WAVELET CHARACTERIZATION OF THE POINTWISE MULTIPLIER SPACE \dot{X}_{r}

Sadek Gala, Yoshihiro Sawano

Abstract

In the present note we characterize the function space \dot{X}_{r}, which is the set of pointwise multipliers which map L^{2} into \dot{H}^{-r}. To this end, we use wavelets and capacity.

Keywords: pointwise multiplier, wavelet decomposition

1. Introduction

The aim of the present paper is to characterize the function space \dot{X}_{r} in terms of wavelet expansion, where the space \dot{X}_{r} is the set of pointwise multipliers which map L^{2} into \dot{H}^{-r}, which is defined as follows:

Definition 1.1. For $0 \leqslant r<\frac{d}{2}$, the space \dot{X}_{r} is defined as the space of functions $f \in L_{\text {loc }}^{2}\left(\mathbb{R}^{d}\right)$ that satisfy the following inequality:

$$
\|f\|_{\dot{X}_{r}}=\sup _{\|g\|_{\dot{H}^{r} \leqslant 1}}\|f g\|_{L^{2}}<\infty,
$$

where $\dot{H}^{r}\left(\mathbb{R}^{d}\right)$ stands for the completion of the space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ with respect to the norm $\|u\|_{\dot{H}^{r}}=\left\|(-\Delta)^{\frac{r}{2}} u\right\|_{L^{2}}$.

We refer to [2] for the reference of this field which contains a vast amount of researches of the multiplier spaces. Here and below we place ourselves in the setting of \mathbb{R}^{d} with $d \geqslant 3$.

We shall characterize this norm in terms of the \dot{H}^{r} capacity and wavelets. In the present paper we use the compactly supported wavelet functions with r regularity $(r \geqslant 1)$ proposed by I. Daubechies [3]. For $j \in \mathbb{Z}$ and $\gamma \in \mathbb{Z}^{d}$, we write $Q_{j, \gamma}=\left\{x \in \mathbb{R}^{d}: 2^{j} x-\gamma \in[0,1)^{d}\right\}$. Let \mathcal{Q} be the set of all dyadic cubes in \mathbb{R}^{d}, i.e., $\mathcal{Q}=\left\{Q=Q_{j, \gamma}: j \in \mathbb{Z}, \gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right) \in \mathbb{Z}^{d}\right\}$. Suppose φ and ψ are r-regular

[^0]compactly supported functions obtained by multiresolution approximations. Let $\psi_{0}=\varphi$ and $\psi_{1}=\psi$. For any $\varepsilon \in E:=\left\{0,1, \cdots, 2^{d}-1\right\}$, we use binary expansion to write
$$
\varepsilon=\sum_{j=1}^{d} 2^{j-1} \varepsilon_{j}, \quad \varepsilon_{j} \in\{0,1\}
$$

For $Q_{j, \gamma} \in \mathcal{Q}$ and $\varepsilon=1,2, \cdots, 2^{d}-1$, we let

$$
\psi_{\varepsilon, j, \gamma}(x)=\psi_{\varepsilon, Q_{j, \gamma}}=2^{j \frac{d}{2}} \psi_{\varepsilon}\left(2^{j} x_{1}-\gamma_{1}\right) \cdots \psi_{\varepsilon_{d}}\left(2^{j} x_{d}-\gamma_{d}\right)
$$

It is known that the $\psi_{\varepsilon, j, \gamma}$'s enjoy the following properties :
(a) The system $\left\{\psi_{\varepsilon, j, \gamma}\right\}_{Q_{j, \gamma} \in \mathcal{Q}, \varepsilon \in E}$ forms an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$;
(b) $\operatorname{supp}\left(\psi_{\varepsilon, j, \gamma}\right) \subset M Q_{j, \gamma}, M \geqslant 1$, where $M Q$ is the cube concentric with Q but with the side lenght M times that of Q (i.e., the M-times expansion);
(c) $\left\|\frac{\partial^{\alpha}}{\partial x^{\alpha}} \psi_{\varepsilon, j, \gamma}\right\|_{\infty} \leqslant C 2^{\frac{j d}{2}+|\alpha| j},|\alpha| \leqslant r$;
(d) $\int x^{\alpha} \psi_{\varepsilon, j, \gamma}(x) d x=0,|\alpha| \leqslant r$.

Here we present the definition of capacity (see [1], [2]).
Definition 1.2. The quantity $\operatorname{cap}\left(e, \dot{H}^{r}\right)$ stands for the \dot{H}^{r}-capacity of a compact set $e \subset \mathbb{R}^{d}$, which is defined by

$$
\operatorname{cap}\left(e, \dot{H}^{r}\right)=\inf \left\{\|u\|_{\dot{H}^{r}\left(\mathbb{R}^{d}\right)}^{2}: u \in \mathcal{D}\left(\mathbb{R}^{d}\right), u \geqslant 1 \text { on } e\right\} .
$$

Having clarified the definition of capacity, let us now formulate our main result.
Theorem 1.1. Let $0 \leqslant r<\frac{d}{2}$. Then the following statements are equivalent:
(i) $f \in \dot{X}_{r}\left(\mathbb{R}^{d}\right)$.
(ii) The function f can be expanded as follows:

$$
f=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}} \lambda_{\varepsilon, j, \gamma} \psi_{\varepsilon, j, \gamma}(x),
$$

where $\left\{\lambda_{\varepsilon, j, \gamma}\right\}_{\varepsilon=1,2, \cdots, 2^{d}-1,(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}$ satisfies

$$
\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \leqslant C \operatorname{cap}\left(e, \dot{H}^{r}\right)
$$

for any compact set e of \mathbb{R}^{d}.
Finally let us make a remark on the usage of the constant $C ; C$ denotes a constant independent of f. However, it varies at each occurrence.

2. Proof of Theorem 1.1.

Denote by M the centered Hardy-Littlewood maximal operator.

$$
M f(x)=\sup _{c(Q)=x} \frac{1}{|Q|} \int_{Q}|f(x)| d x
$$

where Q runs over all compact cubes in \mathbb{R}^{d} and $c(Q)$ denotes the center of the cube Q.

Lemma 2.1. Let e be a compact set. If we set $E_{\kappa}=\left\{x \in \mathbb{R}^{d}: M \chi_{e}(x)>\kappa\right\}$, then we have

$$
\operatorname{cap}\left(\overline{E_{\kappa}}, \dot{H}^{r}\right) \leqslant c \kappa^{-2} \operatorname{cap}\left(e, \dot{H}^{r}\right)
$$

Proof. Choose $u \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ so that

$$
u \geqslant 1 \quad \text { on } e \quad \text { and } \quad\|u\|_{\dot{H}^{r}} \leqslant 2 \operatorname{cap}\left(e, \dot{H}^{r}\right) .
$$

Pick a function $\psi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ so that $\chi_{Q(1)} \leqslant \psi \leqslant \chi_{Q(2)}$, where, if $R>0$, we wrote $Q(R)$ for the cube given by

$$
Q(R)=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{d}\right): \max \left(\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{d}\right|\right) \leqslant R\right\} .
$$

Let $x \in \overline{E_{\kappa}}\left(\subset E_{\kappa / 2}\right)$. Then, by the definition of the centered Hardy-Littlewood maximal operator, there exists a cube Q centered at x such that $|Q \cap e| \geqslant \frac{\kappa}{2}|Q|$. Let us write $\ell(Q)=\frac{|Q|^{\frac{1}{d}}}{2}$ and $\psi_{\ell(Q)}(x)=\frac{1}{|Q|} \psi\left(\frac{x}{\ell(Q)}\right)$. Therefore, we have

$$
\psi_{\ell(Q)} * u(x) \geqslant \frac{1}{|Q|} \int_{e} \psi_{\ell(Q)}(x-y) d y \geqslant \frac{|e \cap Q|}{|Q|} \geqslant \frac{\kappa}{2} .
$$

Hence it follows that

$$
\operatorname{cap}\left(\overline{E_{\kappa}}, \dot{H}^{r}\right) \leqslant c \kappa^{-2}\left\|\psi_{\ell(Q)} * u\right\|_{\dot{H}^{r}} \leqslant c \kappa^{-2}\|u\|_{\dot{H}^{r}} \leqslant c \kappa^{-2} \operatorname{cap}\left(e, \dot{H}^{r}\right)
$$

Corollary 2.1. Let $0 \leqslant r<\frac{d}{2}$. The following statements are equivalent.
(1) For any compact set e of \mathbb{R}^{d},

$$
\begin{equation*}
\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \leqslant C \operatorname{cap}\left(e, \dot{H}^{r}\right) . \tag{1}
\end{equation*}
$$

(2) For any compact set e of \mathbb{R}^{d},

$$
\begin{equation*}
\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{\mathbb{R}^{d}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x \leqslant C \operatorname{cap}\left(e, \dot{H}^{r}\right) \tag{2}
\end{equation*}
$$

Needless to say, significance of this corollary is that (1) implies (2).
Proof. We may assume that $|e|>0$. Otherwise, the right-hand sides of (1) and (2) are zero and there is nothing to prove. Also, we freeze $\varepsilon=1,2, \cdots, 2^{d}-1$; the estimates will be independent of ε. We write $E_{\kappa}=\left\{M \chi_{e}>\kappa\right\}$ as before. For all $x \in \mathbb{R}^{d}$, there exists a large cube Q, which is centered at x, that engulfs the compact set e. Hence it follows that $M \chi_{e}(x) \geqslant \frac{|e|}{|Q|}>2^{-l}$ for some $l \in \mathbb{Z}$. Consequently we have $\mathbb{R}^{d}=\bigcup_{k=1}^{\infty} E_{2^{-k}}$. We decompose \mathbb{R}^{d} by using this collection $\left\{E_{2-k}\right\}$. The result is

$$
\begin{aligned}
& \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{\mathbb{R}^{d}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x \\
& \leqslant \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \\
&+\sum_{k=1}^{\infty} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{E_{2-k} \backslash E_{2-k+1}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x \\
& \leqslant \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \\
&+\sum_{k=1}^{\infty} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}} 2^{-\frac{4 d}{5}(k-1)}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{E_{2-k} \backslash E_{2}-k+1}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x .
\end{aligned}
$$

From the assumption (1) we deduce

$$
\begin{aligned}
\sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{E_{2-k} \backslash E_{2-k+1}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x & \leqslant C \operatorname{cap}\left(E_{2-k} \backslash E_{2-k+1}, \dot{H}^{r}\right) \\
& \leqslant C \operatorname{cap}\left(E_{2^{-k}}, \dot{H}^{r}\right)
\end{aligned}
$$

If we invoke Lemma 2.1 with $\kappa=2^{-k}$, then we have

$$
\sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{E_{2-k} \backslash E_{2-k+1}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \leqslant C 4^{k} \operatorname{cap}\left(e, \dot{H}^{r}\right)
$$

Now that we are assuming $d \geqslant 3$, we see that $\sum_{k=1}^{\infty} 2^{-\frac{4 d}{5} k+2 k}$ converges. Thus, it follows that

$$
\begin{aligned}
\sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{\mathbb{R}^{d}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x & \leqslant C \sum_{k=0}^{\infty} 2^{-\frac{4 d}{5} k+2 k} \operatorname{cap}\left(e, \dot{H}^{r}\right) \\
& =C \operatorname{cap}\left(e, \dot{H}^{r}\right) .
\end{aligned}
$$

Therefore, the assertion that (1) implies (2) was proved.
Our main result relies also upon the following proposition:
Proposition 2.1 ([1, Section 3.2]). Let $0 \leqslant r<\frac{d}{2}$. Then $f \in \dot{X}_{r}$ if and only if

$$
\sup _{e \subset \mathbb{R}^{d}: \text { compact }} \frac{\|f\|_{L^{2}(e)}}{\left(\operatorname{cap}\left(e, \dot{H}^{r}\right)\right)^{\frac{1}{2}}}<\infty .
$$

Furthermore, if this is the case, the following norm equivalence holds:

$$
\|f\|_{\dot{X}_{r}} \sim \sup _{e \subset \mathbb{R}^{d}} \frac{\|f\|_{L^{2}(e)}}{\left(\operatorname{cap}\left(e, \dot{H}^{r}\right)\right)^{\frac{1}{2}}} .
$$

Now let us finish the proof of Theorem 1.1.
Begin with the "only if " part.
For notational convenience we shall write $\lambda_{\varepsilon, Q}=\lambda_{\varepsilon, j, \gamma}=\left\langle f, \psi_{\varepsilon, Q}\right\rangle$ for the wavelet coefficient of f associated with the wavelet $\psi_{\varepsilon, Q}$. Then we have the following decomposition for f :

$$
f=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{Q \in \mathcal{Q}} \lambda_{\varepsilon, Q} \psi_{\varepsilon, Q}=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{j \in \mathbb{Z}} \sum_{\gamma \in \mathbb{Z}^{d}} \lambda_{\varepsilon, j, \gamma} 2^{j \frac{d}{2}} \psi_{\varepsilon}\left(2^{j} x-\gamma\right) .
$$

Let Λ be a fixed finite subset of \mathbb{Z}^{d+1}. For $j \in \mathbb{Z}$ and $\gamma \in \mathbb{Z}^{d}$ we shall write $(j, \gamma)=\left(j, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right)$. For $\theta \in\{-1,1\}^{\Lambda}=\left\{\left\{\theta_{j, \gamma}\right\}_{j, \gamma \in \Lambda}: \theta_{j, \gamma} \in\{-1,1\}\right\}$, we define the operator $T_{\Lambda, \theta}$ by

$$
T_{\Lambda, \theta} f(x)=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \Lambda} \theta_{j, \gamma}\left\langle f, \psi_{\varepsilon, j, \gamma}\right\rangle \psi_{\varepsilon, j, \gamma}(x)
$$

The operator $T_{\Lambda, \theta}$ is actually an integral operator given by

$$
T_{\Lambda, \theta} f(x)=\int_{\mathbb{R}^{d}} K_{\Lambda, \theta}(x, y) f(y) d y
$$

where the kernel is given by

$$
K_{\Lambda, \theta}(x, y)=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \Lambda} \theta_{j, \gamma} \psi_{\varepsilon, j, \gamma}(x) \overline{\psi_{\varepsilon, j, \gamma}}(y) .
$$

Since the MRA is r-regular, we conclude that $\left\{T_{\Lambda, \theta}\right\}_{\Lambda, \theta}$ is a family of CalderónZygmund operators (see [4]). Then by a classical result of harmonic analysis we obtain, for some constant C independent of Λ,

$$
\left\|T_{\Lambda, \theta} f\right\|_{\dot{X}_{r}} \leqslant C\|f\|_{\dot{X}_{r}}
$$

for all $f \in \dot{X}_{r}$. Also denote by μ the measure on $\{0,1\}^{\mathbb{Z} \times \mathbb{Z}^{d}}$ generated by the coin toss. Let us set

$$
\mathrm{I}=\int_{e}\left(\int_{\theta \in\{-1,1\}^{\mathbb{Z}^{d} \times \mathbb{Z}}}\left|T_{\Lambda, \theta} f(x)\right|^{2} d \mu(\theta)\right) d x
$$

Then, we have

$$
\begin{aligned}
\mathrm{I} & =\int_{\theta \in\{-1,1\}^{Z^{d} \times \mathbb{Z}}}\left(\int_{e}\left|T_{\Lambda, \theta} f(x)\right|^{2} d x\right) d \mu(\theta) \\
& \leqslant C\|f\|_{\dot{X}_{r}}^{2} \operatorname{cap}\left(e, \dot{H}^{r}\right) \int_{\theta_{j, \gamma} \in\{-1,1\}^{Z^{d} \times \mathbb{Z}}} d \mu(\theta) \\
& =C\|f\|_{\dot{X}_{r}}^{2} \operatorname{cap}\left(e, \dot{H}^{r}\right) .
\end{aligned}
$$

Meanwhile, if we use the Fubini theorem and write out $T_{\Lambda, \theta} f$, we obtain

$$
\begin{aligned}
\mathrm{I} & =\int_{\theta \in\{-1,1\}^{Z^{d} \times \mathbb{Z}}}\left\|T_{\Lambda, \theta} f\right\|_{L^{2}(e)}^{2} d \mu(\theta) \\
& =\int_{\theta \in\{-1,1\}^{Z^{d} \times \mathbb{Z}}}\left\|\sum_{(j, \gamma) \in \Lambda}\left(\sum_{\varepsilon=1}^{2^{d}-1} \theta_{j, \gamma}\left\langle f, \psi_{\varepsilon, j, \gamma}\right\rangle \psi_{\varepsilon, j, \gamma}\right)\right\|_{L^{2}(e)}^{2} d \mu(\theta) .
\end{aligned}
$$

Moreover, using Khintchine's inequality, we have

$$
\begin{aligned}
\mathrm{I} & \approx \sum_{\varepsilon=1}^{2^{d}-1}\left\|\sum_{(j, \gamma) \in \Lambda}\left|\left\langle f, \psi_{\varepsilon, j, \gamma}\right\rangle\right|^{2}\left|\psi_{\varepsilon, j, \gamma}\right|^{2}\right\|_{L^{2}(e)}^{2} \\
& =\sum_{\varepsilon=1}^{2^{d}-1} \int_{e} \sum_{(j, \gamma) \in \Lambda}\left|\left\langle f, \psi_{\varepsilon, j, \gamma}\right\rangle\right|^{2}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \\
& =\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \Lambda}\left|\left\langle f, \psi_{\varepsilon, j, \gamma}\right\rangle\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x \\
& =\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} d x .
\end{aligned}
$$

Thus for all $f \in \dot{X}_{r}$, we obtain

$$
\sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{e}\left|\psi_{j, \gamma}(x)\right|^{2} d x \leqslant C \operatorname{cap}\left(e, \dot{H}^{r}\right)
$$

As a consequence, we conclude that (i) implies (ii).
Let us show the proof of converse. We use once more the expansion:

$$
f=\sum_{\varepsilon=1}^{2^{d}-1} \sum_{Q \in \mathcal{Q}} \lambda_{\varepsilon, Q} \psi_{\varepsilon, Q}
$$

It is well-known that $M\left[\chi_{e}\right]^{\frac{4}{5}}$ is an A_{1}-weight. Therefore, we are in the position of using the usual Calderón-Zygmund theory to conclude

$$
\|f\|_{L^{2}(e)} \leqslant\left\|f \cdot M\left[\chi_{e}\right]^{\frac{2}{5}}\right\|_{L^{2}} \leqslant C \sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{\mathbb{R}^{d}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x
$$

We remark that the proof is similar in spirit to the main theorem in [5]. If we use this inequality and Corollary 2.1, then we have

$$
\begin{aligned}
\|f\|_{\dot{X}^{r}} \leqslant & C \sup _{e \subset \mathbb{R}^{d}: \text { compact }} \frac{\|f\|_{L^{2}(e)}}{\operatorname{cap}\left(e, \dot{H}^{r}\right)} \\
\leqslant & C \sup _{e \subset \mathbb{R}^{d}: \operatorname{compact}} \frac{1}{\operatorname{cap}\left(e, \dot{H}^{r}\right)} \\
& \times \sum_{\varepsilon=1}^{2^{d}-1} \sum_{(j, \gamma) \in \mathbb{Z} \times \mathbb{Z}^{d}}\left|\lambda_{\varepsilon, j, \gamma}\right|^{2} \int_{\mathbb{R}^{d}}\left|\psi_{\varepsilon, j, \gamma}(x)\right|^{2} M\left[\chi_{e}\right](x)^{\frac{4}{5}} d x<\infty
\end{aligned}
$$

This is the desired result.

References

[1] V.G. Maz'ya and T.O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics 23, Pitman, 1985.
[2] V.G. Maz'ya and T.O. Shaposhnikova, Theory of Sobolev multipliers with applications to differential and integral operators, Springer-Verlag, Berlin, 2009.
[3] I. Daubechies, Ten Lectures on Wavelets.
[4] Y. Meyer, Ondelettes et opérateurs, Paris: Hermann, 1990.
[5] Y. Sawano, Wavelet characterization of Besov Triebel-Lizorkin-Morrey spaces, Functiones et Approximatio, 38 (2008), 7-21.

Addresses: Sadek Gala: Department of Mathematics, University of Mostaganem, Box 227, Mostaganem (27000), Algeria;
Yoshihiro Sawano: Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan.
E-mail: sadek.gala@gmail.com, yosihiro@math.kyoto-u.ac.jp
Received: 31 July 2009; revised: 21 May 2010

[^0]: This work is partially supported by Grant-in-Aid for Young Scientists (B) (No.21740104) Japan Society for the Promotion of Science.

 2000 Mathematics Subject Classification: primary: 42B35; secondary: 41A17

