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ON THE DIOPHANTINE EQUATION x2 + 5a · 11b = yn

İsmail Naci Cangül, Musa Demirci, Gökhan Soydan, Nikos Tzanakis

Abstract: We give the complete solution (n, a, b, x, y) of the title equation when gcd(x, y) = 1,
except for the case when xab is odd. Our main result is Theorem 1.

Keywords: Exponential Diophantine equation, S-Integral points of an elliptic curve, Thue-
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1. Introduction

The literature on the exponential Diophantine equation

x2 + C = yn, x > 1, y > 1, n > 3 (1.1)

goes back to 1850 when Lebesque [25] proved that the equation (1.1) has no so-
lutions when C = 1. The title equation is actually a special case of the Dio-
phantine equation ay2 + by + c = dxn, where a, b, c and d are integers, a 6= 0,
b2 − 4ac 6= 0, d 6= 0, which has only a finite number of solution in integers x and
y when n > 3; see [23]. J.H.E. Cohn [20], solved (1.1) for most values of C in the
range 1 6 C 6 100. The equations x2 + 74 = y5 and x2 + 86 = y5 that are not
solved in that paper, were later solved by Mignotte and de Weger in [33], and the
remaining unsolved cases in Cohn’s paper were solved by Bugeaud, Mignotte and
Siksek in [14].

Upper bounds for the exponent n can be obtained as an application of the
work of Bérczes, Brindza and Hajdu [9] and of Győry [22]. These results are based
on the Theory of Linear Forms in Logarithms and the obtained upper bounds,
though effective, are not explicit.

Recently, the case in which C is a power of a fixed prime gained the inter-
est of several authors. In [1], Arif and Muriefah solve x2 + 2k = yn under cer-
tain assumptions. In [24], Le verifies a conjecture of J.H.E Cohn saying that
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x2 + 2k = yn has no solutions with even k > 2 and x odd, which was proposed
in [19]. The equation x2+3m = yn is completely solved by Arif and Muriefah in [2]
when m is odd and by Luca in [28] when m is even. Liqun solves the same equation
independently in [26] for both odd and even m. All solutions of x2 +5m = yn with
m odd are given by Arif and Muriefah in [3] and with m even by Muriefah in [5].
Again, the same equation is independently solved by Liqun in [27]. In [4], Arif
and Muriefah give the complete solution of x2 + q2k+1 = yn for q odd prime, q 6≡ 7
(mod 8) and n > 5 prime to 6h, where h is the class-number of the number field
Q(
√−q). Luca and Togbe solve x2 + 72k = yn in [31] and Bérczes and Pink [10]

solve (1.1) with C = p2k, where 2 6 p < 100 is prime, (x, y) = 1 and n > 3.
More complicated cases, in which C is a product of at least two prime powers

are considered in some recent papers. For example, the complete solution (n, x, y)
with n > 3 and gcd(x, y) = 1 of the equation (1.1), when C is one of 2a3b, 5a13b,
2a5b13c, 2a11b, 2a3b11c is respectively given in [29], [7], [21], [16], [17]. In [32] the
equation (1.1) with C = 2a5b is solved when n ∈ {3, 4, 5, 6, 8} and gcd(x, y) = 1.
In [35] all the non-exceptional solutions (in the terminology of that paper) of the
equation (1.1) with C = 2a3b5c7d are given (with n > 3). Note that finding all
the exceptional solutions of this equation seems to be a very difficult task.

A survey of many relevant results can be found in [6].
In this paper, we study the equation

x2 + 5a · 11b = yn , x > 1, y > 1, (x, y) = 1, n > 3, a > 0, b > 0 . (1.2)

Our main result is the following.

Theorem 1. When n = 3, the only solutions to the equation (1.2) are

(a, b, x, y) =(0, 1, 4, 3), (0, 1, 58, 15), (0, 2, 2, 5), (0, 3, 9324, 443), (1, 1, 3, 4),
(1, 1, 419, 56), (2, 3, 968, 99), (3, 1, 37, 14), (5, 5, 36599, 1226) , (1.3)

and, consequently, (a, b, x, y) = (1, 1, 3, 2) is the only solution when n = 6.
When n = 4, the equation (1.2) has no solutions.
When n > 5, n 6= 6, the equation (1.2) has no solutions (a, b, x, y) with ab odd

and x even, or with at least one of a, b even.

Remark. For n > 5, n 6= 6, the above theorem lefts out the solutions (a, b, x, y)
with xab odd. These are exactly the exceptional solutions of the equation 1.2 in
the terminology of [35]; see also the remark at the end of this paper.

The proof of Theorem 1 is given in sections 2, 3 and 4, where the cases n = 3,
n = 4 and n > 5 are respectively considered. Our numerous, crucial com-
putations in Section 2 have been done mainly with the aid of Magma [13],
[15]; to a less extent we have also been aided by the routines of Pari
(http://pari.math.u-bordeaux.fr).

Note that since n > 3, it follows that n is either a multiple of 4 or a multiple of
an odd prime p, therefore it suffices to study the equation (1.2) when n = 3, 4 or
an odd prime > 5. Furthermore, note that if b = 0, then our equation reduces to
the equation x2 + 5a = yn, which is solved in [27]. Also, when a = 0, the equation
(1.2) reduces to x2 + 11b = yn which is solved in [16].
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2. Equation (1.2) with n = 3

This section is devoted to the proof of the following result.

Proposition 2. The complete solution of the equation

x2 + 5a11b = y3 , a > 0, b > 0, x > 0, y > 0, gcd(x, y) = 1 (2.1)

is given in (1.3).

Writing in (2.1) a = 6A + i, b = 6B + j with 0 6 i, j 6 5 we see that
( y

52A112B
,

x

53A113B

)

is an S-integral point (X, Y ) on the elliptic curve

Eij : Y 2 = X3 − 5i11j ,

where S = {5, 11}, with the numerator of X being prime to 55, in view of the
restriction gcd(x, y) = 1. A practical method for the explicit computation of all
S-integral points on a Weierstrass elliptic curve has been developed by Pethő,
Zimmer, Gebel and Herrmann in [34] and has been implemented in Magma. The
relevant routine SIntegralPoints worked without problems for all (i, j) except
for (i, j) = (2, 5), (4, 4), (5, 4). Thus, in the non-exceptional cases (i, j), i.e. when
(a, b) 6≡ (2, 5), (4, 4), (5, 4) (mod 6), all solutions to equation (2.1) turned out to
be those appearing in (1.3). For the exceptional pairs (i, j) = (2, 5), (4, 4), (5, 4)
Magma returns no S-integral points under the assumption that the rank of the
corresponding curve Eij is zero, an assumption that the routine itself cannot certify.
Again using Magma, we performed a 2-descent, followed by a 4-descent which
proved that the rank is actually zero in the first two cases (i, j) = (2, 5), (4, 4),
allowing us to arrive safely to the following conclusion:

When (a, b) 6≡ (5, 4) (mod 6), all solutions to equation (2.1) are those
displayed in (1.3).

In the third exceptional case (i, j) = (5, 4), the 4-descent reveals the non-torsion
point

(X,Y ) =
(

997597438498050698749
101288668233063249

,
31508127105495852851671290908932

32236010714473507582283943

)

on the curve E54, which proves invalid the assumption under which Magma
”claims” non-existence of S-integral points on E54. Thus, non-existence of inte-
gral solutions to (2.1) when (a, b) ≡ (5, 4) (mod 6) cannot be considered as a fact
that has been proved by Magma routines. Therefore we treat this equation sepa-
rately, indicating thus an alternative method for resolving equations x2 + C = y3

when C has a prescribed (“small”) set of distinct prime divisors. Moreover, the
resolution of the Thue-Mahler equation (2.13) that we present in section 2 is in-
teresting per se, as it deals with a totality of non-trivial computational problems
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that never before (to the best of our knowledge) have been encountered in the
resolution of a Thue-Mahler equation; we acknowledge here the great usefulness
of the relevant routines of Magma.

In conclusion, according to our discussion so far, for the proof of Proposition 2
it remains to show that the equation

x2 + 5a11b = y3 , (a, b) ≡ (5, 4) (mod 6), x 6= 0, gcd(x, 5 · 11) = 1 , (2.2)

has no solutions. We write (2.2) as

y3 − 52 · 11 · (5c11d)3 = x2 , cd odd, (y, 5 · 11) = 1. (2.3)

and in what follows we will reduce its solution to a number of Thue or Thue-
Mahler equations. A practical solution of Thue equations has been developed by
Tzanakis and de Weger [36] which later was improved by Bilu and Hanrot [11] and
implemented in Pari and Magma. We will make use of the relevant routines sev-
eral times without special mentioning. Concerning the Thue-Mahler equations, no
automatic resolution is available so far and we will follow the method of Tzanakis
and de Weger [37].

Factorization of (2.3) in the field Q(θ), where θ3 = 52 · 11, gives

(y − 5c11dθ)(y2 + 5c11dyθ + 52c112dθ2) = x2 .

In the field Q(θ) the ideal class-number is 3, an integral basis is given by 1, θ, θ2/5
and the fundamental unit is ε = 1+338θ−52θ2 with norm +1. It is easily checked
that the two factors in the left-hand side of the last equation above are relatively
prime, hence we have an ideal equation (y − 5c11dθ) = a2, where a is an integral
ideal. Since the class-number is relatively prime to the exponent of a, this ideal
must be principal, generated by an integral element u+vθ+wθ2/5. Then, passing
to element equation, we get

y − 5c11dθ = ±εi(u + vθ + wθ2/5)2 .

Taking norms we see that, necessarily, the plus sign must hold above. Also, com-
paring coefficients of θ in both sides we see very easily that w must be divisible
by 5, hence, on replacing w by 5w, we rewrite the last equation as follows:

y − 5c11dθ = εi(u + vθ + wθ2)2 . (2.4)

We consider two cases, depending on the value of i.
Let i = 0. Equating coefficients of like powers of θ in both sides of (2.4) we

obtain the following relations:

v2 + 2uw = 0 (2.5)

2uv + 275w2 = −5c · 11d (2.6)

u2 + 550vw = y (2.7)
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The above equations, along with the fact that gcd(y, 5 · 11) = 1, easily imply that
gcd(u,w) = 1 and w is odd, hence (2.5) implies that

u = 2sv2
1 , w = −sv2

2 , v = 2v1v2 , s ∈ {−1, 1} , gcd(2v1, v2) = 1

and substitution into (2.6) gives

−5c · 11d = 275v4
2 + 8sv3

1v2 = v2((2sv1)3 + 275v3
2) . (2.8)

Since c is odd, it is > 1, therefore, from (2.8) one of v1, v2 is divisible by 5. If 5
divides v1, then 25 divides the right-hand side, hence c must be > 2 and since it
is odd, it must be at least 3. But then 53 divides 275v4

2 , hence 5 divides v2 which
contradicts the fact that gcd(v1, v2) = 1. Therefore, 5 divides v2 and does not
divide v1.

If 11 also divides v2, then, neither 5 nor 11 divides (2sv1)3 + 275v3
2 , hence,

by (2.8) we have v2 = ±5c · 11d and (2sv1)3 + 275v3
2 = ±1. But since the only

solutions of the Thue equation X3 +275Y 3 = ±1 is (X,Y ) = (±1, 0), the previous
equation is impossible. Therefore 11 divides v1 and does not divide v2. Now, if
d > 1, then (2.8) implies that 275v4

2 is divisible by 112, hence 11 divides v2, a
contradiction. Therefore, d = 1 and by our discussion so far we conclude, in view
of (2.8), that v2 = ±5c and (2sv1)3 + 275v3

2 = ∓11, which is impossible since the
Thue equation X3 + 275Y 3 = 11 is impossible.

We conclude therefore that equation (2.4) is impossible when i = 0.
Next, let i = 1. Equating coefficients of like powers of θ in (2.4) gives

−52u2 + 676vu + 2wu + v2 + 92950w2 − 28600wv = 0 (2.9)

338u2 + 2vu− 28600wu− 14300v2 + 275w2 + 185900wv = −5c · 11d (2.10)

u2 − 28600vu + 185900wu + 92950v2 − 3932500w2 + 550wv = y (2.11)

From the above equations it is easy to see that v is even w is odd and (since also
gcd(y, 5 ·11) = 1) gcd(u,w) = 1. On the other hand, equation (2.9) can be written
as

2(52u− 2199w)(1099u− 46475w) = (v + 338u− 14300w)2 .

Since ∣∣∣∣
52 −2199

1099 −46475

∣∣∣∣ = 1

and gcd(u,w) = 1, it follows that the two parenthesis in the left-hand side of the
last equation are relatively prime, the first one being odd, because w is odd. It
follows that

52u− 2199w = sX2

1099u− 46475w = 2sY 2

v + 338u− 14300w = ±2XY



214 İsmail Naci Cangül, Musa Demirci, Gökhan Soydan, Nikos Tzanakis

where X, Y are integers and s ∈ {−1, 1}. Solving the system in u, v, w we obtain
expressions of u, v, w in terms of X, Y ; then, substitution into (2.10) gives

150975X4 ± 185900X3Y + 85800X2Y 2 ± 17592XY 3 + 1352Y 4 = 5c · 11d .

Replacement of −X by X shows that we may consider only the plus sign in the
above equation. We have thus obtained a Thue-Mahler equation which we will
solve in the next section.

2.1. The solution of the Thue-Mahler equation

In this section we prove that the Thue-Mahler equation

150975X4 + 185900X3Y + 85800X2Y 2 + 17592XY 3 + 1352Y 4 = 5c · 11d (2.12)

has no solutions. We will follow closely the method of [37] which, to the best of
our knowledge is the only systematic exposition found so far in the literature. For
the convenience of the reader, we will use the same notation with [37] as far as
possible. The notation in this section is independent of the notation used in the
others sections of the present paper.

Putting x = 2 · 132Y , y = X (obviously, (x, y) = 1), we transform equation
(2.12) into

x4 + 4398x3y + 7250100x2y2 + 5309489900xy3 + 1457454977550y4 = 2 · 1365c11d.
(2.13)

We work in the field K = Q(θ), where θ is a root of the polynomial

g(t) = t4 + 4398t3 + 7250100t2 + 5309489900t + 1457454977550 ∈ Q[t].

The ideal-class number is 1 and an integral basis is 1, θ, (4θ + θ2)/169, (92950θ +
173θ2 + θ3)/142805. For shortness, we will use the notation γ = [a, b, c, d], where
a, b, c, d ∈ Z, to mean that the algebraic integer γ ∈ K has the coefficients a, b, c, d
with respect to the above integral basis.

A pair of fundamental units is

ε1 = [677070473, 1764897, 260182, 69044]
ε2 = [7564704083, 22782192, 3852447, 1164105] .

The factorization of the rational primes 2, 5, 11 and 13 is as follows:

2 = ε−1
2 π4

2 π2 = [21436, 39, 3, 0]

5 = ε−1
1 ε2π51π

3
52 , π51 = [9690469, 26053, 3965, 1087]

π52 = [653350925, 1762426, 269424, 74288]

11 = π111π
3
112 , π111 = [1060859, 2835, 429, 117]

π112 = [204919, 535, 79, 21]
13 = −π131π132 , π131 = [127759589, 344590, 52671, 14521]

π132 = [16961503, 45062, 6773, 1833] ,
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where all the prime elements πij above, except for π132 are of degree 1, and π132

is of degree 3.
In the notation of relation (3) of [37],

f0 ← 1, c ← 2 · 136, p1 ← 5, z1 ← c, p2 ← 11, z2 ← d.

Fix the prime p ∈ {5, 11}. For the elements of the ring Zp of p-adic integers we will
use the notation 0.d0d1d2 . . ., where d0, d1, d2, . . . are integers between 0 and p−1,
to mean the p-adic integer d0+d1p+d2p

2+· · · . In the sequel, all our computations
with p-adic numbers have been done with the relevant Magma routines.

Over Qp[t] we have the factorization of g(t) = g1(t)g2(t) as in the following
table.

Table 1. Factorization g(t) = g1(t)g2(t) into irreducibles over Qp

p g1(t) g2(t)
5 t− (0.20404 . . .) t3 + (0.00011 . . .)t2 + (0.00422 . . .)t + (0.00444 . . .)
11 t− (0.25033 . . .) t3 + (0.09363 . . .)t2 + (0.09900 . . .)t + (0.052(10)6 . . .)

We denote by Lp the splitting field of g(t) over Qp. This is obtained in two steps,
as shown in the following table.

Table 2. Kp = Qp(u), gp1(u) = 0 and Lp = Kp(v), gp2(v) = 0

p gp1(t) gp2(t)
5 t2 + 4t + 2 t3 + (0.03001 . . .)t2 + (0.00111 . . .)t + (0.04442 . . .)
11 t2 + 7t + 2 g2(t)

The roots of g(t) are shown in the following table.

Table 3. The roots of g(t) over Qp

p θ(1) θ(2), θ(3), θ(4)

5 0.20404 . . . (0.10001 . . .)v2 + (0.04220 . . .)v + (0.00011 . . .),
(0.30230 . . .)uv2 + (0.33140 . . .)v2 + (0.00424 . . .)uv

+(0.03143 . . .)v + (0.00344 . . .)u + (0.00132 . . .),
(0.24214 . . .)uv2 + (0.11303 . . .)v2 + (0.00120 . . .)uv

+(0.03032 . . .)v + (0.00203 . . .)u + (0.00444 . . .)
11 0.25033 . . . v,

(0.(10)4(10)71 . . .)uv2 + (0.26306 . . .)v2 + (0.(10)3(10)63 . . .)uv
+(0.72327 . . .)v + (0.026(10)3 . . .)u + (0.08801 . . .),

(0.16039 . . .)uv2 + (0.947(10)4 . . .)v2 + (0.17047 . . .)uv
+(0.38783 . . .)v + (0.09407 . . .)u + (0.05936 . . .)
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For γ ∈ Qp we define, as usually, ordp(γ) = m iff γ = pmµ, where µ is a p-adic
unit. We extend the function ordp to Lp by the formula

ordp(γ) =
1
6
ordp(NLp/Qp

(γ))

(see section 4 of [37]). By Statement (i) of the First Corollary of Lemma 1, p.231
of [37] we conclude that at most one among π51 and π52 divides x− yθ. Moreover,
if π52 divides x−yθ, then Statement (ii) of the same Corollary asserts that at most
π2

52 divides x− yθ. Similarly, at most one among π111 and π112 divides x− yθ and
if this is the case with the second one, then at most its first power divides x− yθ.
These observations and standard arguments of Algebraic Number Theory lead to
the following ideal equation (cf. relation (9) of [37])

〈x− yθ〉 = abpn1
1 pn2

2 ,

where
a ∈ {〈π2π

6
131〉, 〈π2π

3
131π132〉, 〈π2π

2
132〉},

b = 〈πj1
52π

j2
112〉, (0 6 j1 6 2, 0 6 j2 6 1)

p1 = 〈π51〉, p2 = 〈π52〉 .
c = n1 + j1 with (n1 > 0 and j1 = 0) or (n1 = 0 and j1 6 2),
d = n2 + j2 with (n2 > 0 and j2 = 0) or (n2 = 0 and j2 6 1).

(2.14)

Following the strategy (and notation) of section 7 of [37] we obtain the following
relation:

λ = δ2

(
ε
(i0)
1

ε
(j)
1

)a1
(

ε
(i0)
2

ε
(j)
2

)a2
(

π
(i0)
51

π
(j)
51

)n1
(

π
(i0)
111

π
(j)
112

)n2

λ = δ1

(
ε
(k)
1

ε
(j)
1

)a1
(

ε
(k)
2

ε
(j)
2

)a2
(

π
(k)
51

π
(j)
51

)n1
(

π
(k)
111

π
(j)
112

)n2

− 1 ,

(2.15)

where

δ1 =
θ(i0) − θ(j)

θ(i0) − θ(k)
· α(k)

α(j)
, δ2 =

θ(j) − θ(k)

θ(k) − θ(i0)
· α(i0)

α(j)
,

α ∈ {π6
131, π

3
131π132, π

2
132} · π2π

j1
52π

j2
112

with j1, j2 as in (2.14).
We view (2.15) either as a relation in Lp, where p ∈ {5, 11} as the case may

be, and in this case i0 = 1, j = 2, k = 3 (cf. table of roots of g(t) over Qp), or as a
relation in C, in which case we number the real/complex roots of g(t) as θ1, θ2, the
real ones, and θ3, θ4 the pair of complex-conjugate roots, and we take i0 ∈ {1, 2}
(one must consider both cases), j = 3, k = 4.

We set now

A = max{|a1|, |a2|}, N = max{n1, n2}, H = max{A,N}.
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We apply Yu’s theorem (Theorem 1 in [38]) in its somewhat simplified version pre-
sented in Appendix A2 of [37]. Note that the least field generated over Q by the five
algebraic numbers appearing in λ (cf. (2.15)) is of degree 24. Thus, in the notation
of the above mentioned Appendix A2, n1 ← 24, n2 ← 48, (q, u) ← (2, 2), f2 ← 1,
and after the computation of the various parameters in Yu’s theorem, we obtain
the values c13, c14 (p. 238 of [37]) for which

N 6 c13(log H + c14) ,

namely, c13 = 2.0564× 1039, c14 = 7.7425.
Next, we work with real/complex linear forms in logarithms of agebraic num-

bers. In the terminology of [37], p. 243, we encounter a “complex case”, therefore,
following that paper, we consider the linear form

Λ0 = i−1Log(1 + λ) = i−1Log

(
δ1

(
ε
(k)
1

ε
(j)
1

)a1
(

ε
(k)
2

ε
(j)
2

)a2
(

π
(k)
51

π
(j)
51

)n1
(

π
(k)
111

π
(j)
112

)n2
)

where Log denotes the principal branch of the complex logarithmic function. Since,
for every z ∈ C, i−1Log(z/z) = Arg(z/z), where Arg denotes the principal Argu-
ment, we have after expansion (remember that i0 = 1, 2 and j = 3, k = 4),

Λ0 = Arg
θ(i0) − θ(3)

θ(i0) − θ(4)
· α(4)

α(3)
+ a1Log(δ1

(
ε
(4)
1

ε
(3)
1

)
+ a2Arg

(
ε
(4)
2

ε
(3)
2

)

+ n1Arg

(
π

(4)
51

π
(3)
51

)
+ n2Arg

(
π

(k)
111

π
(j)
112

)
+ a0(2π) . (2.16)

According to relation (27), p. 245 of [37], we have

0 < |Λ0| < 1.02c21e
−c15A ,

where c21 and c16 are explicit, and we need further a lower bound of the shape
|Λ0| > exp(−c7(log H + 2.5)) (see p. 246 of [37]). Baker-Wüstholz’s theorem [8]
furnishes us c7 = 8.43 × 1056. The constant c16 must be less than 3.809 . . . (for
the choice of c16 see [37], bottom of p. 239). The constants c7, c13, c14 and c16 are
the crucial ones in the computation of an upper bound for H. A number of other
parameters must be obtained by elementary but quite cumbersome calculations.
A very detailed exposition of how this list of parameters are calculated for the
general Thue-Mahler equation is exposed in the first eleven sections of [37], culmi-
nating to an explicit upper bound for H. Fortunately, the computation of these
constants, including that of c7, c13, c14 and c16, can be rather easily implemented
in (for example) Maple or Magma. For our equation the upper bound that we
calculate is

H < K0 = 5.792× 1058 . (2.17)
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Especially for N , a smaller upper bound is obtained by the Corollary to The-
orem 10, p. 248 of [37], namely

N < N0 = 2.942× 1041 . (2.18)

Thus, the upper bound for H is, actually, the upper bound for A.

Reduction of the upper bound. In order to considerably reduce the upper
bound (2.18) by the so called p-adic reduction process, we need the p-adic loga-
rithmic function logp z, which is defined for every p-adic unit z ∈ Lp and takes
values in Lp; see the detailed exposition in section 12 of [37].

For p ∈ {5, 11} we put (viewing λ in (2.15) as an element of Lp)

Λ = logp(1+λ) = logp δ1 +n1 logp

π
(k)
51

π
(j)
51

+n2 logp

π
(k)
111

π
(j)
111

+a1 logp

ε
(k)
1

ε
(j)
1

+a2 logp

ε
(k)
2

ε
(j)
2

,

where the indices can be chosen arbitrarily from the set {2, 3, 4} (k 6= j). Express-
ing Λ in terms of the basis 1, u, v, uv, v2, uv2 of Lp/Qp, we can write

Λ = Λ0 + Λ1u + Λ2v + Λ3uv + Λ4v
2 + Λ5uv2 ,

where each Λi is a linear form

Λi = αi0 + αi1n1 + αi2n2 + αi3a1 + αi4a2 , αij ∈ Zp , (i = 0, . . . , 5).

Following the discussion of section 14 of [37], for each i, we divide by the αij whose
ordp has a minimal value (actually, this is obtained for som j > 0), obtaining thus
a linear form

Λ′i = −β0 − β1b1 − β2 + b2 − β3b3 + b4 ,

where (b1, b2, b3, b4) is a permutation of (n1, n2, a1, a2). At this point we note that
the p-adic numbers β0, . . . , β3 are computed with a high p-adic precision m. We
denote by β(m) the rational integer which approximates β with m p-adic digits; in
other words, ordp(β − β(m)) > m.

Following the p-adic reduction process described in section 15 of [37], we con-
sider the lattice whose basis is formed by the columns of the matrix




W 0 0 0
0 1 0 0
0 0 1 0

β
(m)
1 β

(m)
2 β

(m)
3 pm


 ,

where W is an integer somewhat larger than K0/N0; in this case we choose W =
2 · 1017. Then we obtain an LLL-reduced basis of the lattice. As explained in
section 15 of [37], if m is sufficiently large, then it is highly probable that a certain
condition stated in Proposition 15 of [37] (in which condition the reduced basis is,
of course, involved) is fulfilled; and if the condition is fulfilled, then, according to
that Proposition 15, n1, n2 6 m + 1. It turns out that, if p = 5, then m = 306
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is sufficient for the condition of Proposition 15 to be fulfilled; and if p = 11, it
suffices to have a precision of m = 207 11-adic digits. Thus, in the first p-adic step
we made a huge ”jump”, falling from (2.18) to N 6 N1 = 307.

Now it is the turn of the real reduction step. We rewrite the linear form Λ0 in
(2.16) as

Λ0 = ρ0 + n1λ1 + n2λ2 + a1µ1 + a2µ2 + a0µ3 (µ3 = 2π)

and for C = 10m, with m a sufficiently large integer (having nothing to do with
the m in the p-adic reduction process), we put

φ0 = [Cρ0], φi = [Cλi] (i = 1, 2) , ψi = [Cµi] (i = 1, 2, 3) ,

where [x] = bxc if x > 0 and [x] = dxe if xN0. In practice, this means that we
must compute our real numbers ρ, λ, µ with a precision of somewhat more than m
decimal digits.

Following the discussion of section 16 of [37], we consider the lattice whose
basis is formed by the columns of the matrix




W 0 0 0 0
0 W 0 0 0
0 0 1 0 0
φ1 φ2 ψ1 ψ2 ψ3


 .

Again, we compute an LLL reduced basis for the lattice and, according to Propo-
sition 16 of [37], if a certain condition, in which the reduced basis is involved, is
satisfied, then a considerably smaller upper bound for H is obtained. It is highly
probable that this condition is satisfied if C = 10m is sufficiently large. As it turns
out in our case, m = 200 is sufficient and the reduced upper bound implied by
the above mentioned Proposition 16 is H 6 K1 = 546, an enormous ”jump” from
(2.17)!

This strategy of a p-adic reduction process followed by a real reduction process
is repeated, with K1 in place of K0 and N1 in place of N0, giving even smaller
upper bounds, namely, N 6 N2 = 32 and H 6 K2 = 74. We repeat the process
once more. The 5-adic reduction process gives n1 6 25 and the 11-adic reduction
process gives n2 6 18. The real reduction process gives H 6 59. Thus,

0 6 n1 6 25 , 0 6 n2 6 18 , A = max{|a1|, |a2|} 6 59 . (2.19)

The sieve after the reduction. The bounds (2.19) cannot be further im-
proved, therefore we have to search whether there exist quadruples (a1, a2, n1, n2)
in the range (2.19) and pairs (i1, i2) and (j1, j2) in the range

(i1, i2) ∈ {(6, 0), (3, 1), (0, 2)} , 0 6 j1 6 2 , 0 6 j2 6 1 , (2.20)

such that

h(i1, i2, j1, j2, a1, a2, n1, n2) := π2π
i1
131π

i2
132π

j1
52π

j2
112ε

a1
1 εa2

2 πn1
51 πn2

111 (2.21)
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is of the form x− yθ, i.e., such that, after expanding the right-hand side in (2.21)
and expressing it in terms of the basis 1, θ, θ2, θ3 of K/Q, the coefficients of θ2 and
θ3 are zero. Doing this check by ”brute force” is very time consuming. Instead, we
choose to do the following sieving process (see also section 18 of [37]).

Let q be a rational prime which splits into four distinct (first degree) prime
divisors ρ1, . . . , ρ4 of K. Then, for every algebraic integer γ ∈ K, there exist
rational integers Ai, i = 1, . . . 4, such that γ ≡ Ai (mod ρi). As a consequence,
every (rational) relation with algebraic integers of K implies congruences mod ρi,
one for every i = 1, . . . , 4. But since in these congruences the elements of K are
replaced by rational integers, these are valid also as congruences in Z modulo q.

Take, for example, q = 31. Then, we have the ideal factorization 〈q〉 =∏4
i=1〈ρi〉, where

θ ≡ 1 (mod ρ1) , θ ≡ 17 (mod ρ2) , θ ≡ 19 (mod ρ3) , θ ≡ 29 (mod ρ4) .

From a relation of the form x− yθ = h(i), where i = (i1, i2, j1, j2, a1, a2, n1, n2) is
in the range (2.19) and (2.20), we obtain the four congruences

x−y ≡ H1(i) , x−17y ≡ H2(i) , x−19y ≡ H3(i) , x−29y ≡ H4(i) (mod 31)
(2.22)

where H1(i) is the rational integer resulting on replacing θ by 1 in h(i), and
similarly for the remaining Hj(i)’s. Then,

27H1(i) + 5H2(i) ≡ H3(i) , 7H1(i) + 25H2(i) ≡ H4(i) (mod 31) . (2.23)

Note now that, for every algebraic integer γ ∈ K, the order of γ modulo 31 is a
divisor of 30. The orders of ε1, ε2, π51, π111 modulo 31 are 30,15,15,30, respectively.
Therefore, we check the congruences (2.23) for all i’s with (i1, i2) and (j1, j2) as
in (2.20) and 0 6 a1 6 29, 0 6 a2 6 14, 0 6 n1 6 14, 0 6 n2 6 18.

For example, when (i1, i2, j1, j2) = (6, 0, 2, 1), there are 4275 quadruples
(a1, a2, n1, n2) that satisfy the first congruence (2.23). We check which of them
also satisfy the second congruence (2.22) and only 117 quadruples pass the test.
Now, these 117 quadruples must be lifted to cover the range (2.19), resulting to
6532 quadruples. Thus, there are 6532 6-tuples i = (6, 0, 2, 1, a1, a2, n1, n2) with
a1, a2, n1, n2 in the range indicated by (2.19), that satisfy both congruences (2.22).

Next, we work similarly with the prime q = 79 (which splits into four distinct
prime divisors of K). The analogous to the congruences (2.22) are now

x−6y ≡ H ′
1(i) , x−14y ≡ H ′

2(i) , x−41y ≡ H ′
3(i) , x−44y ≡ H ′

4(i) (mod 73) ,

implying the anlogous to (2.23) congruences

24H ′
1(i)− 23H ′

2(i) ≡ H ′
3(i) , −22H ′

1(i) + 23H ′
2(i) ≡ H ′

4(i) (mod 73) .

We check which of the 6532 6-tuples i, obtained before, satisfy the last congruences
and only three 6-tuples pass the test, which are tested by a final similar test with
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the prime 223 in place of 73; no one passes the test. This shows that no 6-tuple
(6, 0, 2, 1, a1, a2, n1, n2) is accepted.

A similar test is repeated for every (i1, i2) and (j1, j2) as in (2.20) and always
we end up with no acceptable (i1, i2, j1, j2, a1, a2, n1, n2).

Final conclusion of section 2.1: The Thue-Mahler equation (2.13) has
no solutions and, consequently, neither the equation (2.12) has solutions. This
completes the proof of Proposition 2.

3. Equation (1.2) with n = 4

In this section we prove the following result.

Proposition 3. If n = 4, then the equation (1.2) has no solution.

Proof. Since n = 4, equation (1.2) is written as

5a · 11b = (y2 + x)(y2 − x) , (3.1)

from which we obtain

y2 + x = 5a111b1

y2 − x = 5a211b2

where a1, a2, b1, b2 > 0. From the equations above and the assumption gcd(x, y) =
1 it follows that a1, a2 cannot both be positive, and similarly for b1, b2. Summing
the two equations we obtain

Z2 −Du2 = 2 · 5a111b1 (3.2)

where D ∈ {2, 10, 22, 110}, Z = 2y and u = 5a211b2 . We have gcd(Z, u) = 1.
Indeed, otherwise we would have gcd(2y2, u) > 1, hence gcd(5a111b1 + 5a211b2 ,
5a211b2) > 1 which contradicts our remark concerning the pairs a1, a2 and b1, b2

a few lines above.
We claim that a1 = 0. Indeed, suppose that a1 > 1. If D = 2 or 22, then

by (3.2), Z2 ≡ 2u2 (mod 5), implying Z ≡ u ≡ 0 (mod 5), which contradicts
gcd(Z, u) = 1. If D = 10 or 110, then (3.2) implies Z ≡ 0 (mod 5), hence also
2y2 ≡ 0 (mod 5). But 2y2 = 5a111b1 + 5a211b2 and we have assumed that a1 > 1;
therefore, a2 > 1, contradicting our remark that a1, a2 cannot both be positive.

With completely analogous arguments we prove that b1 = 0, by distinguishing
the cases D = 2, 10 and D = 22, 110 and taking into account that b1, b2 cannot
both be positive.

Thus, y2 + x = 1, which is impossible since x and y are positive integers. ¥

4. Equation (1.2) with n >>> 5, n 6= 6

In this section we prove the following result.
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Proposition 4. The equation

x2 + 5a11b = yn , (x, y) = 1, n > 5 , (4.1)

is impossible if at least one among a and b is even or if ab is odd and x is even.

Proof. Since in the previous sections we have completed the study of the equation
x2 + 5a11b = yn with n = 3, 4, we certainly can assume that n is a prime > 5.

We write (4.1) as

x2 + dz2 = yn , d ∈ {1, 5, 11, 55} , z = 5α11β , (4.2)

where the relation of α and β with a and b, respectively, is clear.
If at least one among a and b is even, then d ∈ {1, 5, 11} and we see mod 8

that x is even. If both a and b are odd, then d = 55 and both cases, x even or odd
can arrise. According to the announcement of the Proposition, we consider only
the case that x is even.

We work in the field Q(
√−d). The algebraic integers in this number field are

of the form (u + v
√−d)/2, where u, v ∈ Z with u, v both even, if d = 1, 5 and

u ≡ v(mod 2) if d = 11, 55.
Since x is even, the factors in the left-hand side of the equation (x+z

√−d)(x−
z
√−d) = yn are relatively prime and we obtain the ideal equation 〈x + y

√−d〉 =
an. Then, since the ideal-class number is 1, 2, or 4, and n is odd, we conclude that
the ideal a is principal. Moreover, the units are ±1 and, in case d = 1, also ±i
(i =

√−1). In any case, the units are always n-th powers, so that we can finally
write

x + z
√
−d = µn , µ =

u + v
√−d

2
,

where u, v ∈ Z, with u, v both even, if d = 1, 5 and u ≡ v (mod 2) if d = 11, 55.
For any γ ∈ Q(

√−d) we denote by γ the conjugate of γ. Note that

µ− µ = v
√
−d , µ + µ = u , µµ =

u2 + dv2

4
.

We thus obtain

2 · 5α11β

v
=

2z

v
=

µn − µn

µ− µ
= (by definition) Ln ∈ Z . (4.3)

Thus, 2z
v is the n-th term of Lucas sequence (Lm)m>0. Note that

L0 = 0, L1 = 1 , Lm = uLm−1 − u2 + dv2

4
Lm−2 , m > 2 . (4.4)

Following the nowadays standard strategy based on the important paper [12], we
distinguish two cases according as Ln has or has not primitive divisors.
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Suppose first that Ln has a primitive divisor, say q. By definition, this means
that the prime q divides Ln and q does not divide (µ− µ)2L1 · · ·Ln−1, hence

q 6 |(µ− µ)2L1 · · ·L4 = (dv2) · u · 3u2 − dv2

4
· u2 − dv2

2
. (4.5)

If q = 2, then (4.5) implies that uv is odd, hence d = 11 or 55. If d = 11, then the
third factor in the right-most side of (4.5) is even, a contradiction. If d = 55, then,
from (4.4) we see that Lm ≡ Lm−1 (mod 2), hence Lm is odd for every m > 1,
implying that 2 cannot be a primitive divisor of Ln.

If q = 5, then (4.5) implies that d = 1, 11 and 5 does not divide uv(3u2 −
dv2)(u2 − dv2). It follows easily then that v2 ≡ −u2 (mod 5), so that, by (4.4),
Lm ≡ uLm−1 (mod 5) for every m > 2. Therefore, 5 6 |Ln, so that 5 cannot be
a primitive divisor of Ln.

If q = 11, then, by (4.5), d = 1, 5 and we write u = 2u1, v = 2v1 with u1, v1 ∈ Z,
so that µ = u1+v1

√−d and (4.5) becomes q 6 |u1v1(3u2
1−dv2

1)(u2
1−dv2

1). Moreover,
Lm = 2u1Lm−1 − (u2

1 + dv2
1)Lm−2 for m > 2. Note that µµ = u2

1 + dv2
1 6≡ 0

(mod 11); therefore, by Corollary 2.2 of [12], there exists a positive integer m11

such that 11|Lm11 and m11|m for every m such that 11|Lm. It follows then that
11| gcd(Ln, Lm11) = Lgcd(n,m11)

1. Because of the minimality property of m11,
we conclude that gcd(n,m11), hence, since n is prime, m11 = n. On the other
hand, the Legendre symbol

(
(µ−µ)2

11

)
= −1, hence, by Theorem XII of [18] (or by

Theorem 2.2.4 (iv) of [30]), 11|L12. Therefore m11|12, i.e. n|12, a contradiction,
since n is a prime > 5.

We therefore conclude that Ln has no primitive divisors. Then, by Theo-
rem 1.4 of [12], n < 30. By (4.3), the prime divisors of Ln belong to {2, 5, 11} and
now, looking at the table 1 of [12], we se that the only possibility is n = 5 and
(u,−dv2) = (1,−11), i.e. µ = (1 +

√−11)/2. Going back to (4.3) we obtain no
solution. ¥

Remark (On the case when in (4.1) a, b and x are odd). We explain here
why the method applied for the proof of Proposition 4 does not apply when abx
is odd. In this case d = 55 and we work in the field Q(θ), where θ2 − θ + 14 = 0.
The equation (4.1) is factorized as (x − z + 2zθ)(x + z − 2zθ) = yn, where the
factors in the left-hand side are not relatively prime. Then, using rather standard
arguments of algebraic Number Theory, we are led to the equation

5α11β

v
= z =

1
22(n+1)

· (1 + θ)
n+1

2 µn − (2− θ)
n+1

2 µn

µ− µ
,

which is the analogous to equation (4.3). Now, however, although the right-hand
side is a term of a second order recurrence sequence, it is not a term of a Lucas
sequence and consequently we cannot argue based on the results of [12] as we
previously did.

1By the well-known property of Lucas sequences: gcd(Lm, Lk) = Lgcd(m,k).
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