ON THE DENSITY OF SOME SETS OF PRIMES, V

Kazimierz Wiertelak*

Abstract: In the present paper we derive an asymptotic formula for $\sum_{p \leqslant x, r_{k}(p)=q_{+}} 1$, where k is a product of different odd primes, q_{T} is the τ-th consecutive prime and $r_{k}(p)$ the least prime q such that $\left(\operatorname{ord}_{p} q, k\right)=1$.
Keywords: primitive roots mod p, cyclotomic fields

1. Let k be a product of different odd primes. For a prime p, we denote by $r_{k}(p)$ the least prime q such that $\left(\operatorname{ord}_{p} q, k\right)=1$.

In the following, the symbols $\mu(l), \varphi(l), \omega(l)$ and (α, β) denote as usual the Möbius function, the Euler function, the number of different prime divisors of l and the greatest common divisor of α, β respectively. By N and N_{0} we denote positive integers whose all prime factors divide $k ; l$ denotes a generic divisor of k, p_{0} is the least prime factor dividing k and $r=\omega(k), q_{\tau}$ denotes the τ-th consecutive prime, p and q denote generic prime numbers.

We denote by $\mathrm{c}_{i}, i=1,2, \ldots$ numerical constants and by $|A|$ the number of elements of a finite set A. If $p-1=N t$, where $(t, k)=1$, we write $N \| p-1$.

Moreover, let

$$
N\left(x, k, q_{\tau}\right)=\sum_{\substack{p \leqslant x \\ r_{k}(p)=q_{\tau}}} 1, \quad \pi(x)=\sum_{p \leqslant x} 1
$$

2. The purpose of the present paper is to prove an asymptotic formula for $N\left(x, k, q_{\tau}\right)$. Theorem. If k is odd and $x \geqslant \exp \exp q_{\tau}, k^{2} \leqslant \frac{\log x}{\log _{2}^{3} x}$, then

$$
\begin{equation*}
\frac{1}{\pi(x)} N\left(x, k, q_{\tau}\right)=\beta_{\tau}(k)+O\left(\frac{2^{\tau} r k^{3}}{\varphi(k) \log ^{r-1} p_{0}} \cdot \frac{\left(\log _{2} x\right)^{r+5}}{\log ^{2} x}\right) \tag{1}
\end{equation*}
$$

2001 Mathematics Subject Classification: N 76

* Partially supported by KBN Grant nr 1P03A00826
where

$$
\begin{equation*}
\beta_{\tau}(k)=\sum_{s=0}^{\tau-1}(-1)^{s}\binom{\tau-1}{s} \prod_{q \mid k}\left(\frac{q-2}{q-1}+\frac{1}{q^{2+s}-1}\right) \tag{2}
\end{equation*}
$$

and $\beta_{\tau}(k)>0$.
3. The proof of the Theorem will rest on the following lemmas.

Lemma 3.1. If $p \nmid c$, then $\left(\operatorname{ord}_{p} c, k\right)=1$ if and only if c is an N-th power residue $(\bmod p)$, where $N \| p-1$.

The lemma follows from the definition of the power residue.
Lemma 3.2. Suppose $\xi>1$. If $\mathcal{M}_{r}(\xi)$ denotes the set

$$
\mathcal{M}_{r}(\xi)=\left\{N_{0}: \xi<N_{0} \leqslant \xi q \text { for each } q \mid N_{0}\right\}
$$

then

$$
\begin{equation*}
\left|\mathcal{M}_{r}(\xi)\right| \leqslant r\left(\frac{\log \xi}{\log p_{0}}+1\right)^{r-1} \tag{3}
\end{equation*}
$$

If N is an arbitrary natural number whose all prime factors divide k and $N>\xi$ then there exist a number $N_{0} \in \mathcal{M}_{r}(\xi)$ and a positive integer number m such that $N=m N_{0}$.

The first part of the lemma follows by induction. The proof of the second part is obvious.

Let $m, a_{1}, \ldots, a_{s+1}(s=0,1, \ldots, \tau-1)$ denote arbitrary natural numbers. Moreover, let

$$
\begin{aligned}
B & =B\left(m, a_{1}, \ldots, a_{s+1}\right) \\
& =\left\{p: p \equiv 1(\bmod m), a_{1}, \ldots, a_{s+1} ; \text { are: } m \text {-th power: residue: }(\bmod p)\right\}
\end{aligned}
$$

$$
M\left(x, m, a_{1}, \ldots, a_{s+1}\right)=\sum_{\substack{p \leqslant x \\ p \in B}} 1
$$

Lemma 3.3. With the notation of section 1 , there exists a numerical constant c_{1} such that for $\xi \geqslant k$ we have

$$
\begin{align*}
& \mid N\left(x, k, q_{\tau}\right)-\sum_{N \leqslant \xi} \sum_{1 \leqslant \frac{x-1}{N}} \mu(l) \\
&\left\{i_{1}, \ldots, i_{s}\right\} \subset\{1,2, \ldots, \tau-1\} \tag{4}\\
& \left.\sum_{1} 2^{\tau} r\left(\frac{\log \xi}{\log p_{0}}\right)^{r-1} \max _{N_{0} \in \mathcal{M}_{r}(\xi)} M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right) \right\rvert\,
\end{align*}
$$

where $\mathcal{M}_{r}(\xi)$ has the same meaning as in Lemma 3.2.
Proof. Let

$$
B_{i}=B_{i}(x)=\left\{p \leqslant x:\left(\operatorname{ord}_{p} q_{i}, k\right)=1\right\}
$$

then

$$
\begin{equation*}
N\left(x, k, q_{\tau}\right)=\sum_{s=0}^{\tau-1}(-1)^{s} \sum_{\left\{i_{1}, \ldots, i,\right\} \in\{1,2, \ldots, \tau-1\}}\left|B_{i_{1}} \cap B_{i_{2}} \cap \ldots \cap B_{i_{s}} \cap B_{\tau}\right| . \tag{5}
\end{equation*}
$$

For fixed N and $s \geqslant 0$ we write

$$
\begin{aligned}
A_{N} & =A_{N}\left(x, q_{i_{1}}, \ldots, q_{i_{s}}, q_{\tau}\right) \\
& =\left\{p \leqslant x: N \| p-1, q_{i_{1}}, \ldots, q_{i_{s}}, q_{\tau} \text { are: } N \text {-th power residue }(\bmod p)\right\}
\end{aligned}
$$

Since $A_{N} \cap A_{N^{\prime}}=\emptyset$ for $N \neq N^{\prime}$, we have using Lemma 3.1

$$
\begin{align*}
&\left|B_{i_{1}} \cap B_{i_{2}} \cap \ldots \cap B_{i_{s}} \cap B_{\tau}\right|=\sum_{N \leqslant x-1}\left|A_{N}\right| \\
&=\sum_{N \leqslant \xi}\left|A_{N}\right|+\sum_{\xi<N \leqslant x-1}\left|A_{N}\right|=S_{1}+S_{2} . \tag{6}
\end{align*}
$$

From the second part of Lemma 3.2 we get

$$
S_{2} \leqslant \sum_{N_{0} \in \mathcal{M}_{r}(\xi)} M\left(x, N_{0}, q_{\tau}\right) .
$$

Hence from the first part of Lemma 3.2 and owing to the inequality $k \leqslant \xi$ we have

$$
\begin{equation*}
S_{2} \leqslant \mathrm{c}_{1} r\left(\frac{\log \xi}{\log p_{0}}\right)^{r-1} \max _{N_{0} \mathcal{\mathcal { M } _ { r } (\xi)}} M\left(x, N_{0}, q_{\tau}\right) . \tag{7}
\end{equation*}
$$

On the other hand, using the well-known Legendre principle we get

$$
\begin{equation*}
S_{\mathbf{1}}=\sum_{N \leqslant \xi} \sum_{l \leqslant \frac{x-1}{N}} \mu(l) M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right) . \tag{8}
\end{equation*}
$$

From (5) - (8) the result follows.
4. In the following we denote by $K=K_{m}$ the cyclotomic field generated by the m-th root of unity $\sqrt[m]{1}$, and by R_{m} its ring of integers.

For $\alpha \in R_{m}$ and a prime ideal \mathfrak{p} of $\left.R_{m}, \mathfrak{p} \nmid m \alpha\right]$, we denote by $\left(\frac{\alpha}{\mathfrak{p}}\right)_{m}$ the m-th power residue symbol.

For an ideal \mathfrak{a} of $R_{m},(\mathfrak{a},[m \alpha])=1$ we put

$$
\left(\frac{\alpha}{\mathfrak{a}}\right)_{m}=\prod_{\mathfrak{p}^{w} \| \mathfrak{a}}\left(\frac{\alpha}{\mathfrak{p}}\right)_{m}^{w}
$$

Let $a_{1}, a_{2}, \ldots, a_{s+1}$ denote arbitrary natural integers and M the product of different prime divisors of the product $a_{1} a_{2} \cdot \ldots \cdot a_{s+1}$. For given integers $j_{1}, j_{2}, \ldots, j_{s+1}, 1 \leqslant j_{i} \leqslant m, i=1, \ldots, s+1$ we define

$$
\chi_{j_{1} \ldots, j_{s+1}}(\mathfrak{a})= \begin{cases}\left(\frac{a_{1}^{j_{1}} a_{2}^{j_{2}} \ldots a_{s+1}^{s_{s}+1}}{\mathfrak{a}}\right)_{m} & \text { for }\left(\mathfrak{a},\left[m^{2} M\right]\right)=1 \\ 0 & \text { otherwise } .\end{cases}
$$

From Lemma 27 of [3] it follows that $\chi_{j_{1}, j_{2}, \ldots, j_{s+1}}$ is a character of the group of ideal classes mod $m^{2} M$ of the ring R_{m}. If m is odd then $\chi_{j_{1}, j_{2}, \ldots, j_{s+1}}$ cannot be a real non-principal character (see [2] Lemma 6).

For a fixed $\beta \in R_{m}$ we put

$$
\begin{equation*}
\bar{N}\left(m, a_{1}, \ldots, a_{s+1}\right)=\sum_{\substack{j_{1}=1 \\ a_{1}^{j_{1}} \ldots a_{s+1}^{s_{s+1}}=\beta^{m n}}}^{m} \ldots \sum_{\substack{j_{s+1}=1}}^{m} 1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(x, m, a_{1}, \ldots, a_{s+1}\right)=\sum_{\substack{\left.N P \leqslant x \\ \text { Pr } \\\left(\frac{a_{j}}{p}\right)_{m}=1, \ldots a_{1} \ldots a_{s+1}\right\} \\=1, j=1, \ldots, s+1}} 1 \tag{10}
\end{equation*}
$$

where p runs over the set of prime ideals of the ring R_{m}.
Lemma 4.1. Suppose that $t \geqslant 1,0<\alpha \leqslant 1, M=q_{1} \ldots q_{\tau}, c_{2} \geqslant 0$ is an arbitrary numerical constant and let c_{3} is sufficiently small numerical constant.

If

$$
\begin{equation*}
\left((N l)^{3} M\right)^{\varphi(N l)} \leqslant \exp \left(\left(\frac{c_{3}}{c_{2}+1}\right)^{2} \frac{\log ^{\alpha} x}{\log _{2}^{t} x}\right), \tag{11}
\end{equation*}
$$

then

$$
\begin{align*}
& S\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right) \\
& \quad=\frac{\pi(x)}{N^{s+1}}+O\left(x \exp \left(-\left(1,7 c_{2}+1,2\right) \sqrt{\alpha} \log ^{\frac{1-\alpha}{2}} x \log _{2}^{\frac{1+t}{2}} x\right)\right), \tag{12}
\end{align*}
$$

where the constant in O depends only on c_{2}, c_{3}, α, t.
The proof of the lemma follows from Lemma 5.4 of [5]. It is enough to note that if k is odd, then $\bar{N}\left(N l, q_{i_{2}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right)=l^{s+1}$ and $\chi_{j_{1}, \ldots, j_{s+1}}$ for $a_{j}=q_{i_{j}}$, $j=1, \ldots, s, a_{s+1}=q_{\tau}^{l}$ cannot be a real non-principal character (cf. Lemma 5.6 of [5] and Lemma 4.6 of [6]).

Lemma 4.2. If the conditions of Lemma 4.1 are satisfied, then there exists a numerical constant c_{4} depending only on c_{2}, c_{3}, α, t such that

$$
\begin{align*}
& \left|M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right)-\frac{\pi(x)}{N^{s+1} \varphi(N l)}\right| \\
& \quad<c_{4} x \exp \left(-\left(1,7 c_{2}+1,2\right) \sqrt{\alpha} \log ^{\frac{1-\alpha}{2}} x \log _{2}^{\frac{1+t}{2}} x\right) . \tag{13}
\end{align*}
$$

The Lemma follows from the formula

$$
M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right)=\frac{1}{\varphi(N l)} S\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right)+O(\sqrt{x})
$$

and Lemma 4.1 (cf. Lemma 4.7 of [6]).
5. Proof of Theorem. We use Lemma 3.3 with $\xi=\frac{\log x}{k \log _{2}^{3} x}$.

If the conditions of the Theorem are fulfilled, for $N_{0} \in \mathcal{M}_{r}(\xi)$ and sufficiently large x we have

$$
\varphi\left(N_{0}\right) \log \left(N_{0}^{3} q_{\tau}\right) \leqslant \xi k \log \left[(\xi k)^{3} q_{\tau}\right] \leqslant\left(\frac{c_{3}}{c_{2}+1}\right)^{2} \frac{\log x}{\log _{2} x}
$$

Moreover

$$
\varphi\left(N_{0}\right) \geqslant N_{0} \frac{\varphi(k)}{k}>\xi \frac{\varphi(k)}{k}
$$

Hence owing to Lemma 4.2 for $t=1, \alpha=1, c_{2}=2$ we obtain

$$
\begin{align*}
\max _{N_{0} \in \mathcal{M}_{r}(\xi)} M\left(x, N_{0}, q_{\tau}\right) & \leqslant \frac{1}{\xi^{2}} \frac{k}{\varphi(k)} \pi(x)+c_{4} \frac{x}{\log ^{4} x} \\
& \leqslant c_{5} \frac{k^{3}}{\varphi(k)} \frac{x \log _{2}^{6} x}{\log ^{3} x} \tag{14}
\end{align*}
$$

From this estimate and Lemma 3.3 we have

$$
\begin{align*}
& N\left(x, k, q_{\tau}\right) \\
& \quad=\sum_{N \leqslant \xi} \sum_{l \leqslant \frac{x-1}{N}} \mu(l) \sum_{s=0}^{\tau-1}(-1)^{s} \sum_{\left\{i_{1}, \ldots, i_{s}\right\} \subset\{1,2, \ldots, \tau-1\}} M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{\tau}^{l}\right) \\
& \quad+O\left(\pi(x) R\left(x, k, q_{\tau}\right)\right) \tag{15}
\end{align*}
$$

where

$$
R\left(x, k, q_{\tau}\right)=\frac{2^{r} r k^{3}}{\varphi(k) \log ^{r-1} p_{0}} \frac{\left(\log _{2} x\right)^{r+5}}{\log ^{2} x}
$$

If the conditions of the Theorem are fulfilled, for $N \leqslant \xi$ and sufficiently large x we obtain

$$
\varphi(N l) \log \left((N l)^{3} M\right) \leqslant\left(\frac{c_{3}}{3}\right)^{2} \frac{\log x}{\log _{2} x}
$$

hence owing to Lemma 4.2 applied for $N \leqslant \xi, t=1, \alpha=1, c_{2}=2$ we have

$$
M\left(x, N l, q_{i_{1}}^{l}, \ldots, q_{i_{s}}^{l}, q_{T}^{l}\right)=\frac{\pi(x)}{N^{s+1} \varphi(N l)}+O\left(\frac{x}{\log ^{4} x}\right)
$$

Hence, using (15) we obtain

$$
\begin{align*}
\frac{1}{\pi(x)} N\left(x, k, q_{\tau}\right)= & \sum_{N} \sum_{l \mid k} \frac{\mu(l)}{N \varphi(N l)}\left(1-\frac{1}{N}\right)^{\tau-1} \\
& +\sum_{N>\xi} \sum_{l \mid k} \frac{\mu(l)}{N \varphi(N l)}\left(1-\frac{1}{N}\right)^{\tau-1}+O\left(R\left(x, k, q_{\tau}\right)\right) \tag{16}\\
= & S_{1}+S_{2}+O\left(R\left(x, k, q_{\tau}\right)\right)
\end{align*}
$$

If d is fixed and N is such that $d \mid N,(N, k / d)=1$, we have the following equality

$$
\sum_{l \mid k} \frac{\mu(l)}{N \varphi(N l)}=N^{-1} \prod_{q \left\lvert\, \frac{k}{d}\right.} \frac{q-2}{q-1} .
$$

Hence, for $\eta \geqslant 0$

$$
\begin{align*}
\sum_{N>\eta} & \sum_{l \mid k} \frac{\mu(l)}{N \varphi(N l)}\left(1-\frac{1}{N}\right)^{\tau-1} \\
& =\sum_{d \mid k} \sum_{\substack{N>\eta \\
(N, k / d)=1 \\
d \mid N}} \frac{\left(1-\frac{1}{N}\right)^{\tau-1}}{N} \prod_{l \mid k} \frac{\mu(l)}{\varphi(N l)} \tag{17}\\
& =\sum_{d \mid k} \sum_{\substack{N>\eta \\
(N, k / d)=1 \\
d \mid N}} \frac{\left(1-\frac{1}{N}\right)^{\tau-1}}{N^{2}} \prod_{q \left\lvert\, \frac{k}{d}\right.} \frac{q-2}{q-1} .
\end{align*}
$$

Therefore, for $\eta=\xi$ we have

$$
S_{2} \leqslant c_{6} \xi^{-2}\left|\mathcal{M}_{0}(\xi)\right|=O\left(R\left(x, k, q_{\tau}\right)\right)
$$

On the other hand, owing to (16) and (17) for $\eta=0$, and owing to the last estimate, we obtain

$$
\frac{1}{\pi(x)} N\left(x, k, q_{\tau}\right)=\beta_{\tau}(k)+O\left(R\left(x, k, q_{\tau}\right)\right)
$$

Finaly, from (17) applied for $\eta=0$ we conclude that $\beta_{r}(k)>0$.

References

[1] P.D.T.A. Elliott, A problem of Erdös concerning power residue sums, Acta Arith. 13 (1967), 131-149.
[2] P.D.T.A. Elliott, The distribution of power residues and certain related results, ibid 17 (1970), 141-159.
[3] P.D.T.A. Elliott, On the mean value of $f(p)$, Proc. London Math. Soc. 21 (1970), 28-96.
[4] K. Wiertelak, On the density of some sets of primes, III, Studies in Pure Mathematics, To the Memory of Paul Turàn, 761-773.
[5] K. Wiertelak, On the density of some sets of primes, IV, Acta Arith. 43 (1984), 177-190.
[6] K. Wiertelak, On the distribution of the smallest natural numbers having order modp not coprime with a given integer, Acta Math. Hungar. 80(4) (1998), 271-284.

Address: Adam Mickiewicz University, Faculty of Mathematics and Computer Science 61-614 Poznań, Poland
E-mail: wiertela@amu.edu.p1
Received: 15 March 2005

