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ON INFINITE SUMS OF CLOSED IDEALS IN F -LATTICES

Lech Drewnowski

To the memory of Susan – Susanne Dierolf (1942–2009),
an unforgettable true friend, a remarkable personality,
a human in all respects, who loved all God’s creatures
(especially cats and rabbits) and, in all that, was such
an excellent mathematician.

Abstract: The main result of the paper is that if (In) is a sequence of closed ideals in an
F -lattice E, then also

∑∞
n=1 In, the set of all elements x ∈ E of the form x =

∑
n xn, where

xn ∈ In for every n, is a closed ideal in E.
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1. Introduction

Let E be a vector lattice [4] (or, in the terminology of [1], a Riesz space). We recall
that an ideal in E is a vector subspace I of E such that if y ∈ E and |y| 6 |x|
for some x ∈ I, then y ∈ I. (Obviously, I is then also a vector sublattice of E.)
If I1, . . . , In are ideals in E, then it follows easily from the Riesz Decomposition
Property (RDP) that also their sum I = I1 + · · · + In is an ideal in E. For
the reader’s convenience, and to make a comparison with its infinite version (see
Theorem 3.1 below) more easy, we quote this property as it is stated in [1, Th. 1.10].

Theorem (RDP). Let x1, . . . , xn ∈ E (n ∈ N) and let y ∈ E be such that
|y| 6 |x1 + · · · + xn|. Then there exist y1, . . . , yn ∈ E with y = y1 + · · · + yn and
|yi| 6 |xi| for each i. In addition, if y > 0, then all the yi’s can be chosen to be
> 0 as well.

Now, suppose that E is a (Hausdorff) topological vector lattice, tvl for short
(or a Hausdorff locally solid Riesz space) and that all the ideals Ij are closed in
E. Then it is natural to ask if also the ideal I has to be closed in E. In general,
it is not necessarily so (cf. [4, Ch. III, Exerc. 1(c)]; for more examples, see [6]),
and to assure a positive answer one has usually to impose some completeness-type
conditions involving E or the Ij ’s. We briefly discuss the known relevant results,
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along with their slight refinements, in Section 2. In particular, if E is an F -lattice
(that is, a complete metrizable tvl), and the Ij ’s are as above, then the ideal I is
closed in E (see Corollary 2.3).

Now, consider an infinite sequence (In)n∈N of closed ideals in an F -lattice E.
Then, by what was said just above, each of the sums Jn = I1 + · · ·+ In is a closed
ideal in E. Moreover, the union I of all the Jn’s is obviously the smallest ideal in
E that contains all the ideals In. Consequently, its closure I is the smallest closed
ideal in E that contains all the In’s. At first sight, it might appear unlikely to
say anything more specific about the form of the elements of I. What we prove in
Theorem 3.2 is, therefore, somewhat surprising: I is precisely the set

∑∞
n=1 In of

all elements z ∈ E such that z =
∑∞

n=1 xn for some xn ∈ In (n ∈ N).
Our terminology and notation concerning tvl’s is, in general, that of [1] and

[4]. Throughout, the terms ‘closed’ and ‘complete’ are used to mean ‘topologically
closed’ and ‘topologically complete’.

Acknowledgment. The paper has greatly been inspired by a seminar talk of
Professor Witold Wnuk on his paper [5]. I am very much grateful to him for many
stimulating remarks and hints at the relevant literature.

2. Finite sums of ideals

Let us first observe the following.

Proposition 2.1. Let I1, . . . , In (n ∈ N) be ideals in a tvl E such that Ij ∩ Ik =
{0} (or, equivalently, Ij ⊥ Ik) whenever j 6= k. Then the topology of the ideal
I = I1 + · · · + In is the direct sum topology of its summands. In consequence, if
all the ideals Ij are complete, so is I.

Proof. Simply note that if x = x1 + · · · + xn with xj ∈ Ij for each j, then the
summands are pairwise disjoint so that |x| = |x1| + · · · + |xn|. Consequently, all
the projections x → xj : I → Ij are continuous. ¥

In the proposition below, assertion (a) (except for the ‘moreover’ part) has
been stated as Exerc. 1 in Ch. III of [4] and, for the case of Banach lattices, with
full (but quite technical) proofs in [4, Ch. III, Th. 1.2] and [3, Prop. 1.2.2]. We
note that those proofs (different from those given below) work also for F -lattices,
and have some points in common with our proof of Theorem 3.2.

Proposition 2.2. Let I1 and I2 be closed ideals in a tvl E, and denote I0 =
I1 ∩ I2. Consider the ideal I = I1 + I2 in E.

(a) If the quotient tvl E/I0 is complete, then the ideal I is closed in E. If,
moreover, also the ideal I0 is complete, so is I.

(b) If the ideal I0 and both the quotients I1/I0 and I2/I0 are complete, then also
the ideal I is complete (and hence closed) in E.
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Proof. Let Q : E → E/I0 be the quotient homomorphism. Then J1 = Q(I1) and
J2 = Q(I2) are closed ideals in E/I0 which can be identified with the quotients
I1/I0 and I2/I0. By the assumptions of (a) or (b), these two ideals in E/I0

are complete. Since they intersect only at 0, we conclude from the preceding
proposition that J1+J2 is complete in E/I0. It follows that I1+I2 = Q−1(J1+J2)
is closed in E.

To finish note that (I1 + I2)/I0 = J1 + J2 so that, by the well know fact that
topological completeness is a three-space property (cf. [2, Ch. III.3, Exerc. 9]),
if I0 is assumed to be complete, also I1 + I2 has to be complete. ¥

Corollary 2.3. If I1, . . . , In are closed ideals in an F -lattice E, then also their
sum I1 + · · ·+ In is a closed ideal in E.

It is not immediately clear how to extend Proposition 2.2 (b) to the case of more
than two ideals. The extension contained in our next result, though somewhat
formal, seems to be best possible.

Proposition 2.4. Let I1, . . . , In be ideals in a tvl E. Consider the product
tvl F = I1 × · · · × In and the ideal I = I1 + · · · + In in E with the induced
topology. Then the continuous positive linear operator A : F → I defined by
A(x1, . . . , xn) = x1 + · · · + xn is an open map. In other words, the associated
operator Â : F/N → I, where N = kerA, is a topological isomorphism onto.

Consequently, the ideal I is complete iff the quotient tvs F/N is complete.

Proof. Given any solid neighborhood U of zero in I, denote Uj = U ∩ Ij for
j = 1, . . . , n and V = U1 × · · · × Un. Obviously, the sets V thus obtained form
a base of solid neighborhoods of zero in F . Moreover, if 0 6 x ∈ U then, by
(RDP), x = x1 + · · ·+xn for some 0 6 xj ∈ Ij and, clearly, xj ∈ Uj (j = 1, . . . , n).
It follows that (x1, . . . , xn) ∈ V and A(x1, . . . , xn) = x. Thus U ∩ I+ ⊂ A(V ) and,
consequently, U ⊂ A(V + V ). This proves that the map A is open. The other
assertions are now obvious. ¥

Remark 2.5. Proposition 2.2 (b) can be viewed as a corollary to the result above.
To see this first note that, in the setting of that proposition, the product (I1/I0)×
(I2/I0), which can be identified with the quotient (I1 × I2)/(I0 × I0), is complete.
Second, note that the latter can be identified with the quotient

(
(I1×I2)/N

)
/
(
(I0×

I0)/N
)
, where N = kerA = {(z,−z) : z ∈ I0}. Third, note that the the map

z → (z, 0) + N is an isomorphism from I0 onto (I0 × I0)/N so that also the latter
is complete. Therefore, as completeness is a three space property, (I1 × I2)/N is
complete so that the preceding proposition can be applied.

3. Infinite sums of ideals

We start this section by proving an infinite version of the Riesz Decomposition
Property for topological vector lattices.
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Theorem 3.1. Let E be a tvl, and suppose an element x ∈ E is the sum of
a convergent series

∑∞
n=1 xn in E. If y ∈ E and |y| 6 |x|, then there is a sequence

(yn) in E such that y =
∑∞

n=1 yn and, for each n, |yn| 6 |xn| and |sn| 6 |rn|,
where rn =

∑∞
k=n xk and sn =

∑∞
k=n yk. Moreover, if y is positive, then one can

choose all the yn’s to be positive as well.

Proof. We simply apply inductively the usual (RDP). Since |y| 6 |x1 + r2|, one
can write y as y = y1 + s2, for some y1, s2 ∈ E with |y1| 6 |x1| and |s2| 6 |r2|.
Then |y − y1| = |s2| 6 |x2 + r3| so that y − y1 = y2 + s3 for some y2, s3 ∈ E with
|y2| 6 |x2| and |s3| 6 |r3|.

Proceeding by an obvious induction, we find sequences (yn) and (sn) in E such
that, for each n, |yn| 6 |xn|, y = y1 + · · ·+ yn + sn+1, and |sn+1| 6 |rn+1|. Then,
clearly, sn+1 → 0 as n →∞ so that y =

∑∞
n=1 yn, and all the yn’s and sn’s are as

required.
If y > 0, then at each step above one can choose yn > 0 and sn+1 > 0. ¥

Our main result seems to be the following.

Theorem 3.2. Let E be an F -lattice, and let (In) be a sequence of closed ideals
in E. Define I =

∑∞
n=1 In to be the set of elements z ∈ E that are of the form

z =
∞∑

n=1

xn, where xn ∈ In for every n. (∗)

Then I is the smallest closed ideal in E that contains all the ideals In. Moreover,

(a) every positive element z ∈ I can be represented in the above form with all
xn > 0;

(b) every element z ∈ E can be represented in the form (∗) so that also the
series

∑∞
n=1 |xn| converges in E.

Proof. From the previous theorem it follows immediately that I is an ideal in
E and that the assertion (a) holds. To prove (b), apply (a) to both x+ and x−.
Thus it remains to be shown that I is closed or, equivalently, complete. Let ‖·‖
be a monotone F -norm defining the topology of E.

Let (zk)k∈N be a sequence in I such that
∑

k ‖zk‖ < ∞. We need to show
that the series

∑
k zk converges in E and that its sum, z, is in I. Obviously, we

may assume that zk > 0 for each k. Then, by the final assertion of the preceding
theorem, zk =

∑∞
n=1 xk,n for some 0 6 xk,n ∈ In (k, n ∈ N).

We verify that the family (xk,n : k, n ∈ N) is unconditionally summable
(or satisfies the corresponding Cauchy condition) in E. Fix any ε > 0. Next,
choose any m such that

∑
k∈Nm

‖zk‖ < ε/2, where Nm = {k ∈ N : k > m}.
Then ‖∑

(k,n)∈A xk,n‖ < ε/2 for every finite set A ⊂ Nm × N. Since the series∑∞
n=1 xk,n are unconditionally convergent for k = 1, . . . , m, there is p such that

‖∑
(k,n)∈B xk,n‖ < ε/2 whenever B is a finite set contained in {1, . . . , p} × Np.

It follows that ‖∑
(k,n)∈C xk,n‖ < ε for every finite set C contained in N × N r

({1, . . . , m} × {1, . . . , p}).
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Finally, by the unrestricted associative law for summable families, denoting
xn =

∑
k xk,n (which is an element of In) for each n, we have

∑
k zk =

∑
k,n xk,n =∑

n xn, which concludes the proof. ¥

Corollary 3.3. Let E be an F -lattice. If (un) is a sequence in E, then the elements
of the form z =

∑∞
n=1 xn where, for each n, xn ∈ E and |xn| 6 an|un| for some

an ∈ R+, form the closed ideal in E generated by the sequence (un).

A more general result can easily be deduced from the preceding theorem.

Corollary 3.4. Let E be an F -lattice, and let (Iγ)γ∈Γ be a family of closed ideals
in E. Define I =

∑
γ∈Γ Iγ to be the set of all elements z ∈ E that are of the

form z =
∑∞

n=1 xn, where xn ∈ Iγn for every n ∈ N, and (γn) is a sequence in Γ.
Then I is the smallest closed ideal in E that contains all the ideals Iγ . Moreover,
also the assertions (a) and (b) of the theorem, suitably modified, hold.

We close this section with the following.

Theorem 3.5. Let E be a complete tvl, and let (In) be a sequence of closed
ideals in E such that Im ∩ In = {0} (or, equivalently, Im ⊥ In) whenever m 6= n.
Then I =

∑∞
n=1 In is a closed ideal in E, each In is a projection band in I and,

denoting by Pn : I → In the associated band projection, one has z =
∑∞

n=1 Pnz as
a unique representation of z in the form (∗) for every z ∈ I.

Proof. From the mutual orthogonality of the In’s it follows easily that each z ∈ I
has a unique representation in the form (∗). This leads to the natural projections
Pn : I → In and Qn = P1 + · · ·+Pn : I → Jn = I1 + · · ·+ In, and since |Pnz| 6 |z|
and |Qnz| 6 |z| (n ∈ N, z ∈ I), all these projections are equicontinuous. Moreover,
their ranges are complete ideals in E (cf. Proposition 2.1). Therefore, they extend
in a unique way to equicontinuous projections, still denoted by Pn and Qn, to all
of I, and one still has Qn = P1 + · · ·+ Pn for each n. Since Qnz → z for all z ∈ I,
the same holds for all z ∈ I. Hence, for each z ∈ I one has z =

∑∞
n=1 Pnz so that

z ∈ I. This proves that I is closed. The other assertions of the theorem are fairly
obvious. ¥

4. The case of Banach lattices C(S), S a compact space

We now proceed to the special case of closed ideals in the Banach lattice C(S) of
all continuous functions f : S → R (with the supnorm ‖·‖∞), where S is a compact
Hausdorff space. It is well known that any closed ideal I in C(S) can uniquely be
represented in the form

I = C0(S‖K) := {f ∈ C(S) : f = 0 on K},

where K is a compact subset of S, and conversely (see, e.g., [3, Prop. 2.1.9]). In
this case one has an alternative description of the closed ideal generated by a given
family of closed ideals (comp. Corollary 3.4).
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Theorem 4.1. Let (Iγ)γ∈Γ be a family of closed ideals in C(S). For each γ ∈ Γ,
let Kγ be the compact set in S such that Iγ = C0(S‖Kγ). Also, denote by K the
intersection of the Kγ ’s, and by I the smallest closed ideal in C(S) containing all
the ideals Iγ (γ ∈ Γ). Then I = C0(S‖K).

Proof. It is clear that I is the closure of the union of all the ideals Iγ1 + · · ·+ Iγn
,

where {γ1, . . . , γn} is a finite subset of Γ. From this it follows immediately that
I ⊂ C0(S‖K).

As for the converse inclusion, we first show that it holds when we deal with
a finite family of closed ideals. In fact, in that case it suffices to show that if
Ij = C0(S‖Kj) for j = 1, 2, then C0(S‖K) ⊂ I = I1 + I2, where K = K1 ∩K2

(and having done that, proceed by induction). Now, take any f ∈ C0(S‖K) and
any ε > 0. Denote U1 = S rK1, U2 = S rK2, and U3 = {s ∈ S : |f(s)| < ε}.
Clearly, these sets form an open covering of S. Let ϕ1, ϕ2, ϕ3 : S → [0, 1] be a
partition of unity that is subordinated to the covering U1, U2, U3 of S. Thus each
ϕk is continuous, supp ϕk ⊂ Uk, and ϕ1 + ϕ2 + ϕ3 = 1 on S. Denote fk = fϕk for
k = 1, 2, 3. Then f1 ∈ I1, f2 ∈ I2, and ‖f − (f1 + f2)‖∞ = ‖f3‖∞ < ε. It follows
that f ∈ I.

Now, let us treat the general case. By what was shown above, we have Iγ1+· · ·+
Iγn = C0(S‖Kγ1 ∩ · · · ∩Kγn) for every finite set {γ1, . . . , γn} ⊂ Γ. Therefore, we
may assume that the family (Iγ) of ideals is directed upward, and the corresponding
family (Kγ) of compact sets is directed downward. Again, take any f ∈ C0(S‖K)
and any ε > 0. Let V = {s ∈ S : |f(s)| < ε}. Since Kγ ↓ K, there is γ ∈ Γ
such that Kγ ⊂ V . Denote U = S rKγ , and let ϕ,ψ be a partition of unity on S
corresponding to the open covering U, V of S. Denote g = fϕ and h = fψ. Then
g ∈ Iγ and ‖f − g‖∞ = ‖h‖∞ < ε. It follows that f ∈ I. ¥
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