ON THE FOURIER TRANSFORM OF LORENTZ INVARIANT DISTRIBUTIONS

Norbert Ortner, Peter Wagner

Susanne Dierolf gewidmet in Bewunderung ihrer wissenschaftlichen Leistung und dankbar für ihre großherzige Freundschaft

Abstract

We present a new formula for the Fourier transform of a Lorentz invariant temperate distribution. The formula is applied so as to yield the temperate fundamental solution of the Klein-Gordon operator.

Keywords: Lorentz invariance, Fourier transforms, temperate distributions, Klein-Gordon operator

1. Introduction and notation

Our personal motivation for this paper was a futile attempt to derive the Fourier transform of the function $f([x, x])=\left([x, x]+c^{2}\right)^{-1}, c^{2} \in \mathbf{C} \backslash \mathbf{R}$, i.e., the temperate fundamental solution of the Klein-Gordon operator, by employing Strichartz' formula, see [23, Thm. 1, p 509]. Although Strichartz' formula refers to the more general case of distributions invariant with respect to the pseudo-orthogonal group $O(p, q)$, Lorentz invariance constituting the special case of $p=1, q=n-1$, simple insertion of $f(s)=\left(s+c^{2}\right)^{-1}$ does not yield the final result. On the one hand, Strichartz' formula applies formally only to rapidly decreasing test functions $\phi(s) \in \mathcal{S}\left(\mathbf{R}^{1}\right)$, on the other hand, more importantly, the integrals arising from this formula can be evaluated immediately only if $[x, x]>0$ and the dimension n is odd. We then observed that, for $[x, x]<0$ and for n even, respectively, the resulting integrals can be simplified by means of the residue theorem.

Due to the importance of the fundamental solutions of the Klein-Gordon operator $[\partial, \partial]-c^{2}$, it seems justified to reconsider the subject of Fourier transforms of Lorentz invariant distributions. Let us describe now the content and the set-up of this article.

In Section 2, we first review some facts on Lorentz invariant distributions making use of the more general treatments in [14], [4], [24]. In Proposition 1, we
determine the Fourier transforms of $\delta_{s}([x, x]), s \in \mathbf{R}$. This yields a formula equivalent to Strichartz' formula cited above ([23, Thm. 1, p 509]) if we take into account the representation of a Lorentz invariant test function in the form

$$
\phi([x, x])=\int_{\mathbf{R}} \phi(s) \delta_{s}([x, x]) \mathrm{d} s, \quad \phi \in \mathcal{S}(\mathbf{R}) .
$$

We compare our formulas in Proposition 1 also with those in [5, Ch. III] and in [25]. In Corollary 1, the particular cases of the dimensions $n=2,3,4$ are listed in more explicit form. In Propositions 2,3,4, representations of the Fourier transforms of Lorentz invariant locally integrable functions $f([x, x])$ are given.

In Section 3, we transform the formulas of Proposition 1 so as to yield simple results also in the cases $[x, x]<0$ or $([x, x]>0$ and even dimension). For the evaluation of Fourier transforms of Lorentz invariant distributions, we have the following table:

	$[x, x]>0$	$[x, x]<0$
n even	Proposition 5	Proposition 5
n odd	Proposition 1	Proposition 5

In Section 4, we derive the unique temperate fundamental solutions of the iterated Klein-Gordon operator $\left([\partial, \partial]-c^{2}\right)^{m}, m \in \mathbf{N}, c^{2} \in \mathbf{C} \backslash \mathbf{R}$, see Proposition 6 . We therefrom then rederive the temperate fundamental solutions of the Klein-Gordon operators in "low" dimensions, i.e., for $n=2,3,4$.

Let us introduce some notation. We shall always suppose that the space dimension n is at least 2 ; we write x_{0}, \ldots, x_{n-1} for the coordinates in the space \mathbf{R}^{n}, and we equip it with the Lorentz metric $[x, y]=x_{0} y_{0}-x_{1} y_{1}-\cdots-x_{n-1} y_{n-1}$.

We employ the standard notation for the distribution spaces $\mathcal{D}^{\prime}, \mathcal{S}^{\prime}$, the dual spaces of the spaces \mathcal{D}, \mathcal{S} of "test functions" and of "rapidly decreasing functions", respectively, see [22], [7]. The Heaviside function is denoted by Y, and we write $\delta_{s} \in \mathcal{D}^{\prime}\left(\mathbf{R}^{1}\right), s \in \mathbf{R}$, for the delta distribution with support in s, which is the derivative of $Y(x-s)$, i.e., $\left\langle\phi, \delta_{s}\right\rangle=\phi(s)$ for $\phi \in \mathcal{D}\left(\mathbf{R}^{1}\right)$. In contrast, δ without any subscript stands for the delta distribution at the origin. For a distribution $T \in \mathcal{D}^{\prime}=\mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$, we denote by \check{T} its reflection at the origin.

The pullback $h^{*} T=T \circ h \in \mathcal{D}^{\prime}(\Omega)$ of a a distribution T in one variable t with respect to a submersive \mathcal{C}^{∞} function $h: \Omega \rightarrow \mathbf{R}, \Omega \subset \mathbf{R}^{n}$ open, is defined as in $[3$, Section 7.2, p. 81], i.e.,

$$
\begin{equation*}
\left\langle\phi, h^{*} T\right\rangle=\left\langle\frac{\mathrm{d}}{\mathrm{~d} t}\left(\int_{\{x \in \Omega ; h(x)<t\}} \phi(x) \mathrm{d} x\right), T\right\rangle, \quad \phi \in \mathcal{D}(\Omega) . \tag{1.1}
\end{equation*}
$$

We use the Fourier transform \mathcal{F} in the form

$$
(\mathcal{F} \phi)(\xi):=\int \mathrm{e}^{-\mathrm{i} \xi x} \phi(x) \mathrm{d} x, \quad \phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

this being extended to \mathcal{S}^{\prime} by continuity. (Herein and also elsewhere, the Euclidean inner product $(\xi, x) \mapsto \xi x$ is simply expressed by juxtaposition.)

2. The Fourier transform of Lorentz invariant distributions

Let us first review some facts concerning the structure of Lorentz invariant temperate distributions, cf. [14], [4]. We denote the proper Lorentz group by $L\left(\mathbf{R}^{n}\right)$, i.e.,

$$
\begin{aligned}
L\left(\mathbf{R}^{n}\right)=\left\{A=\left(a_{i j}\right)_{0 \leqslant i, j \leqslant n-1} \in \mathrm{Gl}\left(\mathbf{R}^{n}\right)\right. & ; \operatorname{det} A>0, a_{00}>0, \\
& \text { and } \left.\forall x \in \mathbf{R}^{n}:[A x, A x]=[x, x]\right\} .
\end{aligned}
$$

The space \mathcal{S}_{L}^{\prime} of temperate Lorentz invariant distributions is given by

$$
\mathcal{S}_{L}^{\prime}=\mathcal{S}_{L}^{\prime}\left(\mathbf{R}^{n}\right)=\left\{T \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right) ; \forall A \in L\left(\mathbf{R}^{n}\right): T \circ A=T\right\} .
$$

Obviously, \mathcal{S}_{L}^{\prime} is the direct sum of the spaces of even and of odd invariant distributions, i.e., $\mathcal{S}_{L}^{\prime}=\mathcal{S}_{L,+}^{\prime} \oplus \mathcal{S}_{L,-}^{\prime}$, where

$$
\mathcal{S}_{L, \pm}^{\prime}=\left\{T \in \mathcal{S}_{L}^{\prime} ; \check{T}= \pm T\right\}
$$

cf. also [14, p. 228], [4, p. 45].
If $T \in \mathcal{S}_{L,-}^{\prime}$ and $n \geqslant 3$, then $\operatorname{supp} T \subset\left\{x \in \mathbf{R}^{n} ;[x, x] \geqslant 0\right\}$. This implies that T is determined as a pullback of a one-dimensional distribution supported in $[0, \infty)$, i.e., symbolically, we have

$$
T=\operatorname{sign}\left(x_{0}\right) \cdot S([x, x]), \quad S \in \mathcal{S}^{\prime}\left(\mathbf{R}_{+}\right)
$$

Here

$$
\mathcal{S}^{\prime}\left(\mathbf{R}_{+}\right)=\left\{S \in \mathcal{S}^{\prime}\left(\mathbf{R}^{1}\right) ; \operatorname{supp} S \subset[0, \infty)\right\}
$$

and the isomorphism relating S and T is given in a precise way by

$$
\mathcal{S}^{\prime}\left(\mathbf{R}_{+}\right) \xrightarrow{\sim} \mathcal{S}_{L,-}^{\prime}\left(\mathbf{R}^{n}\right): S \longmapsto(T: \phi \mapsto\langle N(\phi), S\rangle), \quad n \geqslant 3,
$$

where

$$
N(\phi)(t)=\int_{\mathbf{R}^{n-1}} \frac{\phi\left(\sqrt{t+\left|x^{\prime}\right|^{2}}, x^{\prime}\right)-\phi\left(-\sqrt{t+\left|x^{\prime}\right|^{2}}, x^{\prime}\right)}{2 \sqrt{t+\left|x^{\prime}\right|^{2}}} \mathrm{~d} x^{\prime}, \quad t>0
$$

Note that $N(\phi)$ arises by applying formula (1.1) to define $\left\langle\phi, \operatorname{sign}\left(x_{0}\right) \cdot S([x, x])\right\rangle ;$ the application of S to $N(\phi)$ is justified by the fact that $N(\phi)$ can be continued \mathcal{C}^{∞} to the whole real line, cf. [4, Thm. 8.2, p. 52].

For $\mathcal{S}_{L,+}^{\prime}$, the situation is more complicated. Outside the origin, $T \in \mathcal{S}_{L,+}^{\prime}$ is generated by $S \in \mathcal{S}^{\prime}(\mathbf{R})$, i.e.,

$$
\mathcal{S}^{\prime}(\mathbf{R}) \xrightarrow{\sim}\left\{\left.T\right|_{\mathbf{R}^{n} \backslash\{0\}} ; T \in \mathcal{S}_{L,+}^{\prime}\right\}: S \longmapsto S([x, x]),
$$

cf. [4, Lemma 8.1, p. 46]. However, the space $\mathcal{S}_{L,+}^{\prime}$ itself is isomorphic to the space H^{\prime} defined in [4, pp. 48, 49]. Note that if $S \in \mathcal{S}^{\prime}(\mathbf{R})$ with $0 \notin \operatorname{supp} S$, then $T=S([x, x]) \in \mathcal{S}_{L,+}^{\prime}$ is defined unambiguously by the requirements $0 \notin \operatorname{supp} T$
and $T=S([x, x])$ in $\mathbf{R}^{n} \backslash\{0\}$. In particular, this is the case for $T=\delta_{s}([x, x])=$ $\delta(s-[x, x])$ if $s \in \mathbf{R} \backslash\{0\}$; for $n \geqslant 3$, we can also define $\delta([x, x])$ by continuity, i.e., $\delta([x, x])=\lim _{s \rightarrow 0} \delta_{s}([x, x])$. Explicitly, we have

$$
\langle\phi, \delta([x, x])\rangle=\int_{\mathbf{R}^{n-1}} \frac{\phi\left(\left|x^{\prime}\right|, x^{\prime}\right)+\phi\left(-\left|x^{\prime}\right|, x^{\prime}\right)}{2\left|x^{\prime}\right|} \mathrm{d} x^{\prime}, \quad \phi \in \mathcal{D}\left(\mathbf{R}^{n}\right), n \geqslant 3
$$

It is also clear that the distributions $Y\left(\pm x_{0}\right) \delta_{s}([x, x]) \in \mathcal{S}_{L}^{\prime}$ are well-defined for $s>0$.

In the following proposition, we determine the Fourier transforms of the distributions $Y\left(x_{0}\right) \delta_{s}([x, x]), s>0$, and $\delta_{s}([x, x]), s<0$, which correspond to uniform mass distributions on the upper sheet of the two-sheeted hyperboloid $[x, x]=s, s>0$ and on the one-sheeted hyperboloid $[x, x]=s, s<0$, respectively.

Proposition 1.

(1) For $s>0$, let $S=Y\left(x_{0}\right) \delta_{s}([x, x]) \in \mathcal{S}_{L}^{\prime}$ be defined as above. Then its Fourier transform $\mathcal{F} S$ is the value at $\lambda=\frac{n-2}{2}$ of the entire distributionvalued function $\lambda \mapsto T_{\lambda}$, which, for $\operatorname{Re} \lambda<1$, is given by the locally integrable function

$$
\begin{align*}
T_{\lambda}(x)= & (2 \pi)^{(n-2) / 2} Y(-[x, x])\left(\frac{s}{-[x, x]}\right)^{\lambda / 2} K_{\lambda}(\sqrt{-s[x, x]}) \tag{2.1}\\
& -2^{n / 2-2} \pi^{n / 2} Y([x, x])\left(\frac{s}{[x, x]}\right)^{\lambda / 2}\left[N_{-\lambda}(\sqrt{s[x, x]})\right. \\
& \left.+\mathrm{i} \operatorname{sign}\left(x_{0}\right) J_{-\lambda}(\sqrt{s[x, x]})\right]
\end{align*}
$$

In other words,

$$
\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)=T_{(n-2) / 2}, \quad s>0 .
$$

(2) For $s<0$, the Fourier transform of $\delta_{s}([x, x]) \in \mathcal{S}_{L,+}^{\prime}$ is the value at $\lambda=\frac{n-2}{2}$ of the entire distribution-valued function $\lambda \mapsto U_{\lambda}$, which, for $\operatorname{Re} \lambda<1$, is given by the locally integrable function

$$
\begin{align*}
U_{\lambda}(x)= & -2^{(n-2) / 2} \pi^{n / 2} Y(-[x, x])\left(\frac{s}{[x, x]}\right)^{\lambda / 2} N_{\lambda}(\sqrt{s[x, x]}) \tag{2.2}\\
& +2^{n / 2} \pi^{(n-2) / 2} Y([x, x]) \cos (\lambda \pi)\left(\frac{-s}{[x, x]}\right)^{\lambda / 2} K_{\lambda}(\sqrt{-s[x, x]})
\end{align*}
$$

In other words,

$$
\mathcal{F}\left(\delta_{s}([x, x])\right)=U_{(n-2) / 2}, \quad s<0
$$

Proof. (1) If $s>0$ and $\mathcal{F}_{x_{0}}$ and $\mathcal{F}_{x^{\prime}}$ denote the partial Fourier transforms with respect to the variables x_{0} and $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$, respectively, see $[24, \S 20.5$, p. 198], then

$$
\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)=\mathcal{F}_{x_{0}}\left(\mathcal{F}_{x^{\prime}}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)\right)
$$

Since the distributions

$$
Y\left(x_{0}\right) \delta\left(x_{0}^{2}-s-\left|x^{\prime}\right|^{2}\right)=\frac{Y\left(x_{0}-\sqrt{s}\right)}{2 \sqrt{x_{0}^{2}-s}} \delta\left(\left|x^{\prime}\right|-\sqrt{x_{0}^{2}-s}\right)
$$

continuously depend on x_{0} for $n \geqslant 4$, i.e.,

$$
Y\left(x_{0}\right) \delta\left(x_{0}^{2}-s-\left|x^{\prime}\right|^{2}\right) \in \mathcal{C}\left(\mathbf{R}_{x_{0}}^{1}, \mathcal{S}^{\prime}\left(\mathbf{R}_{x^{\prime}}^{n-1}\right)\right), \quad n \geqslant 4
$$

are still piecewise continuous in x_{0} with a jump at $x_{0}=\sqrt{s}$ for $n=3$, and are still locally integrable with respect to x_{0} for $n=2$, we can fix the variable x_{0} in order to calculate the partial Fourier transform with respect to x^{\prime}.

From the Poisson-Bochner formula, see [22, (VII,7;22), p. 259], [19, (7), p. 127], [5, Ch. II, 3.4, p. 198], i.e.,

$$
\begin{equation*}
\mathcal{F}\left(\delta\left(\left|x^{\prime}\right|-R\right)\right)=(2 \pi R)^{(n-1) / 2}\left|x^{\prime}\right|^{-(n-3) / 2} J_{(n-3) / 2}\left(R\left|x^{\prime}\right|\right) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n-1}\right), \quad R>0 \tag{2.3}
\end{equation*}
$$

we infer that

$$
\begin{aligned}
\mathcal{F}\left(Y\left(x_{0}\right)\right. & \left.\delta_{s}([x, x])\right)=2^{(n-3) / 2} \pi^{(n-1) / 2} \\
& \times \mathcal{F}_{x_{0}}\left(Y\left(x_{0}-\sqrt{s}\right)\left(x_{0}^{2}-s\right)^{(n-3) / 4}\left|x^{\prime}\right|^{(3-n) / 2} J_{(n-3) / 2}\left(\left|x^{\prime}\right| \sqrt{x_{0}^{2}-s}\right)\right)
\end{aligned}
$$

The distribution-valued function

$$
\begin{aligned}
& \tilde{T}_{\lambda}:\left\{\lambda \in \mathbf{C} ; \operatorname{Re} \lambda>-\frac{1}{2}\right\} \longrightarrow \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right): \\
& \lambda \longmapsto Y\left(x_{0}-\sqrt{s}\right)\left(x_{0}^{2}-s\right)^{(2 \lambda-1) / 4}\left|x^{\prime}\right|^{1 / 2-\lambda} J_{-1 / 2+\lambda}\left(\left|x^{\prime}\right| \sqrt{x_{0}^{2}-s}\right)
\end{aligned}
$$

is holomorphic and can analytically be continued to an entire function due to the recursion formula $\frac{\partial \tilde{T}_{\lambda}}{\partial x_{0}}=x_{0} \tilde{T}_{\lambda-1}$. Therefore, $\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)$ is the value at $\lambda=$ $\frac{n-2}{2}$ of the entire function $\lambda \mapsto 2^{(n-3) / 2} \pi^{(n-1) / 2} \mathcal{F}_{x_{0}}\left(\tilde{T}_{\lambda}\right)$, cf. [9, Proposition (2.1.5) (i)], [17, Proposition 1.6.2, p. 28].

For $-\frac{1}{2}<\operatorname{Re} \lambda<0$ and fixed x^{\prime}, the function $x_{0} \mapsto \tilde{T}_{\lambda}\left(x_{0}, x^{\prime}\right)$ is absolutely integrable. Hence the Fourier transform with respect to x_{0} can be calculated classically and yields, by [16, 14.57, p. 82; 14.32, p. 176],

$$
\begin{aligned}
\mathcal{F}_{x_{0}}\left(\tilde{T}_{\lambda}\right)= & \left|x^{\prime}\right|^{1 / 2-\lambda} \int_{\sqrt{s}}^{\infty} \mathrm{e}^{-\mathrm{i} x_{0} t}\left(t^{2}-s\right)^{(2 \lambda-1) / 4} J_{-1 / 2+\lambda}\left(\left|x^{\prime}\right| \sqrt{t^{2}-s}\right) \mathrm{d} t \\
= & \sqrt{\frac{2}{\pi}} Y(-[x, x])\left(\frac{s}{-[x, x]}\right)^{\lambda / 2} K_{\lambda}(\sqrt{-s[x, x]}) \\
& -\sqrt{\frac{\pi}{2}} Y([x, x])\left(\frac{s}{[x, x]}\right)^{\lambda / 2}\left[N_{-\lambda}(\sqrt{s[x, x]})+\mathrm{i} \operatorname{sign}\left(x_{0}\right) J_{-\lambda}(\sqrt{s[x, x]})\right]
\end{aligned}
$$

This yields formula (2.1). (2) Similarly, for $s<0$,

$$
\begin{aligned}
\mathcal{F}\left(\delta_{s}([x, x])\right)= & \mathcal{F}_{x_{0}}\left(\mathcal{F}_{x^{\prime}}\left(\delta\left(x_{0}^{2}-s-\left|x^{\prime}\right|^{2}\right)\right)\right) \\
= & 2^{(n-3) / 2} \pi^{(n-1) / 2} \\
& \times \mathcal{F}_{x_{0}}\left(\left(x_{0}^{2}-s\right)^{(n-3) / 4}\left|x^{\prime}\right|^{(3-n) / 2} J_{(n-3) / 2}\left(\left|x^{\prime}\right| \sqrt{x_{0}^{2}-s}\right)\right)
\end{aligned}
$$

The distribution-valued function

$$
\tilde{U}_{\lambda}: \mathbf{C} \longrightarrow \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right): \lambda \longmapsto\left(x_{0}^{2}-s\right)^{(2 \lambda-1) / 4}\left|x^{\prime}\right|^{1 / 2-\lambda} J_{-1 / 2+\lambda}\left(\left|x^{\prime}\right| \sqrt{x_{0}^{2}-s}\right)
$$

is plainly entire and $\mathcal{F}\left(\delta_{s}([x, x])\right)$ coincides with $2^{(n-3) / 2} \pi^{(n-1) / 2} \mathcal{F}_{x_{0}}\left(\tilde{U}_{(n-2) / 2}\right)$. For $\operatorname{Re} \lambda<1$, this partial Fourier transform with respect to x_{0} can be calculated classically by fixing x^{\prime}. For $x^{\prime} \neq 0, s<0,[16,14.22$, p. 78] furnishes

$$
\begin{aligned}
\mathcal{F}_{x_{0}}\left(\tilde{U}_{\lambda}\right)= & 2\left|x^{\prime}\right|^{1 / 2-\lambda} \int_{0}^{\infty} \cos \left(x_{0} t\right)\left(t^{2}-s\right)^{(2 \lambda-1) / 4} J_{\lambda-1 / 2}\left(\left|x^{\prime}\right| \sqrt{t^{2}-s}\right) \mathrm{d} t \\
= & -\sqrt{2 \pi} Y(-[x, x])\left(\frac{s}{[x, x]}\right)^{\lambda / 2} N_{\lambda}(\sqrt{s[x, x]}) \\
& +\sqrt{\frac{8}{\pi}} Y([x, x]) \cos (\lambda \pi)\left(\frac{-s}{[x, x]}\right)^{\lambda / 2} K_{\lambda}(\sqrt{-s[x, x]}) .
\end{aligned}
$$

This implies formula (2.2) and completes the proof.

Remarks.

(1) Comparing our formulas (2.1) and (2.2) in Proposition 1 with formula (7) in [5, Ch. III, 2.10, p. 294] we note that they are both representations of $\mathcal{F}\left(\delta_{s}([x, x])\right), s \in \mathbf{R}$, as analytic continuations, but with respect to different parameters: Our formulas are continuations with respect to the index λ of the Bessel functions, whereas in [5], the quadratic form $[x, x]$ is interpreted as boundary value of the non-degenerate complex quadratic form $[x, x]+$ $\mathrm{i} \epsilon|x|^{2}, \epsilon>0$. We also observe that (2.1), (2.2) above yield immediately an explicit result outside the light cone $[x, x]=0$.
(2) For $s>0$, the Fourier transforms of $Y\left(x_{0}\right) \delta_{s}([x, x])$ are special cases of the formulas (II, 3;3/4), p. 84, in [25]. There, more generally, $T=\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}^{(k)}([x, x])\right)$ is considered. However, the results given in [25] are only partially correct. This can be seen, e.g., by comparing Corollary 1, (b) below with $[25,(\mathrm{II}, 3 ; 4)]$ in the case $k=0, n=3$. The method used in [25] consists in decomposing \mathbf{R}^{n} into three open sets C_{1}, C_{f}, C_{b} and the light cone $\bar{C}=\left\{x \in \mathbf{R}^{n} ;[x, x]=0\right\}$, see $[25,(\mathrm{I}, 3 ; 1-4), \mathrm{p} .76]$. The restriction of the investigated Fourier transforms to the closed set \bar{C} is not defined since, generally, distributions cannot be restricted to closed sets, and this leads to the erroneous term in $[25,(\mathrm{II}, 3 ; 4)]$. We also point out that the restriction $\left.T\right|_{C_{1}}$, say, which is a \mathcal{C}^{∞} function and hence also a distribution in C_{1}
cannot be conceived in a canonical way as a distribution in \mathbf{R}^{n}. Hence a formula as $T=\left.T\right|_{C_{1}}+\left.T\right|_{C_{f}}+\left.T\right|_{C_{b}}+\left.T\right|_{\bar{C}}$ coming from "adding the results" (see [25, p. 79]) does not make sense. Similarly, formula (II, $1 ; 1$) in [25] for $\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)$ in the case $n=4$ is correct only if interpreted in the sense of our Corollary 1 d) below, i.e., by conceiving $\left.T\right|_{C_{1}}+\left.T\right|_{C_{f}}+\left.T\right|_{C_{b}}$ as a principal value distribution.

Let us yet formulate the results in (2.1) and (2.2) more explicitly in the case of small dimensions n.

Corollary 1.

(a) If $s>0$ and $n=2$, then

$$
\begin{aligned}
\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)= & Y(-[x, x]) K_{0}(\sqrt{-s[x, x]}) \\
& -\frac{\pi}{2} Y([x, x])\left[N_{0}(\sqrt{s[x, x]})\right. \\
& \left.+\operatorname{isign}\left(x_{0}\right) J_{0}(\sqrt{s[x, x]})\right] \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{2}\right) .
\end{aligned}
$$

(In \mathbf{R}^{2}, this formula also encompasses the case of $\mathcal{F}\left(\delta_{s}([x, x])\right), s<0$, by reflection.)
(b) If $s \geqslant 0$ and $n=3$, then

$$
\begin{aligned}
\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)= & \frac{\pi Y(-[x, x])}{\sqrt{-[x, x]}} \mathrm{e}^{-\sqrt{-s[x, x]}} \\
& -\frac{\pi Y([x, x])}{\sqrt{[x, x]}}[\sin (\sqrt{s[x, x]}) \\
& \left.+\mathrm{i} \operatorname{sign}\left(x_{0}\right) \cos (\sqrt{s[x, x]})\right] \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right) .
\end{aligned}
$$

(c) If $s \leqslant 0$ and $n=3$, then

$$
\mathcal{F}\left(\delta_{s}([x, x])\right)=\frac{2 \pi Y(-[x, x])}{\sqrt{-[x, x]}} \cos (\sqrt{s[x, x]}) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right) .
$$

(d) If $s>0$ and $n=4$, then

$$
\begin{aligned}
\mathcal{F}\left(Y\left(x_{0}\right) \delta_{s}([x, x])\right)= & \mathrm{i} \pi^{2} \operatorname{sign}\left(x_{0}\right)\left[Y([x, x]) \sqrt{\frac{s}{[x, x]}} J_{1}(\sqrt{s[x, x]})-2 \delta([x, x])\right] \\
& +\pi \operatorname{vp}\left(\sqrt { \frac { s } { | [x , x] | } } \left[2 Y(-[x, x]) K_{1}(\sqrt{-s[x, x]})\right.\right. \\
& \left.\left.+\pi Y([x, x]) N_{1}(\sqrt{s[x, x]})\right]\right) \in \mathcal{D}^{\prime}\left(\mathbf{R}^{4}\right) .
\end{aligned}
$$

(Herein the principal value has the following meaning:

$$
\operatorname{vp}(f(x))=\lim _{\epsilon \searrow 0}(Y(|[x, x]|-\epsilon) f(x)),
$$

the limit converging in $\mathcal{D}^{\prime}\left(\mathbf{R}^{4}\right)$.)
(e) If $s=0$ and $n=4$, then

$$
\mathcal{F}\left(Y\left(x_{0}\right) \delta([x, x])\right)=-2 \pi \operatorname{vp}\left(\frac{1}{[x, x]}\right)-2 \mathrm{i} \pi^{2} \operatorname{sign}\left(x_{0}\right) \delta([x, x])
$$

(f) If $s<0$ and $n=4$, then

$$
\begin{aligned}
\mathcal{F}\left(\delta_{s}([x, x])\right)= & -2 \pi \operatorname{vp}\left(\sqrt { | \frac { s } { [x , x] } | } \left[2 Y([x, x]) K_{1}(\sqrt{-s[x, x]})\right.\right. \\
& \left.\left.+\pi Y(-[x, x]) N_{1}(\sqrt{s[x, x]})\right]\right)
\end{aligned}
$$

Proof. The formulas in (a), (b) and (c) follow immediately from Proposition 1 since T_{λ} and U_{λ} are locally integrable functions for $\operatorname{Re} \lambda<1$, and this is the case for $\lambda=\frac{n-2}{2}, n=2,3$.

If $n=4$, then $\lambda=1$, and the values of T_{1} and U_{1} can be obtained as limits, i.e., $T_{1}=\lim _{\lambda / 1} T_{\lambda}, U_{1}=\lim _{\lambda / 1} U_{\lambda}$. From the elementary formula

$$
\lim _{\lambda \searrow-1}|t|^{\lambda} \operatorname{sign} t=\operatorname{vp}\left(t^{-1}\right) \quad \text { in } \mathcal{S}^{\prime}\left(\mathbf{R}_{t}^{1}\right),
$$

we infer that

$$
\begin{aligned}
& \lim _{\lambda \nearrow 1}\left[2 \pi Y(-[x, x])\left(\frac{s}{-[x, x]}\right)^{\lambda / 2} K_{\lambda}(\sqrt{-s[x, x]})\right. \\
& \left.-\pi^{2} Y([x, x])\left(\frac{s}{[x, x]}\right)^{\lambda / 2} N_{-\lambda}(\sqrt{s[x, x]})\right] \\
= & \pi \operatorname{vp}\left(\sqrt { \frac { s } { | [x , x] | } } \left[2 Y(-[x, x]) K_{1}(\sqrt{-s[x, x]})\right.\right. \\
& \left.\left.+\pi Y([x, x]) N_{1}(\sqrt{s[x, x]})\right]\right) .
\end{aligned}
$$

This yields the second part in (d), and an analogous reasoning furnishes the formula in (f).

On the other hand, for $s>0$ and $\operatorname{Re} \lambda<1$, the function

$$
S_{\lambda}(t)=Y(t)\left(\frac{s}{t}\right)^{\lambda / 2} J_{-\lambda}(\sqrt{s t})
$$

is locally integrable in \mathbf{R}_{t}^{1} and depends holomorphically on λ. Since $S_{\lambda+1}=2 \frac{\mathrm{~d}}{\mathrm{~d} t} S_{\lambda}$ holds for $\operatorname{Re} \lambda<0$, the distribution-valued function $\lambda \mapsto S_{\lambda}$ can analytically be continued to the whole complex λ-plane. In particular,

$$
S_{1}=2 \frac{\mathrm{~d}}{\mathrm{~d} t} S_{0}=2 \frac{\mathrm{~d}}{\mathrm{~d} t}\left[Y(t) J_{0}(\sqrt{s t})\right]=2 \delta-Y(t) \sqrt{\frac{s}{t}} J_{1}(\sqrt{s t}),
$$

and the composition with $t=[x, x]$ yields the formula in (d). Finally, (e) follows from (d) by performing the limit $s \searrow 0$. The proof is complete.

Remarks.

(1) For the formula in (d), cf. [20, 29.4, p. 186, and 31.5, p. 200]; [21, pp. 83, 84]; [2, App. E, (E4), p. 334]; [10, Ch. IV, (5.6/7), pp. 136, 137]; [12, (IV, $1 / 2$), p. 67]. A part of the formulas in Corollary 1 can also be obtained by specializing formula (5) in [5, Ch. III, 2.9, p. 291].
(2) If, by abuse of notation, we write generally $Y(t)(s / t)^{\lambda / 2} J_{-\lambda}(\sqrt{s t})$ for the distribution-valued function $S_{\lambda}, \lambda \in \mathbf{C}$, considered in the proof above, then the recursion formula $S_{\lambda+1}=2 \frac{\mathrm{~d}}{\mathrm{~d} t} S_{\lambda}$ implies the following equation, which holds in $\mathcal{D}^{\prime}\left(\mathbf{R}_{t}^{1}\right)$ for fixed $s>0$ and $k \in \mathbf{N}$:

$$
\begin{aligned}
Y(t)\left(\frac{s}{t}\right)^{k / 2} J_{-k} & (\sqrt{s t}) \\
& =2^{k} \sum_{j=0}^{k-1} \frac{(-s)^{j}}{2^{2 j} j!} \delta^{(k-j-1)}(t)+(-1)^{k} Y(t)\left(\frac{s}{t}\right)^{k / 2} J_{k}(\sqrt{s t})
\end{aligned}
$$

A similar formula appears in [11, (1.12), p. 188], where a proof by development in a power series is given.

The Fourier transforms in Corollary 1 are the analogues in the Lorentz case of the Poisson-Bochner formula (2.3). They yield formulas for the Fourier transforms of Lorentz invariant functions $f([x, x])$. Since the necessary assumptions on f depend on the dimension n, we consider the cases $n=2,3,4$ separately.
Proposition 2. Let $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{1}\right)$ such that $\frac{f(s) \log ^{2}|s|}{(1+|s|)^{1 / 4}}$ is integrable. If $x \in \mathbf{R}^{2}$ with $[x, x]=x_{0}^{2}-x_{1}^{2}$, then $f([x, x]) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{2}\right)$, and the Fourier transform of $f([x, x])$ is locally integrable, continuous outside the light cone, and given by

$$
\begin{aligned}
\mathcal{F}(f([x, x]))= & \int_{-\infty}^{\infty} f(s) \cdot\left[2 Y(-s[x, x]) K_{0}(\sqrt{-s[x, x]})\right. \\
& \left.-\pi Y(s[x, x]) N_{0}(\sqrt{s[x, x]})\right] \mathrm{d} s
\end{aligned}
$$

Proof. The mapping

$$
\mathbf{R} \backslash\{0\} \longrightarrow \mathcal{S}^{\prime}\left(\mathbf{R}^{2}\right): s \longmapsto \delta_{s}([x, x])
$$

is continuous and hence can be integrated against a test function in $\mathcal{D}(\mathbf{R} \backslash\{0\})$. Therefore, the formula in (a) of Corollary 1 yields the result by Fubini's theorem if $f \in \mathcal{D}(\mathbf{R} \backslash\{0\})$. This can then be extended by density to the class of functions in Proposition 2 using Lebesgue's theorem and the asymptotic properties of the Bessel functions at 0 and ∞.

Proposition 3. Let $f \in L^{1}\left(\mathbf{R}^{1}\right)$ and $x \in \mathbf{R}^{3}$ with $[x, x]=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}$. Then $f([x, x]) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right)$, and the Fourier transform of $f([x, x])$ is locally integrable,
continuous outside the light cone, and given by

$$
\begin{aligned}
\mathcal{F}(f([x, x]))= & -\frac{2 \pi Y([x, x])}{\sqrt{[x, x]}} \int_{0}^{\infty} f(s) \sin (\sqrt{s[x, x]}) \mathrm{d} s \\
& +\frac{2 \pi Y(-[x, x])}{\sqrt{-[x, x]}} \int_{0}^{\infty}\left[f(s) \mathrm{e}^{-\sqrt{-s[x, x]}}+f(-s) \cos (\sqrt{-s[x, x]})\right] \mathrm{d} s
\end{aligned}
$$

Proof. This follows from Corollary 1 (b), (c) in an analogous way as Proposition 2.

Proposition 4. Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{1}\right)$ such that $f(s)|s|^{1 / 4} \in L^{1}(\mathbf{R})$. If $x \in \mathbf{R}^{4}$ with $[x, x]=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$, then $f([x, x]) \in L_{\text {loc }}^{1}\left(\mathbf{R}^{4}\right)$, and the Fourier transform of $f([x, x])$ is continuous outside the light cone $[x, x]=0$, and generally a principal value given by

$$
\begin{align*}
\mathcal{F}(f([x, x]))= & 2 \pi \operatorname{vp}\left(\frac { 1 } { [x , x] } \int _ { - \infty } ^ { \infty } f (s) \left[\pi Y(s[x, x]) \sqrt{s[x, x]} N_{1}(\sqrt{s[x, x]})\right.\right. \tag{2.4}\\
& \left.\left.-2 Y(-s[x, x]) \sqrt{-s[x, x]} K_{1}(\sqrt{-s[x, x]})\right] \mathrm{d} s\right)
\end{align*}
$$

(The meaning of the principal value is as explained in Corollary 1 (d).)
Proof. The parts (d), (e) and (f) of Corollary 1 yield the following representation of $\mathcal{F}\left(\delta_{s}([x, x])\right)$:

$$
\begin{equation*}
\mathcal{F}\left(\delta_{s}([x, x])\right)=\operatorname{vp}\left(\frac{1}{[x, x]} \cdot g(s[x, x])\right), \quad s \in \mathbf{R} \tag{2.5}
\end{equation*}
$$

where

$$
g(t)=2 \pi^{2} Y(t) \sqrt{t} N_{1}(\sqrt{t})-4 \pi Y(-t) \sqrt{-t} K_{1}(\sqrt{-t}) .
$$

We observe that $g(t)$ is \mathcal{C}^{∞} outside the origin and continuous at $t=0$. More precisely, the behavior of g at 0 and at ∞, respectively, is determined by

$$
g(t)=-4 \pi+\pi t \log |t|+\mathcal{O}(t) \text { for } t \rightarrow 0, \text { and } g(t)=\mathcal{O}\left(|t|^{1 / 4}\right) \text { for }|t| \rightarrow \infty
$$

with \mathcal{O} denoting, as usual, Landau's symbol. In particular,

$$
\begin{equation*}
\exists C>0: \forall t \in \mathbf{R}:|g(t)-g(0)| \leqslant C|t|^{1 / 4} \tag{2.6}
\end{equation*}
$$

Let us consider the Banach space

$$
\mathcal{M}=\left\{\mu \text { Radon measure on } \mathbf{R} ;|s|^{1 / 4} \mu \text { is an integrable measure }\right\}
$$

with the norm $\|\mu\|=\int_{\mathbf{R}}|s|^{1 / 4} \mathrm{~d}|\mu|(s)$. For $\mu \in \mathcal{M}$, the function

$$
h_{\mu}(u)=\int_{\mathbf{R}} g(s u) \mathrm{d} \mu(s)
$$

is well-defined and continuous. Furthermore, taking C as in (2.6) we obtain

$$
\left|h_{\mu}(u)-h_{\mu}(0)\right| \leqslant C \int_{\mathbf{R}}|s u|^{1 / 4} \mathrm{~d}|\mu|(s)=C\|\mu\| \cdot|u|^{1 / 4},
$$

which implies that

$$
\operatorname{vp}\left(\frac{h_{\mu}([x, x])}{[x, x]}\right) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{4}\right)
$$

is well-defined for $\mu \in \mathcal{M}$.
By (2.5),

$$
\begin{equation*}
\mathcal{F}(\mu([x, x]))=\operatorname{vp}\left(\frac{h_{\mu}([x, x])}{[x, x]}\right) \tag{2.7}
\end{equation*}
$$

holds for $\mu=\delta_{s}, s \in \mathbf{R}$. Note, however, that the vector space V of linear combinations of $\delta_{s}, s \in \mathbf{R}$, is not dense in \mathcal{M} with respect to the norm topology. In contrast, V is dense in \mathcal{M} if we equip it with the weak topology σ with respect to the space

$$
\left\{f \in \mathcal{C}(\mathbf{R}) ;(1+|s|)^{-1 / 4} f(s) \text { is bounded }\right\}
$$

Since (2.7) holds for each μ in V and both sides depend, as elements of $\mathcal{S}^{\prime}\left(\mathbf{R}^{4}\right)$ with the weak topology, continuously on μ in \mathcal{M} with respect to σ, we conclude that (2.7) holds for each $\mu \in \mathcal{M}$. In particular, for $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{1}\right)$ such that $f(s)|s|^{1 / 4} \in$ $L^{1}(\mathbf{R})$, we infer that

$$
\mathcal{F}(f([x, x]))=\operatorname{vp}\left(\frac{1}{[x, x]} \int_{-\infty}^{\infty} f(s) g(s[x, x]) \mathrm{d} s\right),
$$

and this completes the proof.

3. Representations of $\mathcal{F}(f([x, x]))$ derived by contour deformation

In Section 2, we deduced formulas for $\mathcal{F}(f([x, x]))$ which apply to "arbitrary" functions f satisfying suitable, dimension-dependent growth conditions. In this section, we shall, in contrast, assume that f is the boundary value of a meromorphic function $f(z)$ defined in the complex upper half-plane $\operatorname{Im} z>0$, and we shall express $\mathcal{F}(f([x, x]))$ in part by residues.

Proposition 5. Let $f(z)$ be meromorphic in the complex upper half-plane $\operatorname{Im} z>0$ with the poles $z_{1}, \ldots, z_{m}, m \in \mathbf{N}_{0}$, and assume that f is of polynomial growth, i.e.,

$$
\exists N \geqslant 0: \forall z \in \mathbf{C} \text { with } \operatorname{Im} z>0:|f(z)| \leqslant N(1+|z|)^{N}
$$

We suppose, furthermore, that $f(s+\mathrm{i} \epsilon)$ converges locally uniformly for $\epsilon \searrow 0$ and that the limit fulfills $f(s)(1+|s|)^{(n-3) / 4} \in L^{1}(\mathbf{R})$.

Then $S:=f([x, x]) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ and $\mathcal{F} S$ is given in $[x, x] \neq 0$ by

$$
\begin{aligned}
\mathcal{F} S= & 2 \mathrm{i}(2 \pi)^{n / 2}\left(Y(-[x, x])+\mathrm{e}^{-(n-2) \pi \mathrm{i} / 2} Y([x, x])\right) \\
& \times \sum_{j=1}^{m} \operatorname{Res}_{z=z_{j}}\left[f(z)\left(\frac{z}{-[x, x]}\right)^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-z[x, x]})\right] \\
& +\frac{\mathrm{i}}{2}(2 \pi)^{n / 2} Y(-[x, x]) \int_{-\infty}^{0} f(s)\left(\frac{s}{[x, x]}\right)^{(n-2) / 4} J_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s \\
& +\frac{\mathrm{i}}{2}(2 \pi)^{n / 2} Y([x, x])\left\{\frac{2}{\pi} \sin \left(\frac{n-2}{2} \pi\right)\right. \\
& \times \int_{-\infty}^{0} f(s)\left(-\frac{s}{[x, x]}\right)^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-s[x, x]}) \mathrm{d} s \\
& +\int_{0}^{\infty} f(s)\left(\frac{s}{[x, x]}\right)^{(n-2) / 4}\left[J_{-(n-2) / 2}(\sqrt{s[x, x]})\right. \\
& \left.\left.-2 \mathrm{e}^{-(n-2) \pi \mathrm{i} / 2} J_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s\right]\right\} .
\end{aligned}
$$

(With respect to the residues, we note that $z^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{z})$ can be considered as a holomorphic function of $z \in \mathbf{C} \backslash(-\infty, 0]$.)
Proof. First observe that $\mathcal{F}\left(\delta_{s}([x, x))\right.$ is, according to formulas (2.1) and (2.2) in Proposition 1, infinitely differentiable in the region G of \mathbf{R}^{n} where $[x, x] \neq 0$; furthermore, for fixed x in $G, \mathcal{F}\left(\delta_{s}([x, x))\right.$ is bounded by a multiple of $(1+|s|)^{(n-3) / 4}$ if $|s| \rightarrow \infty$. Hence we can employ the formula

$$
\mathcal{F} S=\mathcal{F}\left(f([x, x))=\int_{-\infty}^{\infty} f(s) \mathcal{F}\left(\delta_{s}([x, x)) \mathrm{d} s\right.\right.
$$

in G.
Setting $G=G_{+} \cup G_{-}$with $G_{ \pm}=\left\{x \in \mathbf{R}^{n} ; \pm[x, x]>0\right\}$, and $W_{ \pm}:=$ $\mathcal{F}\left(\left.f([x, x))\right|_{G_{ \pm}}\right.$, respectively, we obtain

$$
\begin{align*}
W_{-}= & 2^{n / 2} \pi^{(n-2) / 2}|[x, x]|^{(2-n) / 2} \\
& \times\left[\int_{0}^{\infty} f(s)(-s[x, x])^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-s[x, x]}) \mathrm{d} s\right. \\
& \left.-\frac{\pi}{2} \int_{-\infty}^{0} f(s)(s[x, x])^{(n-2) / 4} N_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s\right] \\
= & 2^{n / 2} \pi^{(n-2) / 2}|[x, x]|^{(2-n) / 2} \\
& \times\left[\int_{-\infty}^{\infty} f(s)(-s[x, x])^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-s[x, x]}) \mathrm{d} s\right. \\
& \left.+\frac{\mathrm{i} \pi}{2} \int_{-\infty}^{0} f(s)(s[x, x])^{(n-2) / 4} J_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s\right] . \tag{3.1}
\end{align*}
$$

In the integral over $(-\infty, 0]$ we have used the formula

$$
(t+\mathrm{i} 0)^{\lambda / 2} K_{\lambda}(\sqrt{t+\mathrm{i} 0})=-\frac{\pi}{2}|t|^{\lambda / 2}\left[N_{\lambda}(\sqrt{|t|})+\mathrm{i} J_{\lambda}(\sqrt{|t|})\right], \quad \lambda=\frac{n-2}{2},
$$

valid for $t=-s[x, x]<0$, see $[6,8.407 .2,8.476 .8]$.
Finally, we apply the residue theorem to the integral in (3.1) which contains the function $K_{(n-2) / 2}(\sqrt{-s[x, x]})$, and we infer that the following equation holds for $[x, x]<0$:

$$
\begin{aligned}
\mathcal{F} S= & 2 \mathrm{i}(2 \pi)^{n / 2} \sum_{j=1}^{m} \operatorname{Res}_{z=z_{j}}\left[f(z)\left(\frac{z}{-[x, x]}\right)^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-z[x, x]})\right] \\
& +\frac{\mathrm{i}}{2}(2 \pi)^{n / 2} \int_{-\infty}^{0} f(s)\left(\frac{s}{[x, x]}\right)^{(n-2) / 4} J_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s .
\end{aligned}
$$

Similarly, Proposition 1 furnishes

$$
\begin{aligned}
W_{+}= & 2^{n / 2} \pi^{(n-2) / 2}[x, x]^{(2-n) / 2} \\
& \times\left[\cos \left(\frac{n-2}{2} \pi\right) \int_{-\infty}^{0} f(s)(-s[x, x])^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-s[x, x]}) \mathrm{d} s\right. \\
& \left.-\frac{\pi}{2} \int_{0}^{\infty} f(s)(s[x, x])^{(n-2) / 4} N_{-(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s\right] \\
= & 2^{n / 2} \pi^{(n-2) / 2}[x, x]^{(2-n) / 2} \\
& \times\left[\mathrm{e}^{-(n-2) \pi \mathrm{i} / 2} \int_{-\infty}^{\infty} f(s)(-s[x, x])^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{-s[x, x]}) \mathrm{d} s\right. \\
& +\mathrm{i} \sin \left(\frac{n-2}{2} \pi\right) \int_{-\infty}^{0} f(s)(-s[x, x])^{(n-2) / 4} K_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s \\
& +\frac{\mathrm{i} \pi}{2} \int_{0}^{\infty} f(s)(s[x, x])^{(n-2) / 4} \\
& \left.\times\left[J_{-(n-2) / 2}(\sqrt{s[x, x]})-2 \mathrm{e}^{-(n-2) \pi \mathrm{i} / 2} J_{(n-2) / 2}(\sqrt{s[x, x]})\right] \mathrm{d} s\right] .
\end{aligned}
$$

Here we have used the identity

$$
\begin{aligned}
(t-\mathrm{i} 0)^{\lambda / 2} K_{\lambda}(\sqrt{t-\mathrm{i} 0})= & -\frac{\pi}{2}|t|^{\lambda / 2} \mathrm{e}^{\mathrm{i} \lambda \pi}\left[N_{-\lambda}(\sqrt{|t|})\right. \\
& \left.+\mathrm{i} J_{-\lambda}(\sqrt{|t|})-2 \mathrm{e}^{-\mathrm{i} \lambda \pi} J_{\lambda}(\sqrt{|t|})\right], \quad \lambda=\frac{n-2}{2},
\end{aligned}
$$

valid for $t=-s[x, x]<0$ (see $[6,8.407 .2,8.476 .1,8.476 .3]$), in order to replace the function $N_{-(n-2) / 2}(\sqrt{s[x, x]})$. If the integral involving $K_{(n-2) / 2}(\sqrt{-s[x, x]})$ is expressed by residues, we obtain the terms of the formula in Proposition 5 referring to the region G_{+}. This completes the proof.

4. Temperate fundamental solutions of the iterated Klein-Gordon operator

The iterated Klein-Gordon operator $\left(\partial_{0}^{2}-\Delta_{n-1}-c^{2}\right)^{m}=\left([\partial, \partial]-c^{2}\right)^{m}, c \in \mathbf{C}$, $m \in \mathbf{N}$, is hyperbolic in the direction $x_{0}=t$, and hence this operator possesses one and only one fundamental solution with support in the half-space $x_{0} \geqslant 0$, see [18, pp. 89, 90], [22, (VI,5;30), p. 179], [12], [10], [8, Thm. 12.5.1, p. 120]. This fundamental solution is calculated best by means of the many-dimensional Laplace transformation, see [26, § 9], [13]. Note that the Laplace transformation can be applied since this fundamental solution has its support inside a convex cone.

In contrast, we are aiming here at deriving a temperate fundamental solution E of $\left(\partial_{0}^{2}-\Delta_{n-1}-c^{2}\right)^{m}$ by Fourier transformation. Under the assumption of $c^{2} \in \mathbf{C} \backslash$ \mathbf{R}, we have $\left([x, x]+c^{2}\right)^{-m} \in \mathcal{O}_{M}\left(\mathbf{R}^{n}\right)$ and hence $E=(-1)^{m} \mathcal{F}^{-1}\left(\left([x, x]+c^{2}\right)^{-m}\right) \in$ $\mathcal{O}_{C}^{\prime}\left(\mathbf{R}^{n}\right)$, and this is the only temperate fundamental solution of $\left(\partial_{0}^{2}-\Delta_{n-1}-c^{2}\right)^{m}$. Except for the case of odd n and $[x, x]>0$, the application of Proposition 5 proves to be advantageous to that of Proposition 1.

Proposition 6. Let $c \in \mathbf{C}$ with $\operatorname{Re} c>0, \operatorname{Im} c \neq 0$, and define $z^{\lambda}=\mathrm{e}^{\lambda \log z}$ by $\operatorname{Im}(\log z) \in(-\pi, \pi)$ for $z \in \mathbf{C} \backslash(-\infty, 0]$.
(1) The holomorphic distribution-valued function

$$
E_{\lambda}: \mathbf{C} \longrightarrow \mathcal{O}_{C}^{\prime}\left(\mathbf{R}^{n}\right): \lambda \longmapsto \mathcal{F}^{-1}\left(\left([x, x]+c^{2}\right)^{-\lambda}\right)
$$

has, for $\operatorname{Re} \lambda>\frac{n}{2}-1$, the representation

$$
\begin{equation*}
E_{\lambda}(x)=\frac{\mathrm{e}^{-\mathrm{i} \operatorname{sign}(\operatorname{Im} c)(n-1) \pi / 2}}{(2 \pi)^{n / 2} 2^{\lambda-1} \Gamma(\lambda)}\left(\frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda} K_{n / 2-\lambda}(c \sqrt{[x, x]}) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right) . \tag{4.1}
\end{equation*}
$$

Here we set $\sqrt{[x, x]}=-\mathrm{i} \operatorname{sign}(\operatorname{Im} c) \sqrt{-[x, x]}$ if $[x, x]<0$.
(2) $E_{\lambda}: \mathbf{C} \rightarrow \mathcal{O}_{C}^{\prime}\left(\mathbf{R}^{n}\right)$ is a group homomorphism from the additive group \mathbf{C} into the convolution group \mathcal{O}_{C}^{\prime}, i.e., $E_{\lambda} * E_{\mu}=E_{\lambda+\mu}$ for each $\lambda, \mu \in \mathbf{C}$.
(3) In particular, $E_{-m}=\left(-[\partial, \partial]+c^{2}\right)^{m} \delta$, and the only temperate fundamental solution of the iterated Klein-Gordon operator $\left(\partial_{0}^{2}-\Delta_{n-1}-c^{2}\right)^{m}$ is $E=$ $(-1)^{m} E_{m}$.

Proof. Due to the assumptions on $c, \operatorname{Im}\left([x, x]+c^{2}\right) \neq 0$ for $x \in \mathbf{R}^{n}$, and hence the powers $\left([x, x]+c^{2}\right)^{-\lambda}, \lambda \in \mathbf{C}$, are defined by means of the determination of the logarithm given in the proposition. Therefore $\lambda \mapsto E_{\lambda}$ is an entire function with values in \mathcal{O}_{C}^{\prime}. Since, obviously,

$$
\left([x, x]+c^{2}\right)^{-\lambda} \cdot\left([x, x]+c^{2}\right)^{-\mu}=\left([x, x]+c^{2}\right)^{-\lambda-\mu}, \quad \lambda, \mu \in \mathbf{C},
$$

the mapping $\lambda \mapsto E_{\lambda}$ is a group homomorphism from $(\mathbf{C},+)$ into $\left(\mathcal{O}_{C}^{\prime}, *\right)$.
In order to calculate E_{λ}, let us first assume that both $\operatorname{Re} c$ and $\operatorname{Im} c$ are positive, and let us distinguish four cases according to whether n is even or odd, and whether $[x, x]$ is positive or negative, respectively.

If n is odd and $[x, x]>0$, then Proposition 1 yields, by $[6,8.465 .2]$ and [15, 4.23, p. 36], the following for $\operatorname{Re} \lambda>\frac{n-1}{4}$:

$$
\begin{aligned}
E_{\lambda} & =\mathcal{F}^{-1}\left(\left([x, x]+c^{2}\right)^{-\lambda}\right) \\
& =-\frac{1}{2(2 \pi)^{n / 2}[x, x]^{(n-2) / 4}} \int_{0}^{\infty} \frac{s^{(n-2) / 4}}{\left(s+c^{2}\right)^{\lambda}} N_{-(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s \\
& =\frac{(-1)^{(n-1) / 2}}{(2 \pi)^{n / 2}[x, x]^{(n-2) / 4}} \int_{0}^{\infty} \frac{u^{n / 2}}{\left(u^{2}+c^{2}\right)^{\lambda}} J_{(n-2) / 2}(u \sqrt{[x, x]}) \mathrm{d} u \\
& =\frac{(-1)^{(n-1) / 2}}{(2 \pi)^{n / 2} 2^{\lambda-1} \Gamma(\lambda)}\left(\frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda} K_{n / 2-\lambda}(c \sqrt{[x, x]}) .
\end{aligned}
$$

On the other hand, if n is arbitrary, $[x, x]<0$ and $\operatorname{Re} \lambda>\frac{n+1}{4}$, then Proposition 5 furnishes with $f(z)=\left(z+c^{2}\right)^{-\lambda}$

$$
\begin{aligned}
E_{\lambda} & =\frac{\mathrm{i}}{2}(2 \pi)^{-n / 2} \int_{-\infty}^{0}\left(s+c^{2}\right)^{-\lambda}\left(\frac{s}{[x, x]}\right)^{(n-2) / 4} J_{(n-2) / 2}(\sqrt{s[x, x]}) \mathrm{d} s \\
& =\frac{\mathrm{i}^{-\mathrm{i} \lambda \pi}}{(2 \pi)^{n / 2}(-[x, x])^{(n-2) / 4}} \int_{0}^{\infty} \frac{u^{n / 2}}{\left(u^{2}-c^{2}\right)^{\lambda}} J_{(n-2) / 2}(u \sqrt{-[x, x]}) \mathrm{d} u \\
& =\frac{\mathrm{i} \mathrm{e}^{-\mathrm{i} \lambda \pi}}{(2 \pi)^{n / 2} 2^{\lambda-1} \Gamma(\lambda)}\left(\frac{-\mathrm{i} c}{\sqrt{-[x, x]}}\right)^{n / 2-\lambda} K_{n / 2-\lambda}(-\mathrm{i} c \sqrt{-[x, x]}) .
\end{aligned}
$$

Due to

$$
\left(\frac{-\mathrm{i} c}{\sqrt{-[x, x]}}\right)^{n / 2-\lambda}=\left(\mathrm{e}^{-\mathrm{i} \pi} \frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda}=\left(\frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda} \mathrm{e}^{\mathrm{i} \lambda \pi} \mathrm{e}^{-\mathrm{i} n \pi / 2}
$$

the last expression coincides with the result in (4.1) for $[x, x]<0$.
Finally, let us consider the case of n even and $[x, x]$ positive. Then Proposition 5 and [6, 8.404.2] yield

$$
\begin{aligned}
E_{\lambda}= & \frac{\mathrm{i}[x, x]^{(2-n) / 4}}{2(2 \pi)^{n / 2}} \int_{0}^{\infty} \frac{s^{(n-2) / 4}}{\left(s+c^{2}\right)^{\lambda}} \\
& \times\left[J_{-(n-2) / 2}(\sqrt{s[x, x]})-2 \mathrm{e}^{(n-2) \pi \mathrm{i} / 2} J_{(n-2) / 2}(\sqrt{s[x, x]})\right] \mathrm{d} s \\
= & \frac{\mathrm{i}(-1)^{n / 2}}{(2 \pi)^{n / 2}([x, x])^{(n-2) / 4}} \int_{0}^{\infty} \frac{u^{n / 2}}{\left(u^{2}+c^{2}\right)^{\lambda}} J_{(n-2) / 2}(u \sqrt{[x, x]}) \mathrm{d} u \\
= & \frac{\mathrm{e}^{-\mathrm{i} \pi(n-1) / 2}}{(2 \pi)^{n / 2} 2^{\lambda-1} \Gamma(\lambda)}\left(\frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda} K_{n / 2-\lambda}(c \sqrt{[x, x]}) .
\end{aligned}
$$

So in each case, we have obtained the result announced in Proposition 6, at least for $[x, x] \neq 0$. Let us observe that, for $\operatorname{Re} \lambda>\frac{n}{2}-1$,

$$
\left(\frac{c}{\sqrt{[x, x]}}\right)^{n / 2-\lambda} K_{n / 2-\lambda}(c \sqrt{[x, x]}) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)
$$

due to

$$
K_{\nu}(z) \sim \frac{1}{2} \Gamma(\nu)\left(\frac{1}{2} z\right)^{-\nu}, \quad z \rightarrow 0, \operatorname{Re} \nu>0
$$

see [1, 9.6.9, p. 375]. For sufficiently large $\operatorname{Re} \lambda$, the distribution E_{λ} must be locally integrable, as one can see by approximation from $\mathcal{F}^{-1}\left(\left(\alpha^{2} x_{0}^{2}-x_{1}^{2}-\cdots-x_{n-1}^{2}-\right.\right.$ $\left.\left.c^{2}\right)^{\lambda}\right), \alpha=1+\mathrm{i} \epsilon, \epsilon \rightarrow 0$. Therefore, formula (4.1) in the proposition holds for all complex λ satisfying $\operatorname{Re} \lambda>\frac{n}{2}-1$ by analytic continuation. To conclude the proof, we employ the relation $E_{\lambda, c}=\overline{E_{\bar{\lambda}, \bar{c}}}$ in order to reduce the case of $\operatorname{Im} c<0$ to that of $\operatorname{Im} c>0$.

Remarks.

(1) [5] arrives at a formula comparable to (4.1) using analytic continuation with respect to the coefficients of the quadratic form $[x, x]$, see $[5, \mathrm{Ch}$. III, 2.8, (8), p. 289].
(2) Let us emphasize again (cfalso the introduction) that the formulas (2.1), (2.2) in Proposition 1, respectively the one in [23, Thm. 1, p. 509], which refers to $\mathcal{F}(\phi([x, x])), \phi \in \mathcal{S}(\mathbf{R})$, do not directly yield the simple result in Proposition 6, except for the case of n odd and $[x, x]>0$.

Corollary 2. Let $c \in \mathbf{C}$ with $\operatorname{Re} c>0, \operatorname{Im} c \neq 0$, and set, as in Proposition 6 , $\sqrt{[x, x]}=-\mathrm{i} \operatorname{sign}(\operatorname{Im} c) \sqrt{-[x, x]}$ for $[x, x]<0$. Let E denote the uniquely determined temperate fundamental solution of $\partial_{0}^{2}-\Delta_{n-1}-c^{2}$.
(a) If $n=2$, then

$$
E=\frac{\mathrm{i} \operatorname{sign}(\operatorname{Im} c)}{2 \pi} K_{0}(c \sqrt{[x, x]}) \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{2}\right) .
$$

(b) If $n=3$, then

$$
E=\frac{\mathrm{e}^{-c \sqrt{[x, x]}}}{4 \pi \sqrt{[x, x]}} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right) .
$$

(c) If $n=4$, then

$$
E=-\frac{\mathrm{i} \operatorname{sign}(\operatorname{Im} c)}{4 \pi^{2}} \operatorname{vp}\left(\frac{c}{\sqrt{[x, x]}} K_{1}(c \sqrt{[x, x]})\right)+\frac{1}{4 \pi} \delta([x, x]) .
$$

Proof. For $n=2$ or $n=3$, Proposition 6 immediately yields the results, since then $E=-E_{1} \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$. For $n=4$, in contrast, we have to determine $E=$ $-E_{1}=-\lim _{\lambda \backslash 1} E_{\lambda}$, since $E_{\lambda} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{4}\right)$ holds only for $\operatorname{Re} \lambda>\frac{n}{2}-1=1$.

If $n=4, \operatorname{Re} \lambda>1$ and $\operatorname{Im} c>0$, then

$$
\begin{aligned}
E_{\lambda}(x) & =\frac{\mathrm{i}}{4 \pi^{2} \cdot 2^{\lambda-1} \Gamma(\lambda)}\left(\frac{c}{\sqrt{[x, x]}}\right)^{2-\lambda} K_{2-\lambda}(c \sqrt{[x, x]}) \\
& =\frac{\mathrm{i}}{2^{\lambda+1} \pi^{2} \Gamma(\lambda)} \lim _{\epsilon \searrow 0}\left[([x, x]-\mathrm{i} \epsilon)^{\lambda-2}(c \sqrt{[x, x]})^{2-\lambda} K_{2-\lambda}(c \sqrt{[x, x]})\right]
\end{aligned}
$$

because of $\sqrt{[x, x]}=-\mathrm{i} \sqrt{[x, x]}$ for $[x, x]<0$, which implies

$$
\lim _{\epsilon \searrow 0}\left[([x, x]-\mathrm{i} \epsilon)^{\lambda-2}(c \sqrt{[x, x]})^{2-\lambda}\right]=\left(\frac{c}{\sqrt{[x, x]}}\right)^{2-\lambda}
$$

Sokhotski's formula furnishes for the boundary values

$$
\lim _{\epsilon \backslash 0}([x, x]-\mathrm{i} \epsilon)^{\lambda-2}=:([x, x]-\mathrm{i} 0)^{\lambda-2}
$$

the following limit relation in $\mathcal{S}^{\prime}\left(\mathbf{R}^{4}\right)$:

$$
\lim _{\lambda \searrow 1}([x, x]-\mathrm{i} 0)^{\lambda-2}=\operatorname{vp}\left(\frac{1}{[x, x]}\right)+\mathrm{i} \pi \delta([x, x]) .
$$

Since the function $f(t)=c t K_{1}(c t), t \in \mathbf{R}$, is \mathcal{C}^{1}, it can be multiplied with the principal value and with the delta function, and therefore

$$
E=-\frac{\mathrm{i}}{4 \pi^{2}} \operatorname{vp}\left(\frac{c}{\sqrt{[x, x]}} K_{1}(c \sqrt{[x, x]})\right)+\frac{1}{4 \pi} \delta([x, x]) .
$$

As before, for $\operatorname{Im} c<0$, we use $E_{1, c}=\overline{E_{1, \bar{c}}}$.
Remark. For $n=4$, the limits with respect to $c=\mathrm{i} \epsilon, \pm \epsilon \searrow 0$, yield the following fundamental solutions $E_{ \pm}$of the wave operator $\partial_{0}^{2}-\partial_{1}^{2}-\partial_{2}^{2}-\partial_{3}^{2}=\square_{4}$:

$$
E_{ \pm}=\mp \frac{\mathrm{i}}{4 \pi^{2}} \operatorname{vp}\left(\frac{1}{[x, x]}\right)+\frac{1}{4 \pi} \delta([x, x])=\mp \frac{\mathrm{i}}{4 \pi^{2}} \operatorname{vp}\left(([x, x] \mp \mathrm{i} 0)^{-1}\right)
$$

Note that $\mathcal{F}(\delta([x, x]))=-4 \pi \operatorname{vp}\left([x, x]^{-1}\right)$ by Corollary 1 (e), and hence $\square_{4} \operatorname{vp}\left([x, x]^{-1}\right)=0$, i.e., $\operatorname{vp}\left([x, x]^{-1}\right)$ is a solution of the homogeneous wave equation in \mathbf{R}^{4}. On the other hand,

$$
\operatorname{Re} E_{ \pm}=\frac{1}{4 \pi} \delta([x, x])=\frac{\delta\left(\left|x_{0}\right|-\left|x^{\prime}\right|\right)}{8 \pi\left|x_{0}\right|}, \quad x^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)^{T}
$$

originates as convex combination of the retarded and the advanced fundamental solution $\delta\left(x_{0} \mp\left|x^{\prime}\right|\right) /\left(4 \pi\left|x^{\prime}\right|\right)$.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th printing, Dover, New York, 1970.
[2] N. N. Bogolubov, A. A. Logunov and I. T. Todorov, Axiomatic Quantum Field Theory, Benjamin, Reading, MA, 1975.
[3] G. Friedlander and M. Joshi, Introduction to the Theory of Distributions, 2nd ed., Cambridge Univ. Press, Cambridge, 1998.
[4] L. Gårding and J.-L. Lions, Functional analysis, Nuovo Cimento 10 (1959), Suppl. 14, 9-66.
[5] I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. I, Academic Press, New York, 1964.
[6] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1980.
[7] L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. I, Grundlehren Math. Wiss. 256, Springer, Berlin, 1983.
[8] L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. II, Grundlehren Math. Wiss. 257, Springer, Berlin, 1983.
[9] J. Horváth, Distribuciones definidas por prolongación analítica, Rev. Colombiana Mat. 8 (1974), 7-95.
[10] E. M. de Jager, Applications of Distributions in Mathematical Physics, Math. Centrum, Amsterdam, 1969.
[11] A. I. Komech, Linear partial differential equations with constant coefficients, In: Partial Differential Equations. Vol. II (Enc. Math. Sci. Vol. 31, ed. by Yu.V. Egorov and M.A. Shubin), 121-255, Springer, Berlin, 1994.
[12] J. Lavoine, Solution de l'équation de Klein-Gordon, Bull. Sci. Math. 85(2) (1961), 57-72.
[13] J. Leray, Hyperbolic Differential Equations, Institute of Advanced Study, Princeton, 1952.
[14] P.-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Commentarii Math. Helv. 28 (1954), 1-49.
[15] F. Oberhettinger, Tables of Bessel Transforms, Springer, Berlin, 1972.
[16] F. Oberhettinger, Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer, Berlin, 1990.
[17] N. Ortner and P. Wagner, Distribution-Valued Analytic Functions. Theory and Applications, Lecture note 37, Max-Planck-Institut, Leipzig, 2008; http://www.mis.mpg.de/preprints/ln/lecturenote-3708.pdf.
[18] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223; Collected papers: 571-793, Springer, Berlin, 1988.
[19] L. Schwartz, Sur les multiplicateurs de FL', Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 22 (1953), 124-128.
[20] L. Schwartz, Matemática y Física Cuántica, Notas, Universidad de Buenos Aires, 1958.
[21] L. Schwartz, Application of distributions to the theory of elementary particles in quantum mechanics, Gordon and Breach, New York, 1968.
[22] L. Schwartz, Théorie des Distributions, Nouv. éd, Hermann, Paris, 1966.
[23] R. S. Strichartz, Fourier transforms and non-compact rotation groups, Indiana Univ. Math. J. 24 (1974/75), 499-526.
[24] Z. Szmydt, Fourier Transformation and Linear Differential Equations, Reidel, Dordrecht, 1977.
[25] S. E. Trione, On the Fourier transforms of retarded Lorentz-invariant functions, J. Math. Anal. Appl. 84 (1981), 73-112.
[26] V. S. Vladimirov, Generalized Functions in Mathematical Physics, 2nd ed., Mir, Moscow, 1979.

Address: Norbert Ortner and Peter Wagner: University of Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Austria.
E-mail: wagner@mat1.uibk.ac.at
Received: 12 April 2010; revised: 15 June 2010

