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Abstract: We characterize possible bounds for representing functions of arbitrary hyperfunc-
tions. Specifically, there are always representing functions decreasing rapidly outside each strip
near R. Also, exponential decrease of any type on any strip R×±i[c, C], 0 < c < C < ∞, can be
achieved. This will be used in [10] to define an asymptotic Fourier and Laplace transformation
on the space of hyperfunctions.

Keywords: hyperfunctions, Fourier hyperfunctions, representing functions, vector valued hy-
perfunctions.

1. Introduction

Fourier hyperfunctions have been introduced by Kawai [3] to provide a general
and natural frame for Fourier transformation. In fact, these Fourier techniques
may also be applied to general hyperfunctions. This is due to the important result
that any hyperfunction [u] ∈ B(R) := H(C \ R)/H(C) may be extended to a
Fourier hyperfunction, that is, [u] admits a representing function h ∈ [u] which is
of exponential type 0 on each strip outside the real axis, i.e.

∀j ∈ N ∃Cj > 0 : |h(z)| 6 Cje
|z|/j if 1/j 6 | Im z| 6 j.

In fact, the following stronger result of Kaneko and Komatsu holds:

Theorem. Let F ⊂ C\R be closed and k ∈ N. Then any hyperfunction [u] ∈ B(R)
has a representing function h ∈ [u] such that |h(z)| 6 1/k on F .

The theorem was stated without proof by Sato [14]. Classical proofs are based
on Hörmander’s ∂− techniques (by an idea of B.A. Taylor, see [8, Lemma 1]) or
on the flabbiness of the sheaf of hyperfunctions (see [2, Theorem 8.4.4] and also
[7] and [9]) which is usually also proved by solving the ∂− equation.

In the present paper, we will first present a new short proof of this central result
using the well known Köthe duality and the surjectivity criterion [11, Theorem
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26.1] for operators in Fréchet spaces, and we will then discuss the natural question
which are the possible bounds for representing functions of general hyperfunctions.

A more refined version of the above argument will lead to the following char-
acterization: let V := {vn | n ∈ N} be an increasing system of continuous (weight)
functions vn : C \ R→ [0,∞[. Let Fn, n ∈ N, be a closed exhaustion of C \ R and
let

HV(C \ R) := {f ∈ H(C \ R) | ∀n ∈ N : sup
z∈Fn

|f(z)|evn(z) < ∞}.

Using some mild assumptions on Fn and V we get (see Theorem 3.1)

Theorem. The following are equivalent:

(a) Any [u] ∈ B(R) has a representing function h ∈ HV(C \ R).
(b) HV(C \ R) ∩H(C) 6= 0
(c) HV(C \ R) ∩H(C \ {0}) 6= 0

Though there is no representing function of Dirac’s δ−distribution decaying
at infinity faster than 1/|z| we finally get the following surprising improvement of
Kaneko’s and Komatsu’s theorem (see Corollary 3.3):

Let F ⊂ C \R be closed and k ∈ N. Then any hyperfunction [u] ∈ B(R) has a
representing function h ∈ [u] such that |zkh(z)| 6 1/k on F and such that |znh(z)|
is bounded on F for any n.

For Fourier and Laplace transformation of hyperfunctions it is interesting to
notice that we can always find a representing function in the space

H−∞(C \ R) := {f ∈ H(C \ R) | ∀k ∈ N : sup
1/k6| Im z|6k

|f(z)|ek|Re z| < ∞}.

(see Corollary 2.4).
Using the extension of [u] ∈ B(R) to [u] ∈ H−∞(C \ R)/H−∞(C) we can thus

define an asymptotic Fourier transform on B(R). This will be discussed in detail
in [10].

Representing functions with bounds as above also exist in the case of several
variables. Also, the results are easily transferred to the Fréchet valued situation
which is needed for applications e.g. to the abstract Cauchy problem.

2. The theorem of Kaneko and Komatsu

We will give a new short proof of the theorem of Kaneko and Komatsu in this
section. Recall that [u] is a hyperfunction on R if

[u] ∈ B(R) := H(C \ R)/H(C)

and that h ∈ H(C \ R) is called a representing function of [u] if h ∈ [u].
Let Fn be a closed exhaustion of C \ R, that is,

Fn is closed, Fn ⊂ int(Fn+1) for any n and
⋃

n∈N
Fn = C \ R.
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Let V := {vn | n ∈ N} be an increasing system of continuous (weight) functions
vn : C \ R→ [0,∞[. We define the Fréchet space HV(C \ R) by

HV(C \ R) := {f ∈ H(C \ R) | ∀n ∈ N : ‖f‖n := sup
z∈Fn

|f(z)|evn(z) < ∞}.

The main result of this section is the following slight improvement of the the-
orem of Kaneko and Komatsu mentioned in the introduction:

Theorem 2.1. Let F ⊂ C \ R be closed and let k ∈ N. Then any [u] ∈ B(R) has
a representing function h such that |zh(z)| 6 1/k on F .

The proof of Theorem 2.1 is based on the Köthe - duality: For a compact
K ⊂ C and ν ∈ H(K)′ let S(ν) := uν where

uν(t) :=
i

2π
〈ξν, 1/(t− ξ)〉, t /∈ K.

Theorem 2.2 ([4]). Let K ⊂ C be compact. Then

S : H(K)′b → H(C \K)/H(C)

is a topological isomorphism and

ν(f) =
∫

γ

uν(ξ)f(ξ)dξ for any f ∈ H(U) (2.1)

if U is a neighborhood of K and γ is a path in U around K with clockwise orien-
tation.

Proof of Theorem 2.1. Choose a closed exhaustion Fn of C\R such that F1 :=
F and set V := {ln+(|z|)}.

(a) We first show that the mapping

T : HV(C \ R)×H(C) → H(C \ R), (f, g) → f + g,

is surjective. Since the transpose of T is
tT (ν) = (ν |HV(C\R), ν |H(C)) for ν ∈ H(C \ R)′

we have to show the following (by the surjectivity criterion [11, 26.1]) :
B ⊂ H(C\R)′ is equicontinuous on H(C\R) if B is equicontinuous onHV(C\R)

and on H(C).
Since B is equicontinuous on H(C) there are n ∈ N and Cj > 0 such that B is

equicontinuous on H(Kn), Kn := {z ∈ C | |z| 6 n}, and
|uν(z)| 6 C1 sup

ξ∈Kn

|1/(z − ξ)| 6 C2 if ν ∈ B and n + 1 6 |z| 6 n + 2. (2.2)

Since B is equicontinuous on HV(C \ R) there are n0 ∈ N and C3 > 0 such that
we get for x ∈ In := [−n− 2, n + 2] and l ∈ N0

|u(l)
ν (x)| = l!

2π
|〈ξν, (x− ξ)−l−1〉| 6 C3l!‖(x− · )−l−1‖n0 6 C4l! dist(x, Fn0)

−l
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where the first equality is due to the fact that the difference quotients [1/(x− · )−
1/(x + h − · )]/h, h ∈ R, converge in H(C \ R). Hence the functions uν (being
holomorphic near R by Theorem 2.2) can be holomorphically extended such that
{uν | ν ∈ B} is uniformly bounded on {z ∈ C | |Re z| < n + 2, | Im z| < γ/2} for
γ := dist(In, Fn0). By Theorem 2.2 and (2.2), this shows a).

(b) The mapping T is surjective by a) and hence open. Thus there are a
compact K ⊂ C \ R and C5 > 0 such that [u] ∈ B(R) (with representing function
v ∈ H(C \ R)) has a representing function f ∈ HV(C \ R) such that

sup
z∈F

|zf(z)| 6 ‖f‖1 6 C5 sup
z∈K

|v(z)|.

Since H(C) is dense in H(C \R) by Runge’s theorem, we may choose v such that
C5 supz∈K |v(z)| 6 1/k. The theorem is proved. ¥

The bounds obtained in Theorem 2.1 will be essentially improved in Corol-
lary 3.3 below.

As we mentioned already in the introduction, Theorem 2.1 directly implies
the extension of Sato’s hyperfunctions to Fourier hyperfunctions Q(R) and to
modified Fourier hyperfunctions R(R). For the convenience of the reader we recall
the respective definitions: Let Fn := {z ∈ C | 1/n 6 | Im z| 6 n} and

Oexp(C \ R) := {f ∈ H(C \ R) | ∀n ∈ N : sup
z∈Fn

|f(z)|e−|z|/n < ∞}

and
Oexp(C) := {f ∈ H(C) | ∀n ∈ N : sup

| Im z|6n

|f(z)|e−|z|/n < ∞}.

The Fourier hyperfunctions are defined by Q(R) := Oexp(C \ R)/Oexp(C). The
modified Fourier hyperfunctions R(R) are defined similarly using the radial com-
pactification of C, especially F̃n := {z ∈ C|| Im z| > 1

n (1 + |Re z|)} is used instead
of Fn in the definition above (see [13]).

Corollary 2.3. The canonical (restriction) mappings

R : Q(R) → B(R) and R(R) → B(R)

are surjective.

Proof. This follows from Theorem 2.1 with F := {z ∈ C | | Im z| > 1/(1 +
|Re(z)|)}. ¥

The next example provides an elementary theory of Fourier and Laplace trans-
formation (see [10]) : let

H−∞(C \ R) := {f ∈ H(C \ R) | ∀n ∈ N : sup
1/n6| Im z|6n

|f(z)|en|Re z| < ∞}

and
H−∞(C) := {f ∈ H(C) | ∀k ∈ N : sup

| Im z|6k

|f(z)|ek|Re z| < ∞}.
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Corollary 2.4. The canonical (restriction) mapping

R : H−∞(C \ R)/H−∞(C) → B(R)

is surjective.

Proof. For [u] ∈ B(R) and f(z) := ez2
let h be a representing function for f [u] :=

[fu] by Theorem 2.1 with F := {z ∈ C | | Im z| > 1/(1 + |Re(z)|)}. Then h/f is a
representing function for [u] as desired. ¥

In [2, 8.4.5] representing functions h were obtained such that, for fixed k ∈ N,
|h(z)|ek|z| is bounded on each strip Fn.

H−∞(C) is the space of test functions for the Fourier ultra-hyperfunctions
(see [12]).

The decay of representing functions in Corollary 2.4 can easily be improved.
By essentially the same proof we obtain:

Remark 2.5. Let Fn := {z ∈ C | 1/n 6 | Im z| 6 n} and V := {en|Re z|k | n ∈ N}
for fixed k ∈ N. Then the canonical (restriction) mapping

R : HV(C \ R)/HV(C) → B(R)

is surjective.

Proof. Apply the proof of Corollary 2.4 with f(z) := ezl

for l > k even. ¥

3. Bounds for representing functions

In view of the different bounds obtained so far for representing functions of hy-
perfunctions it is an interesting question how far we can push the bounds for
representing functions. From now on we will generally assume that HV(C \ R)
is invariant under real shifts and finite derivatives. To have this guaranteed (by
application of Cauchy’s formula) we will use the following assumptions:

∀n ∈ N, x ∈ R ∃k > n, γ > 0 : Fn −Bγ(x) ⊂ Fk. (3.1)

∀n ∈ N, x ∈ R ∃k > n, γ, C > 0∀z ∈ Fn : vn(z) 6 C + inf
|x−ξ|6γ

vk(z−ξ). (3.2)

(3.1) is clearly satisfied by the standard choices Fn := {z ∈ C | 1/n 6 | Im z| 6 n}
or F̃n := {z ∈ C | | Im z| > (1 + |Re z|)/n} used for the examples above.

We now have the following characterization:

Theorem 3.1. Let Fn and V satisfy (3.1) and (3.2). The following are equivalent:

(a) Any [u] ∈ B(R) has a representing function h ∈ HV(C \ R).
(b) HV(C \ R) ∩H(C) 6= 0
(c) HV(C \ R) ∩H(C \ {0}) 6= 0
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Proof. “(a) ⇒ (b)” If HV(C \ R) ∩H(C) = 0, then the mapping

T : HV(C \ R)×H(C) → H(C \ R), (f, g) → f + g,

is injective. Since T is surjective by assumption, T is a topological isomorphism,
hence H(C) is a closed subspace of H(C \R), a contradiction, since H(C) is dense
in H(C \ R) by Runge’s theorem.

“(b) ⇒ (c)” This is evident.
“(c) ⇒ (a)” We modify the proof of Theorem 2.1: Let B ⊂ H(C \ R)′ be

equicontinuous on H(C) and on HV(C \ R). Then there are n ∈ N and Cj > 0
such that

|ν(h)| 6 C0 sup
|z|6n

|h(z)| if ν ∈ B and h ∈ H(C) (3.3)

and thus
|uν(z)| 6 C1 if ν ∈ B and n + 1 6 |z| 6 n + 2 (3.4)

and such that

|ν(h)| 6 C2‖h‖n if ν ∈ B and h ∈ HV(C \ R). (3.5)

Choose g ∈ HV(C \ R) ∩ H(C \ {0}) by assumption. Then h(z) := g(z)z−d also
satisfies the assumptions for g since for any j

|h(z)| 6 |g(z)|(dist(0, Fj))−d for z ∈ Fj .

We may thus assume that the singularity of g at 0 is not removable. By Theorem
2.2, g then is a representing function for 0 6= µ ∈ H({0})′, that is,

g = uµ + h for some h ∈ H(C).

By (3.1) and (3.2) we know that g(l)( · − x) ∈ HV(C \R) for x ∈ R, hence we get
for x ∈ In := [−n− 2, n + 2] by (3.3) and (3.5)

|( d

dx
)luν∗µ(x)| = l!

2π
|〈ξ(ν ∗ µ), (x− ξ)−l−1〉| = l!

2π
|〈ξν, 〈ηµ, (ξ − x− η)−l−1〉〉|

= |〈ξν, u(l)
µ (ξ − x)〉| 6 |〈ξν, g(l)(ξ − x)〉|+ |〈ξν, h(l)(ξ − x)〉|

6 C2‖g(l)( · − x)‖n + C3l! 6 C4l!γ−l(‖g‖k + 1) (3.6)

where k and γ are chosen uniformly for x ∈ In by compactness and by (3.1) and
(3.2). Using also (3.4), the functions uν∗µ can thus be holomorphically extended
such that {uν∗µ | ν ∈ B} is uniformly bounded on {z ∈ C | |Re z| 6 n+2, | Im z| 6
γ/2 or n+1 6 |z| 6 n+2}. Therefore, {ν∗µ | ν ∈ B} is equicontinuous on H(C\R)
by Theorem 2.2. Since the convolution operator µ̌∗ is surjective on H(C \ R) for
any 0 6= µ ∈ H({0})′ by [6] this implies that B is equicontinuous on H(C \ R).
The theorem is proved. ¥
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Of course, for given k ∈ N the representing function h in Theorem 3.1 can be
chosen such that ‖h‖k 6 1/k (by part b) of the proof of Theorem 2.1).

The decay at infinity of the representing function in Theorem 2.1 seems to
be optimal since there is no representing function for Dirac’s δ−distribu- tion
decaying on C at infinity faster than the standard representing function −1/(2πiz).
However, on the closed exhaustion Fn := {z ∈ C | | Im z| > 1/n} of C \ R much
better bounds for representing functions can be obtained. The relevant result is
the following

Theorem 3.2. Let Fn := {z ∈ C | | Im z| > 1/n}. Let V satisfy (3.2) and

∃0 < δ < 1 ∀n ∈ N : vn(z) = O(|z|δ) on Fn. (3.7)

Then any [u] ∈ B(R) has a representing function h ∈ HV(C \ R) if for any k ∈
N there is 0 6= g ∈ H(C \ {0}) such that ‖g‖k < ∞ and such that |g(z)| 6
Cj exp(Cj |z|δ) on Fj for any j.

Proof. We modify the estimate for |〈ξν, g(l)(ξ − x)〉| in (3.6): For δ < α < 1 let
fm(z) := e−(−iz)α/m for Im(z) > 0 and fm(z) := e−(iz)α/m for Im(z) < 0 where
( )α is chosen positive on ]0,∞[. Then there is ε > 0 such that

|fm(z)| 6 exp(−ε|z|α/m) 6 1 on C \ R. (3.8)

This implies that

hm := fmg(l)( · − x) ∈ HV(C \ R) for l ∈ N0 (3.9)

since also |g(l)( · − x)| 6 C̃je
C̃j |z|δ on any Fj by Cauchy’s estimate and therefore

|fm(z)g(l)(z − x)| 6 C̃j exp(−ε|z|α/m + C̃j |z|δ) 6 Dje
−vj(z) on Fj

by (3.7). Since fm → 1 uniformly on compact subsets of C\R we have limm hm =
g(l)( · − x) in H(C \ R). We thus get for x ∈ In := [−n− 2, n + 2] by (3.9), (3.5)
and (3.8)

|〈ξν, g(l)(ξ − x)〉| = lim
m
|〈ξν, hm〉| 6 C1 sup

m
‖hm‖n

6 C1‖g(l)( · − x)‖n 6 C2l!γ−l‖g‖k

where k and γ are chosen uniformly for x ∈ In by compactness and by (3.2). The
conclusion now follows as in the proof of “(c) ⇒ (b)” of Theorem 3.1. ¥

Corollary 3.3. Let F ⊂ C \ R be closed and let k ∈ N. Then any [u] ∈ B(R) has
a representing function h such that |zkh(z)| 6 1/k on F and such that |znh(z)| is
bounded on F for any n.

Proof. Choose a closed exhaustion Fn of C\R such that F1 := F . We may apply
the proof of Theorem 3.2 for g(z) := z−k since the special form of Fn assumed in
3.2 is not needed in the present case. In fact it is clear that hm := fmg(l)( · −x) ∈
HV(C \ R) for l ∈ N0 and that ‖g(l)( · − x)‖n 6 C1C

l
2l!. ¥
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Andreas Schmidt [15] has studied rapidly decreasing hyperfunctions [u]
(i.e. |znu(z)| 6 Cn if 1/n 6 | Im z| 6 n for any n) in connection with asymp-
totic expansions at ∞ and quantum field theory.

The assumption (3.7) is not very restrictive for our problem since there are no
representing functions h decreasing exponentially on Fn := {z ∈ C | | Im z| > 1/n}.
More precisely we have

Remark 3.4. Let Fn := {z ∈ C | | Im z| > 1
n} and V := {n ln+(|z|)|n ∈ N}. If

0 6= h ∈ HV(C+) then |h(z)|eε|Re z| is unbounded on any strip Fε(y0) := {z ∈ C |
| Im z − y0| < ε} for any y0 > ε > 0.

Proof. If |h(z)|eε|Re z| is bounded on Fε(y0) for some y0 > ε > 0, then H(t) :=
h(t+iy0) is holomorphic for | Im(t)| < ε and |H(t)|eε|Re t| is bounded for | Im(t)| <
ε, hence H is in the Gelfand/Shilov space S1

1 (see [1]) and therefore also Ĥ ∈ S1
1

(see [1]). Especially, Ĥ is holomorphic on a strip near R. Since h ∈ HV(C+) we
get by Cauchy’s theorem for any n ∈ N0 and any y > 0

|Ĥ(n)(0)| = |
∫

R
(x + iy)nH(x + iy)dx| 6 C1

∫

R
|x + i(y0 + y)|−2dx → 0

for y →∞. Hence Ĥ(n)(0) = 0 for n ∈ N0 and thus H = 0 and h = 0. ¥

It is not known if any [u] ∈ B(R) has a representing function h such that for
some δ > 0, sup| Im z|>1/n |h(z)|e|z|δ < ∞ for any n ∈ N.

4. Hyperfunctions supported in [0, ∞[

The results obtained sofar can also be proved for hyperfunctions [u] with support
in [0,∞[, i.e. for

[u] ∈ B([0,∞[) := H(C \ [0,∞[)/H(C).

We will only state the part of the results here which is needed in [10]. The formu-
lation of the remaining statements is left to the reader. Let

Gk := {z ∈ C | | Im z| 6 k} \ {z ∈ C | Re z > −1/k and | Im z| < 1/k}

and let V := {vn | n ∈ N} be an increasing system of continuous (weight) functions
vn : C \ [0,∞[→ [0,∞[. We define the spaces HV(C \ [0,∞[) similarly as before by

HV(C \ [0,∞[) := {f ∈ H(C \ [0,∞[) | ∀n ∈ N : sup
z∈Gn

|f(z)|evn(z) < ∞}.

Notice that representing functions in HV(C\ [0,∞[) also satisfy bounds near −∞,
hence the following result is stronger than Theorem 2.1 in that respect.

Theorem 4.1. Let F ⊂ C \ [0,∞[ be closed and let k ∈ N. Then any [u] ∈
B([0,∞[) has a representing function h such that |zh(z)| 6 1/k on F .
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Proof. We repeat the proof of Theorem 2.1 with C \ [0,∞[ instead of C \ R and
x ∈ [0, n + 2] instead of x ∈ In. ¥

The following example will be used for an elementary theory of an asymptotic
Laplace transformation in [10]: let

H−∞(C \ [0,∞[) := {f ∈ H(C \ [0,∞[) | ∀k ∈ N : sup
z∈Gk

|f(z)|ek|Re z| < ∞}.

As before we get

Corollary 4.2. The canonical (restriction) mapping

R : H−∞(C \ [0,∞[)/H−∞(C) → B([0,∞[)

is surjective.

5. Vector valued hyperfunctions

Using the π−tensorproduct it is no major effort to transfer our results to hyper-
functions with values in Fréchet spaces. This is interesting for application of the
Laplace transform to the abstract Cauchy problem for closed operators in Fréchet
spaces (see [10]). Similarly, results for hyperfunctions in several variables can be
obtained from the single variable case considered sofar. Both extensions of the
preceding results are shortly discussed in this section.

Let X be a Fréchet space with system (‖ ‖n)n∈N defining the topology. The
space of X-valued holomorphic functions on an open set U ⊂ C is denoted by
H(U,X). The space of X-valued hyperfunctions on R (supported in [0,∞[, re-
spectively) is by definition

B(R, X) := H(C \ R, X)/H(C, X)

(and B([0,∞[, X) := H(C \ [0,∞[, X)/H(C, X), respectively).

For a closed exhaustion Fk of C \R and a system V of weight functions we define
HV(C \ R, X) by

HV(C \ R, X) := {f ∈ H(C \ R, X) | ∀n ∈ N : sup
z∈Fn

‖f(z)‖nevn(z) < ∞}.

The spaces HV(C, X) (and HV(C \ [0,∞[, X)) are defined similarly (see also Sec-
tion 4).

Theorem 5.1. Assume that

∀n ∈ N ∃m ∈ N : vn(z) + 2 ln(1 + |z|) 6 C + vm(z) on Fn. (5.1)

If the canonical mappings

R : HV(C \ R) → B(R) (and R : HV(C \ [0,∞[) → B([0,∞[), resp.)



42 Michael Langenbruch

are surjective, then the canonical mappings

R : HV(C \ R, X) → B(R, X) (and R : HV(C \ [0,∞[, X) → B([0,∞[, X))

are surjective.

Proof. By assumption the mappings

T : H(C)×HV(C \ R) → H(C \ R), (f, g) → f + g

and
T : H(C)×HV(C \ [0,∞[) → H(C \ [0,∞[), (f, g) → f + g

are surjective. Since X is a Fréchet space, the mappings

T ⊗ id : H(C)⊗̂πX ×HV(C \ R)⊗̂πX → H(C \ R)⊗̂πX

and
T : H(C)⊗̂πX ×HV(C \ [0,∞[)⊗̂πX → H(C \ [0,∞[)⊗̂πX

are also surjective by [5, §41.5(7)]. H(U) is nuclear for open U ⊂ C. By the
mean value property of holomorphic functions and (5.1), the spaces HV(C \ R)
and HV(C \ [0,∞[) could be defined using L1−norms instead of sup−norms.
Hence these spaces are also nuclear. This shows the claim since H(U,X) =
H(U)⊗̂πX,HV(C \ R, X) = HV(C \ R)⊗̂πX and HV(C \ [0,∞[, X) = HV(C \
[0,∞[)⊗̂πX by nuclearity. ¥

The following Corollary will be applied in [10]:

Corollary 5.2. Let X be a Fréchet space. The canonical mappings

R : H−∞(C\R, X) → B(R, X) and R : H−∞(C\[0,∞[, X) → B([0,∞[, X)

are surjective.

We finally discuss representing functions for hyperfunctions on Rk and hyper-
functions supported in the cone [0,∞[k, respectively. These can be treated similar
to the vector valued case. We shortly recall the respective definitions: Let F ⊂ C
be closed and let

Ck]F k := (C \ F )k

and
Ck]jF

k := (C \ F )× · · · × (C \ F )× C× (C \ F )× · · · × (C \ F )

where the factor C is put in the jth place. The spaces of hyperfunctions on Rk

(and of hyperfunctions supported in [0,∞[k, respectively) are defined by

B(Rk) := H(Ck]Rk)/
k∑

j=1

H(Ck]jRk)
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and

B([0,∞[k) := H(Ck][0,∞[k)/
k∑

j=1

H(Ck]j [0,∞[k).

Let Vj := {vj,n | n ∈ N}, j = 1, . . . , k, be systems of weight functions on C \ R
as before and set V := {vn(z) :=

∑k
j=1 vj,n(zj) | n ∈ N}. For j = 1, . . . , k let

Fj,n, n ∈ N, be closed exhaustions of C \ R and set Fn := F1,n × · · · × Fk,n. Then

HV(Ck]Rk) := {f ∈ H(Ck]Rk) | ∀n ∈ N : sup
z∈Fn

|f(z)|evn(z) < ∞}.

Theorem 5.3. Let Vj satisfy (5.1) for j 6 k. If the canonical mappings

Rj : HVj(C \ R) → B(R) (and Rj : HVj(C \ [0,∞[) → B([0,∞[), resp.)

are surjective for j = 1, . . . , k, then the canonical mappings

R : HV(Ck]Rk) → B(Rk) (and R : HV(Ck][0,∞[k) → B([0,∞[k))

are also surjective.

Proof. The proof is given only forHV(Ck]Rk). The other case is treated similarly.
The mappings

Tj : HVj(C \ R)×H(C) → H(C \ R), (f, g) → f + g,

are surjective by assumption. Since X is a Fréchet space, the mapping

T := ⊗̂k

j=1Tj : ⊗̂k

j=1

(HVj(C)×H(C \ R)
) → ⊗̂k

j=1H(C \ R) = H(Ck]Rk)

is surjective by [5, §41.5(7)]. (5.1) implies that the spaces HVj(C \R) are nuclear
and hence

HV(Ck]Rk) = HV1(C \ R)⊗̂π . . . ⊗̂πHVk(C \ R).

Since also H(C \ R) is nuclear, similar equations hold for the tensor products of
some factors H(C) and some factors HVj(C \R). Since these tensor products are
all contained in

∑k
j=1 H(Ck]jRk) the theorem is proved. ¥

Corollary 5.4. The canonical mappings

R : H−∞(Ck]Rk) → B(Rk) and R : H−∞(Ck][0,∞[k) → B([0,∞[k)

are surjective.
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