h E (0, ½) and xo E [O, l]. Let Jh be such that h > 2 • 2Jo-jh, 
where Jo is as in (6). Now let j > Jh• We divide the interval [O, 1] into 2j-Jo-l 
equal parts. Each interval of this partition has the length 2Jo+l-j and is equal to 
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the set 2i0 * Ij,k for some k. Since h > 2 · 2io-ih ~ j2i0 * 11,kl, so there is s EN 
such that the set B(x0 , h) contains s disjoint intervals of the form 210 * Ij,k and 
can be covered by at most s + 2 such disjoint intervals. Thus 

zi 
l{x E B(xo, h): L 1P~i+k(x) ~ 021}1 ~ 

k=I 
s 

i=l 
s s 

LIDj,k.l ~ I:2,j2jo *hk.l ~ s: 22,IB(xo,h)I ~ ,IB(xo,h)I. • 
i=l i=l 

Using the above lemma we get an analogue of Lemma 1.2: 

Lemma 2.3. Let { 1Pn, 4>n}~-N satisfy the decay conditions (1), (2). There is 
o > 0 such that for a.e. x E [0, 1] the inequality 

holds for infinitely many j. 

Proof. Let o be such as in Lemma 2.2. Denote: 

2j 

Ai= {x E [0, 1]: L ¢~i+k(x) ~ o2i}, j EN 
k=I 

Bm= U A1, mEN 
j;i,m 

00 

H = n Bm = lu:nsupAi. 
m=l :J-->00 

We need to show that IHI 1 . 
From the fact that ]HE L1(0, 1) we have 

l 1xo+h 
lim 

2
h 1lH(x)dx = 1lH(xo) 

h--.O xo-h 

(7) 

(8) 

for each Lebesgue point of 11.H , and consequently - for almost every xo E (0, 1). 
Let xo be any Lebesgue point of 11.H. By Lemma 2.2 for any h E (0, Xo I\ (1- x0)) 
there is jh E N such that for j > J.h 
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which implies that for all m ~ 1 

IBm n B(xo, h)I ~ -yh. 

The last statment is equivalent to 

for all m E N. Since :nB""' \. :nH , we have 

l lxo+h l lxo+h 
h :llH(x)dx = 2h J~oo :llBm (x)dx = 
2 xo-h xo-h 

l lxo+h 1 
= l~ 2h :llBm (x)dx ~ -2-y. 

m = xo-h 

By (8), this means that :llH(xo) ~ l > 0, and consequently :llH(xo) = 1. Therefore 
IHI 1. • 

2.2. Final part of the proof of Theorem 1.1 

Now we are ready to complete the proof of the main theorem. As we have said 
at the begining, this part repeats the arguments of Kazarian-Sargsian's paper [9], 
but we present it for the sake of completeness. 

Proof of Theorem 1.1: Note that for each y E L1(0, 1) and K ~ 0 we 

have 
2K+l 2K+l 

L (y, <Pn)1Pn = I: (y, </;~)w~, 

thus from (3) we get 

2"' 

sup II L (y, </;~)1/J~lb--+0 as K--+ oo. 
m>I< n=2K+1 

Therefore, it is enough to show that for any £ > 0 there is a function 
Ye: E L1 (0, 1) such that the Fourier series of Ye: is unboundedly divergent on a set 
Ee: with IEc: I ~ 1 - £. 

Suppose that for some £ > 0 and for any f E L1 (0, 1) the set 

N 

{xE [0,1]: limsuplL(f,4>~)1/J~(x)I <oo} 
N->co n=l 

has measure at least £. 
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Then it follows from Saks Theorem (see e.g. [7], p. 26) that there is a set 
TC [O, l] such that 

N 

(A) VJEL1(0,l) limsup/L)f,~~)1p~(x)l<ooa.e.onT, 
N-----,oo n=l 

N 

(B) VJ E L 1 (0, 1) \ F limsup I I)J, ~!)1JJ!(x)I = oo a.e.on Tc. 
N-oo n=l 

where F is a subset of L1 (0, 1) of first category. What more, !Tl ~ E:. 

Now, we refer to S.V. Bockariev [l]. In fl], he has proved that for any 
uniformly bounded ONS on [ 0, 1] , there is an intergrable function whose Fourier 
series in this system diverges unboundedly on a set of positive measure. Analyzing 
his proof, one finds that his argument can be applied also to a uniformly bounded 
biorthogonal system Un, Yn} satisfying an additional condition that both Un}, 
{gn} are Riesz systems. Thus, the following version of Bockariev's result is true: 

Theorem 2.4. Let Un, 9n}nEN be an w1iformly bounded biortlwgonal system of 
functions on [0, lj. Suppose that {fn}nEN and {gn}nEN are the Riesz systems. 
Let T be a set of positive measure, and suppose tl1at there is f3 > 0 sucl1 that for 
a.e. x E T and for every N E N the inequality 

2N(p+l) 

L f~(x) ~ f32N (9) 
n=2Np+l 

holds for infinitely many p. Then there is f E L1 (0, 1) and a set of positive 
measure T1 CT such that the series I::=l (f, 9n)f n(x) unboundedly diverges on 
T1. 

(Moreover, for {fn, 9n} as in Theorem 2.4, it is not hard to prove the exis
tence of set T satisfying conditions of Theorem 2.4 - this can be done by arguments 
analogous to those used in [l] for a bounded orthonormal system; therefore for any 
uniformly bounded biorthogonal system {f n, 9n}nEN functions on [O, 1] sud1 that 
{fn }nEN and {gn }nEN are the Riesz systems there exists integrable function whose 
Fourier series in {f n}nEN is unboundedly divergent on a set of positive measure.) 

It follows by Lemma 2.3 that there is n: > 0 such that for a.e. x E [O, lj and 
for all N E N the inequality 

2N(p+l) 

L (1µ~(x))2 ~ a2N (10) 
n=2Np+l 

1 The main change needed to treat the biorthogonal case is that one should analyse the 

kernels Lk 4>k ® Wk instead of LA- 'Pk 0 'Pk from the orthogonal case. 
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holds for infinitely many p. Thus, the set T and the system { 1/Jt, <Pt}~ N 

satisfy the assumptions of Theorem 2.4, so we conclude that there is a function 
Jo E L(0, 1) such that the Fourier series of Jo is unboundedly divergent on some 
T1 CT with IT1I > 0, which contradicts (A). • 
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