ON THE SUM OF A PRIME AND A \boldsymbol{k}-FREE NUMBER

Alessandro Languasco

Abstract: We prove a refined asymptotic formula for the number of representations of sufficiently large integer as a sum of a prime and a k-free number, $k \geqslant 2$.
Keywords: prime numbers, k-free numbers.

1. Introduction

The problem of counting the number of representations of an integer as a sum of a prime and a square-free integer was first considered by Estermann [3] in 1931. He obtained an asymptotic formula that was subsequently refined by Page [11] and then by Walfisz [13] in 1936. In 1949 Mirsky [10] generalized such results to the case of the sum of a prime and a k-free number, where $k \geqslant 2$ is a fixed integer. He obtained, for every $A>0$, that

$$
\begin{equation*}
r_{k}(n)=\sum_{p \leqslant n} \mu_{k}(n-p)=\mathfrak{S}_{k}(n) \operatorname{li}(n)+O\left(\frac{n}{\log ^{A} n}\right) \quad \text { as } n \rightarrow+\infty \tag{1}
\end{equation*}
$$

where $\mu_{k}(n)=\sum_{a^{k} \mid m} \mu(a)$ is the characteristic function of the k-free numbers, $\mu(n)$ is the Möbius function, $\operatorname{li}(n)=\int_{2}^{n} \frac{d t}{\log t}$ and

$$
\begin{equation*}
\mathfrak{S}_{k}(n)=\prod_{p \nmid n}\left(1-\frac{1}{p^{k-1}(p-1)}\right) \tag{2}
\end{equation*}
$$

is the singular series of this problem.
The aim of this paper is to prove a refinement of Walfisz-Mirsky asymptotic formula (1). This refinement depends on inserting a new term connected with the existence of the Siegel zero of Dirichlet L-functions (see Lemmas 1-2 below) and by sharping the error term in the asymptotic formula.

Denoting by $\Lambda(n)$ the von Mangoldt function, we define

$$
R_{k}(n)=\sum_{m \leqslant n} \Lambda(m) \mu_{k}(n-m)
$$

to be the weighted number of representations of an integer n as a sum of a prime and a k-free number. As usual R_{k} is easily related with r_{k}. We have the following
Theorem. Let $k \geqslant 2$ be a fixed integer. Then there exists a constant $c=c(k)>0$ such that, for every sufficiently large $n \in \mathbb{N}$, we have

$$
R_{k}(n)=\left(n-\delta_{\widetilde{\beta}} \tilde{\chi}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}\right) \mathfrak{S}_{k}(n)+O_{k}(n G \exp (-\mathrm{c} \sqrt{\log n}))
$$

where $\widetilde{\beta}$ is the Siegel zero, $\widetilde{\chi}$ is the Siegel character, \widetilde{r} is the Siegel modulus associated with the set of Dirichlet L-functions with modulus $q \leqslant \exp \left(c^{\prime} \sqrt{\log n}\right)$, where $c^{t}=c^{t}(k)>0$ is a suitable constant,

$$
G=\left\{\begin{array}{ll}
(1-\widetilde{\beta}) \sqrt{\log n} & \text { if } \widetilde{\beta} \text { exists } \\
1 & \text { if } \widetilde{\beta} \text { does not exist, }
\end{array} \quad \delta_{\widetilde{\beta}}= \begin{cases}1 & \text { if } \widetilde{\beta} \text { exists } \\
0 & \text { if } \widetilde{\beta} \text { does not exist }\end{cases}\right.
$$

(see also Lemmas 1-2 below).
An analogous result, but with a weaker error term, can also be obtained via the circle method using some recent results on exponential sums over k-free numbers proved by Brüdern-Granville-Perelli-Vaughan-Wooley [1].
Acknowledgments. We wish to thank Professors Jörg Brüdern and Alberto Perelli for some useful suggestions and Professor Doychin Tolev for some discussions on this topic.

2. Lemmas

We recall now some analytic results on the zero-free region of Dirichlet L-functions.
Lemma 1. [Davenport [2], §13-14] Assume $T^{\prime} \geqslant 0$. There exists a constant $c_{1}>0$ such that $L(\sigma+i t, \chi) \neq 0$ whenever

$$
\sigma \geqslant 1-\frac{c_{1}}{\log T^{\prime}}, \quad|t| \leqslant T^{\prime}
$$

for all the Dirichlet characters χ modulo $q \leqslant T^{\prime}$, with the possible exception of at most one primitive character $\tilde{\chi}(\bmod \tilde{r}), \tilde{r} \leqslant T^{\prime}$. If it exists, the character $\tilde{\chi}$ is real and the exceptional zero $\widetilde{\beta}$ of $L(s, \widetilde{\chi})$ is unique, real, simple and there exists a constant $c_{2}>0$ such that

$$
\frac{c_{2}}{\tilde{r}^{1 / 2} \log ^{2} \tilde{r}} \leqslant 1-\tilde{\beta} \leqslant \frac{c_{1}}{\log T^{\prime}}, \quad|t| \leqslant T^{\prime} .
$$

Fix now $T_{1}>0$ such that $\log T_{1} \asymp \sqrt{\log n}$. According to Lemma 1, applied with $T^{\prime}=T_{1}$, we denote by $\widetilde{\beta}$ the Siegel zero, $\widetilde{\chi}$ the Siegel character and by \widetilde{r} its modulus. Let now

$$
T_{2}= \begin{cases}T_{1} & \text { if } \tilde{r} \leqslant T_{1}^{1 / 4} \\ T_{1}^{1 / 4} & \text { otherwise }\end{cases}
$$

Now Lemma 1 remains true for $T^{\prime}=T_{2}$, with a suitable change in the constant c_{1}. In the following we will continue to call c_{1} this modified constant. Hence $\widetilde{r} \leqslant T_{2}^{1 / 4}$, if it exists. From now on we set $T=T_{2}$.

Moreover we need also the following form of Deuring-Heilbronn phenomenon whose proof can be found in Knapowski [9], see also $\S 4$ of Gallagher [5].

Lemma 2. Under the same hypotheses of Lemma 1 applied with $T^{\prime}=T$, if $\widetilde{\beta}$ exists, then for all the Dirichlet characters χ modulo $q \leqslant T$, there exists a constant $c_{3}>0$ such that $L(\sigma+i t, \chi) \neq 0$ whenever

$$
\sigma \geqslant 1-\frac{c_{3}}{\log T} \log \left(\frac{e c_{1}}{(1-\widetilde{\beta}) \log T}\right), \quad|t| \leqslant T
$$

and $\widetilde{\beta}$ is still the only exception.
The next Lemma is the explicit formula for $\psi(x, \chi)$.
Lemma 3. [Davenport [2], $\S 19]$ Let χ a Dirichlet character to the modulus q and $2 \leqslant T \leqslant x$. Then

$$
\sum_{m \leqslant x} \Lambda(m) \chi(m)=\delta_{\chi} x-\delta_{\chi, \bar{\chi}} \frac{x^{\widetilde{\beta}}}{\widetilde{\beta}}-\sum_{|\rho| \leqslant T} \frac{x^{\rho}}{\rho}+O\left(\frac{x}{T} \log ^{2} q x+x^{1 / 4} \log x\right)
$$

where $\delta_{\chi}=1$ if χ is the principal character, $\delta_{\chi}=0$ otherwise, $\delta_{\chi, \tilde{\chi}}=1$ if $\chi=\widetilde{\chi}$ and $\delta_{\chi, \tilde{\chi}}=0$ otherwise and \sum^{\prime} means that the sum runs over the non-exceptional zeros.

We will need also a zero-density result for Dirichlet's L-functions.
Lemma 4. [Huxley [7] and Ramachandra [12]] Let χ be a Dirichlet character $(\bmod q)$ and $N(\sigma, T, \chi)=\mid\{\rho=\beta+i \gamma: L(\rho, \chi)=0, \beta \geqslant \sigma$ and $|\gamma| \leqslant T\} \mid$. Then, for $\sigma \in[1 / 2,1]$, there exists a positive absolute constant c_{4} such that

$$
\begin{equation*}
\sum_{\chi} N(\sigma, T, \chi) \ll(q T)^{12 / 5(1-\sigma)}(\log q T)^{c_{4}} \tag{3}
\end{equation*}
$$

3. Proof of the theorem

Following Walfisz [13] and Mirsky [10], we have

$$
\begin{align*}
R_{k}(n) & =\sum_{m \leqslant n} \Lambda(m) \sum_{\substack{d^{k} \mid(n-m)}} \mu(d)=\sum_{m \leqslant n} \Lambda(m)\left[\sum_{\substack{d^{k} \mid(n-m) \\
d \leqslant D}} \mu(d)+\sum_{\substack{d^{k} \mid(n-m) \\
d>D}} \mu(d)\right]= \\
& =\sum_{d \leqslant D} \mu(d) \sum_{\substack{m \leqslant n \\
d^{k} \mid(n-m)}} \Lambda(m)+\sum_{d>D} \mu(d) \sum_{\substack{m \leqslant n \\
d^{k} \mid(n-m)}} \Lambda(m)= \tag{4}\\
& =\sum_{d \leqslant D} \mu(d) \psi\left(n ; d^{k}, n\right)+\sum_{d>D} \mu(d) \psi\left(n ; d^{k}, n\right)=A+B
\end{align*}
$$

say, where $\psi(x ; q, a)=\sum_{\substack{m \leqslant x \\ m \equiv a(\bmod q)}} \Lambda(m)$ and $1 \leqslant D \leqslant n^{1 / k}$ will be chosen later in (12).

First of all, we estimate B. By Brun-Titchmarsh Theorem, see, e.g., Fried-lander-Iwaniec [4], and Theorem 328 of Hardy-Wright [6], we get

$$
\begin{equation*}
B \leqslant \sum_{d>D} \psi\left(n ; d^{k}, n\right) \ll \sum_{d>D} \frac{n}{\varphi\left(d^{k}\right)}<k_{k} n \sum_{d>D} \frac{\log \log d}{d^{k}}<_{k} n D^{1-k} \log \log D . \tag{5}
\end{equation*}
$$

Then we remark that, if (d, n) >1, we have $\psi\left(n ; d^{k}, \pi\right) \ll_{k} \log ^{2}(d n)$ and hence

$$
\begin{equation*}
A=\sum_{\substack{d \leqslant D \\(d, n)=1}} \mu(d) \psi\left(n ; d^{k}, n\right)+O_{k}\left(D \log ^{2}(D n)\right) . \tag{6}
\end{equation*}
$$

We now insert $\psi(x ; q, a)=\frac{1}{\varphi(q)} \sum_{\chi(\bmod q)} \bar{\chi}(a) \psi(x, \chi)$ in (6). Hence, by Lemma 3 and the previous remarks, we get

$$
\begin{align*}
A= & \sum_{\substack{d \leqslant D \\
(d, n)=1}} \frac{\mu(d)}{\varphi\left(d^{k}\right)}\left[n-\delta_{\tilde{\beta}} \widetilde{\widetilde{x}}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}-\sum_{\substack{\chi\left(\bmod d^{k}\right) \\
\chi \neq \chi 0, \widetilde{\chi}}} \bar{\chi}(n) \sum_{|\rho| \leqslant T} \frac{n^{\rho}}{\rho}+\right. \\
& \left.+O\left(\varphi\left(d^{k}\right)\left(\frac{n}{T} \log ^{2}\left(d^{k} n\right)+n^{1 / 4} \log n\right)\right)\right]+O_{k}\left(D \log ^{2}(D n)\right)= \\
= & \left(n-\delta_{\tilde{\beta}} \tilde{\chi}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}\right) \sum_{\substack{d \leqslant D \\
(d, n)=1}} \frac{\mu(d)}{\varphi\left(d^{k}\right)}-\sum_{\substack{d \leqslant D \\
(d, n)=1}} \frac{\mu(d)}{\varphi\left(d^{k}\right)} \sum_{\substack{\chi\left(\bmod d^{k}\right) \\
\chi \neq \chi_{0}, \tilde{\chi}}} \bar{\chi}(n) \sum_{|\rho| \leqslant T} \frac{n^{\rho}}{\rho}+ \\
& +O\left(\sum_{\substack{d \leqslant D \\
(d, n)=1}}\left(\frac{n}{T} \log ^{2}\left(d^{k} n\right)+n^{1 / 4} \log n\right)\right)+O_{k}\left(D \log ^{2}\left(D_{n}\right)\right)= \\
= & \Sigma_{1}+\Sigma_{2}+\Sigma_{3}, \tag{7}
\end{align*}
$$

say.

Evaluation of $\boldsymbol{\Sigma}_{\mathbf{1}}$.

To evaluate the singular series we use again Theorem 328 of Hardy-Wright [6], thus obtaining

$$
\sum_{\substack{d \leqslant D \\(d, n)=1}} \frac{\mu(d)}{\varphi\left(d^{k}\right)}=\sum_{\substack{d=1 \\(d, n)=1}}^{+\infty} \frac{\mu(d)}{\varphi\left(d^{k}\right)}+O\left(\sum_{d>D} \frac{1}{\varphi\left(d^{k}\right)}\right)=\mathfrak{S}_{k}(n)+O_{k}\left(D^{1-k} \log \log D\right)
$$

by the Euler identity and (2). Hence we easily get

$$
\begin{equation*}
\Sigma_{1}=\left(n-\delta_{\widetilde{\beta}} \widetilde{X}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}\right) \mathfrak{S}_{k}(n)+O_{k}\left(n D^{1-k} \log \log D\right) \tag{8}
\end{equation*}
$$

Estimation of $\boldsymbol{\Sigma}_{\mathbf{2}}$.

Writing $\rho=\beta+i \gamma$ we have

$$
\begin{equation*}
\Sigma_{2} \ll \sum_{\substack{d \leqslant D \\(d, n)=1}} \frac{1}{\varphi\left(d^{k}\right)} \sum_{\substack{\chi\left(\bmod d^{k}\right) \\ \chi \neq \chi 0, \tilde{\chi}}} \sum_{|\rho| \leqslant T} \frac{n^{\beta}}{|\rho|} \leqslant \sum_{\substack{q \leqslant D^{k} \\(q, n)=1}} \frac{1}{\varphi(q)} \sum_{\substack{\chi(\bmod) \underline{c}) \\ \chi \neq \chi_{0}, \tilde{\chi}}} \sum_{|\rho| \leqslant T} \frac{n^{\beta}}{|\rho|} . \tag{9}
\end{equation*}
$$

Now, to estimate Σ_{2}, we first split the summation over ρ according to $0<|\rho| \leqslant 1$ and $1<|\rho| \leqslant T$. Arguing as in $\S 20$ of Davenport [2] and using Lemmas 1-2, we get

$$
\begin{equation*}
\frac{1}{\varphi(q)} \sum_{\substack{x(\bmod q) \\ x \neq \chi_{0}, \tilde{x}}} \sum_{0<|\rho| \leqslant 1} \frac{n^{\beta}}{|\rho|} \ll n^{1-f(T)} \log ^{2} n, \tag{10}
\end{equation*}
$$

where $f(T)=\frac{c_{1}}{\log T}$ if the Siegel zero does not exist or $f(T)=\frac{c_{3}}{\log T} \log \left(\frac{e c_{1}}{(1-\beta) \log T}\right)$ if the Siegel zero exists.

In the range $1<|\rho| \leqslant T$, we follow the line of $\S 12$ of Ivić $[8]$. Recalling Lemmas 1-2 and 4 and Theorem 328 of Hardy-Wright [6], we have, for $D^{k} \leqslant T$, that

$$
\begin{equation*}
\frac{1}{\varphi(q)} \sum_{\substack{x(\bmod q) \\ \chi \neq \chi_{0}, \bar{\chi}}} \sum_{1<|\rho| \leqslant T} \frac{n^{\beta}}{|\rho|} \ll\left(\log ^{c_{4}+3} n\right) \max _{1 / 2 \leqslant \sigma \leqslant 1-f(T)} n^{\sigma} \max _{1 \leqslant \leqslant T}(q t)^{12 / 5(1-\sigma)-1} \tag{11}
\end{equation*}
$$

where $f(T)$ is as in (10).
Choosing now

$$
\begin{equation*}
T=D^{2 k} \quad \text { and } \quad T=\exp (C \sqrt{\log n}) \tag{12}
\end{equation*}
$$

where $C>0$ is an absolute constant, we split the interval over σ in two parts: the first one is for $\sigma \in[1 / 2,7 / 12]$ and the second one is for $\sigma \in[7 / 12,1-f(T)]$. In the first case the maxima are attained at $t=T$ and $\sigma=7 / 12$ and in the second case they are attained at $t=1$ and $\sigma=1-f(T)$. The total contribution of (11) is then

$$
\begin{equation*}
\ll\left(n^{7 / 12}+n^{1-f(T)}\right) T^{1 / 2} \log ^{E} n \ll T^{1 / 2} n^{1-f(T)} \log ^{E} n, \tag{13}
\end{equation*}
$$

where $E>0$ is a suitable constant, not necessarily the same at each occurrence. An analogous argument for (10) gives the same estimate. Hence, by (10) and (12)-(13), we obtain

$$
\begin{equation*}
\Sigma_{2} \ll T^{1 / 2} n^{1-f(T)} \log ^{E} n \tag{14}
\end{equation*}
$$

If the Siegel zero does not exist than we have

$$
\begin{equation*}
\Sigma_{2} \ll{ }_{k} T^{1 / 2} n \exp \left(-\mathrm{c}_{1} \frac{\log n}{\log T}\right) \log ^{E} n, \tag{15}
\end{equation*}
$$

while, if the Siegel zero exists, we get

$$
\begin{align*}
\Sigma_{2} & \ll{ }_{k} T^{1 / 2} n \exp \left(-\mathrm{c}_{3} \frac{\log n}{\log T} \log \left(\frac{\mathrm{ec}_{1}}{(1-\widetilde{\beta}) \log T}\right)\right) \log ^{E} n \ll \\
& \ll T^{1 / 2} n[(1-\widetilde{\beta}) \log T] \exp \left(-\mathrm{c}_{3} \frac{\log n}{\log T}\right) \log ^{E} n, \tag{16}
\end{align*}
$$

and hence, combining (15)-(16) we finally have

$$
\begin{equation*}
\Sigma_{2} \ll T^{1 / 2} n G \exp \left(-c_{5} \frac{\log n}{\log T}\right) \log ^{E} n \tag{17}
\end{equation*}
$$

where $c_{5}=\min \left(c_{1} ; c_{3}\right)$ and

$$
G= \begin{cases}(1-\widetilde{\beta}) \sqrt{\log n} & \text { if } \tilde{\beta} \text { exists } \\ 1 & \text { if } \widetilde{\beta} \text { does not exist. }\end{cases}
$$

Estimation of $\Sigma_{\mathbf{3}}$ and the final argument.

Recalling $T=D^{2 k}$ and $T=\exp (C \sqrt{\log n})$, we get from (17) that

$$
\begin{equation*}
\Sigma_{2}<_{k} n G \exp \left(-c_{6} \sqrt{\log n}\right) \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
C=\sqrt{c_{5}} \quad \text { and } \quad c_{6}=\sqrt{c_{5}} / 3 . \tag{19}
\end{equation*}
$$

From (8) we obtain

$$
\begin{equation*}
\Sigma_{1}=\left(n-\delta_{\widetilde{\beta}} \tilde{\chi}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}\right) \mathfrak{S}_{k}(n)+O_{k}\left(n \exp \left(-C \frac{k-1}{3 k} \sqrt{\log n}\right)\right) . \tag{20}
\end{equation*}
$$

Moreover, the error terms collected in Σ_{3} can be estimated as follows:

$$
\begin{align*}
\Sigma_{3} & \ll k \frac{n D}{T} \log ^{2}\left(D^{k} n\right)+n^{1 / 4} D \log n+D \log ^{2}(D n) \ll \\
& <_{k} n \exp \left(-C \frac{2 k-1}{3 k} \sqrt{\log n}\right) . \tag{21}
\end{align*}
$$

Hence, if the Siegel zero does not exist, inserting (18)-(21) into (4)-(5) and (7) we have the Theorem with $c=C \frac{k-1}{3 k}$ provided that $C<\frac{3 k}{k-1} c_{6}$ (which holds by (19)).

If the Siegel zero exists, we remark that

$$
\begin{aligned}
n-\widetilde{\chi}(n) \frac{n^{\widetilde{\beta}}}{\widetilde{\beta}} & \geqslant n-\frac{n^{\widetilde{\beta}}}{\widetilde{\beta}}=\int_{T}^{n}\left(1-t^{\widetilde{\beta}-1}\right) d t+O(T) \gg n\left(1-T^{\widetilde{\beta}-1}\right)+O(T) \gg \\
& \gg G n+O(T)
\end{aligned}
$$

and, by Lemma 1, that

$$
G \gg \frac{\sqrt{\log n}}{\widetilde{r}^{1 / 2} \log ^{2} \widetilde{r}} \gg \exp \left(-C \frac{k-1}{3 k} \sqrt{\log n}\right),
$$

since $\widetilde{r} \leqslant T^{1 / 4}=\exp ((C / 4) \sqrt{\log n})$.
Provided that $C<\frac{3 k}{k-1} c_{6}$ (which holds by (19)), the Theorem follows also in this case with $c=C \frac{k-1}{3 k}$ by inserting (18)-(21) into (4)-(5) and (7).

References

[1] J. Brüdern, A. Granville, A. Perelli, R.C. Vaughan, T.D. Wooley, On the exponential sum over k-free numbers, Phil. Trans. R. Soc. Lond. A $\mathbf{3 5 6}$ (1998), 739-761.
[2] H. Davenport, Multiplicative Number Theory, 3-rd ed., Springer GTM, 2001.
[3] T. Estermann, On the representations of a number as the sum of a prime and a quadratfrei number, Journal London Math. Soc. 6 (1931), 219-221.
[4] J. Friedlander, H. Iwaniec, The Brun-Titchmarsh theorem, in "Analytic Number Theory" ed. by Y. Motohashi, Lecture Notes of the London Math. Soc. 247 (1997), 85-93.
[5] P.X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math. 11 (1970), 329-339.
[6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, 1979.
[7] M.N. Huxley, Large values of Dirichlet polynomials, III, Acta Arith. 26 (1975), 435-444.
[8] A. Ivić, The Riemann Zeta-Function, Wiley, 1985.
[9] S. Knapowski, On Linnik's theorem concerning exceptional L-zeros, Publ. Math. Debrecen. 9 (1962), 168-178.
[10] L. Mirsky, The number of representation of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly 56 (1949), 17-19.
[11] A. Page, On the number of primes in an arithmetic progression, Proc. London Math. Soc. 39 (1935), 116-141.
[12] K. Ramachandra, On the number of Goldbach numbers in small intervals, J. Indian Math. Soc. 37 (1973), 157-170.
[13] A. Walfisz, Zur Additive Zahlentheorie II, Math. Z. 40 (1936), 592-607.

Address: Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Belzoni, 7, 35131 Padova, Italy
E-mail: languascocmath.unipd.it
Received: 7 A pril 2005

