ON THE AVERAGE NUMBER OF UNITARY FACTORS OF FINITE ABELIAN GROUPS

H.-Q. Liu

Abstract: We give a slight improvement on a well-known problem.
Keywords: exponential sums, abelian groups.

1. Introduction

For a finite abelian group G, let $t(G)$ be the number of unitary factors of G. For the group-theoritic description of this quantity, the reader is referred to the paper $[\mathrm{K}]$, in which the asymptotic behaviuor of $T^{*}(x)$ was first considered, where x is a sufficiently large positive number, and

$$
T^{*}(x)=\sum t(G),
$$

the summation is taken over all abelian groups of order not exceeding x. In $[\mathrm{K}]$ the author succeeded in reducing the problem to a problem of estimating exponential sums, by showing that if there holds (ϵ is any small positive constant)

$$
\begin{equation*}
\sum_{n \leqslant x} d(1,1,2 ; n)=\text { Main terms }+O\left(x^{\theta+\epsilon}\right), \quad 0<\theta<\frac{1}{2}, \tag{1.1}
\end{equation*}
$$

where $d(1,1,2 ; n)$ is the number of ordered triple lattice points (r, s, t) such that $r s t^{2}=n(r, s$ and t are positive integers). The interest comes from the fact that the error term of (1.1) can be estimated by techniques of exponential sums. Thus in $[\mathrm{K}]$ the author first got a permissible value $\theta=\frac{11}{29}$. Subsequently this was improved in $[\mathrm{S}]\left(\theta=\frac{3}{8}\right)$, [L1] $\left(\theta=\frac{77}{208}\right),[\mathrm{L} 2]\left(\theta=\frac{29}{80}\right)$, [W1] $\left(\theta=\frac{47}{131}\right)$ and [W2] $\left(\theta=\frac{45}{127}=0.354 \ldots\right)$. In an unpublished manuscript, we once got a result $\theta=\frac{101}{283}=0,356 \ldots$. In this paper, we first derive a new bound for exponential sums of the shape

$$
\begin{equation*}
S=\sum_{w \sim W} \sum_{n \sim N} \phi_{w} e\left(A w^{\frac{1}{2}} n^{-1}\right) \quad\left(\left|\phi_{w}\right| \leqslant 1\right), \tag{1.2}
\end{equation*}
$$

by using Theorem 1 of the recent work of [L3] instead of Lemma 2.1 of [W2], and then we shall use it in the method of [W2] to get a better θ in (1.1).
Theorem 1.1. $\theta=\frac{63}{178}=0.353 \ldots$ is a permissible value.

2. An estimate for the special double exponential sum S

Let $F=|A| W^{\frac{1}{2}} N^{-1} \ll 1, M \gg 1, N \gg 1$. We proceed to estimate the exponential sum of (1.2). By Weyl's inequality and a fair splitting of range, we have

$$
\begin{equation*}
L^{-1} S^{2} \ll(W N)^{2} Q^{-1}+W^{\frac{3}{2}} N Q^{-1} \sum_{q \sim Q_{1}} \sum_{n-q, n+q \sim N} \sum_{w \sim W} w^{-\frac{1}{2}} e\left(A w^{\frac{1}{2}} t(n, q)\right), \tag{2.1}
\end{equation*}
$$

$Q \in\left(10, N L^{-1}\right)$ is a parameter, $L=\log (F M N+2), 1 \leqslant Q_{1} \leqslant Q, t(n, q)=$ $(n-q)^{-1}-(n+q)^{-1}$. Denote the multiple sum on the right of (2.1) by S_{1}. If $F Q_{1} N^{-1} \leqslant \epsilon W$, using a familiar inequality we have (first removing the factor $w^{-1 / 2}$ by a partial summation)

$$
\begin{equation*}
S_{1} \ll Q_{1} N W^{-\frac{1}{2}}\left(\frac{F Q_{1}}{W N}\right)^{-1}:=Q_{1} N W^{-\frac{1}{2}} V^{-1} \tag{2.2}
\end{equation*}
$$

where $V=\frac{F Q_{1}}{W N}$. Assume that $V>\epsilon$. Using Theorem 1 of $[\mathrm{RS}]$ we get

$$
\begin{align*}
\sum_{w \sim W} w^{-\frac{1}{2}} e\left(A w^{\frac{1}{2}} t(n, q)\right)= & i \sum_{V_{1}<v<V_{2}} v^{-\frac{1}{2}} e\left(F_{1}(n, q, v)\right) \\
& +O\left(W^{-\frac{1}{2}}\left(L+\left(\frac{W}{V}\right)^{\frac{1}{2}}+V^{-1}\right)\right), \tag{2.3}
\end{align*}
$$

(the last term on the right side seems unnecessary when $V>\epsilon$, but it will be clear that it can be used to absorb the contribution of (2.2) in case $V \leqslant \epsilon$) here
$F_{2}(n, q, v)=\left(\frac{1}{2} A t(n, q)\right)^{2} v^{-1}, \quad V_{1}=\frac{1}{2} A(2 W)^{-\frac{1}{2}} t(n, q), \quad V_{2}=\frac{1}{2} A W^{-\frac{1}{2}} t(n, q)$.
Since

$$
t(n, q)=2 q n^{-2}\left(1+O\left(Q_{1} N^{-2}\right)\right),
$$

we have, for $V_{3}=A q(2 W)^{-\frac{1}{2}} n^{-2}, V_{4}=A q W^{-\frac{1}{2}} n^{-2}$,

$$
\begin{equation*}
\sum_{V_{1}<v<V_{2}} v^{-\frac{1}{2}} e\left(F_{2}\right)=\sum_{V_{3}<v<V_{4}} v^{-\frac{1}{2}} e\left(F_{2}\right)+O\left(V^{-\frac{1}{2}}\left(1+V\left(\frac{Q_{1}}{N}\right)^{2}\right)\right) . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4), exchanging the order of summation we have (when $V>\epsilon$)

$$
\begin{align*}
S_{1} \ll & V^{-\frac{1}{2}} \sum_{q \sim Q_{1}} \sum_{v \approx V}\left|\sum_{n \in I(q, v)} e\left(F_{2}(n, q, v)\right)\right| \tag{2.5}\\
& +Q_{1} N V^{-\frac{1}{2}}\left(L+\left(\frac{V}{W}\right)^{\frac{1}{2}}+V\left(\frac{Q_{1}}{N}\right)^{2}+(W V)^{-\frac{1}{2}}\right),
\end{align*}
$$

where $I(q, v)$ is a small interval (depending on q, v) contained in $[N+q, 2 N-q]$. Denote the multiple sum on the right of (2.5) by S_{2} (without the $V^{-\frac{1}{2}}$ factor). We relax the condition for n by a familiar tool (see Lemma 2.3 of [SW] for instance), and then use Weyl's inequality to get

$$
\begin{equation*}
L^{-2} S_{2}^{2} \ll \frac{\left(Q_{1} N V\right)^{2}}{Q_{2}}+\frac{Q_{1} N V}{Q_{2}} \sum_{1 \leqslant\left|q_{1}\right| \leqslant Q_{2}}\left|\sum_{q \sim Q_{1}} \sum_{v \approx V} \sum_{n \in I_{1}(q)} e\left(F_{2}\left(n, q, v, q_{1}\right)\right)\right|, \tag{2.6}
\end{equation*}
$$

where $Q_{2} \in\left(10, N L^{-1}\right)$ is another parameter, $I_{1}(q)=(N+q, 2 N-q)$ and
$F_{2}\left(n, q, v, q_{1}\right)=F_{1}\left(n-q_{1}, q, v\right)-F_{1}\left(n+q_{1}, q, v\right)=\frac{1}{4} A^{2} v^{-1}\left(t^{2}\left(n-q_{1}, q\right)-t^{2}\left(n+q_{1}, q\right)\right)$.
Using the easily obtained expansion

$$
\begin{gather*}
\left(\frac{(1-X)^{-1}-(1+X)^{-1}}{2 X}\right)^{2}=1+\sum_{k \geqslant 1} D_{k} X^{2 k} \quad\left(0<X<\frac{1}{2}\right), \\
F_{2}\left(n, q, v, q_{1}\right)=A^{2} v^{-1} q^{2}\left\{\left(n+q_{1}\right)^{-4}-\left(n-q_{1}\right)^{-4}+\sum_{k \geqslant 1} D_{k} q^{2 k} T_{k}\left(n, q_{1}\right)\right\}, \tag{2.7}
\end{gather*}
$$

where $T_{k}\left(n, q_{1}\right)=\left(n+q_{1}\right)^{-4-2 k}-\left(n-q_{1}\right)^{-4-2 k}$. Without loss the generality we may suppose that $q_{1}>0$. Denote the inner triple sum of (2.6) as S_{3}. If $F Q_{1} q_{1} N^{-3} \leqslant \epsilon$, we can use a familiar estimate to get

$$
\begin{equation*}
S_{3} \ll Q_{1} V\left(F Q_{1} q_{1} N^{-3}\right)^{-1} \tag{2.8}
\end{equation*}
$$

Assume $F Q_{1} q_{1} N^{-3}>\epsilon$. Then by Theorem 1 of $[\mathrm{RS}]$ we get

$$
\begin{align*}
\sum_{n \in I_{1}(q)} e\left(F_{2}\left(n, q, v, q_{1}\right)\right)= & -i\left(\sum_{U_{1}<u<U_{2}} G_{1}\left(u, q, q_{1}, v\right) e\left(G_{2}\left(u, q, q_{1}, v\right)\right)\right) \tag{2.9}\\
& +O\left(\left(F Q_{1} q_{1} N^{-4}\right)^{-\frac{1}{2}}+L\right)
\end{align*}
$$

where (to avoid confusion we use the same letter to denote also a real variable)

$$
\begin{aligned}
& G_{1}\left(u, q, q_{1}, v\right)=\left(-\frac{\partial^{2} F_{2}}{\partial n^{2}}\left(n\left(u, q, q_{1}, v\right), q, q_{1}, v\right)\right)^{-\frac{1}{2}} \\
& G_{2}\left(u, q, q_{1}, v\right)=F_{2}\left(n\left(u, q, q_{1}, v\right), q, q_{1}, v\right)-u n\left(u, q, q_{1}, v\right)
\end{aligned}
$$

$n\left(u, q, q_{1}, v\right)$ is the solution of

$$
\frac{\partial F_{2}}{\partial n}\left(n, q, q_{1}, v\right)=u
$$

and $U_{1}=\frac{\partial F_{2}}{\partial n}\left(2 N-q_{1}, q, q_{1}, v\right), U_{2}=\frac{\partial F_{2}}{\partial n}\left(N+q_{1}, q, q_{1}, v\right)$. From (2.7) we get

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial n}\left(n, q, q_{1}, v\right)=40 A^{2} v^{-1} q^{2} q_{1} n^{-6}\left(1+O\left(\frac{Q_{1}^{2}+q_{1}^{2}}{N^{2}}\right)\right) \tag{2.10}
\end{equation*}
$$

thus we have

$$
\begin{align*}
\sum_{U_{1}<u<U_{2}} G_{1} e\left(G_{2}\right)= & \sum_{U_{3}<u<U_{4}} G_{1} e\left(G_{2}\right) \\
& +O\left(\left(\frac{F Q_{1} q_{1}}{N^{4}}\right)^{-\frac{1}{2}}\left(1+\frac{F Q_{1} q_{1}\left(Q_{1}^{2}+q_{1}^{2}\right)}{N^{5}}\right)\right) \tag{2.11}
\end{align*}
$$

where $U_{3}=40 A^{2} v^{-1} q^{2} q_{1}\left(2 N-q_{1}\right)^{-6}, U_{4}=40 A^{2} v^{-1} q^{2} q_{1}\left(N+q_{1}\right)^{-6}$. From (2.9) and (2.11), exchanging the order of summation, we have

$$
\begin{aligned}
S_{3} \ll & \sum_{u \approx U}\left|\sum_{(q, v) \in E} G_{1} e\left(G_{2}\right)\right| \\
& +Q_{1} V\left(\left(F Q_{1} q_{1} N^{-4}\right)^{-\frac{1}{2}}+L+N^{3}\left(F Q_{1} q_{1}\right)^{-1}+\frac{\left(F Q_{1} q_{1}\right)^{\frac{1}{2}}}{N^{3}}\left(Q_{1}^{2}+q_{1}^{2}\right)\right),
\end{aligned}
$$

where $U=F Q_{1} q_{1} N^{-3}$ and $E=\left\{(q, v) \mid q \sim Q_{1}, v \approx V, U_{3}(q, v)<u<U_{4}(q, v)\right\}$. Denote the above inner double summation for $(q, v) \in E$ by S_{4}. We use the partial summation for two variables (see $[B]$ or $[M]$ for such a result) to remove the factor G_{1} and get

$$
\begin{equation*}
S_{4} \ll\left(N U^{-1}\right)^{\frac{1}{2}}\left|\sum_{(q, v) \in E_{1}} e\left(G_{2}\left(u, q, q_{1}, v\right)\right)\right|, \tag{2.12}
\end{equation*}
$$

where $E_{1}=E \cap\left\{(q, v) \mid Q^{\prime}<q<Q^{\prime \prime}, V^{\prime}<v<V^{\prime \prime}\right\}$ for certain $Q^{\prime}, Q^{\prime \prime} \approx Q_{1}$, $V^{\prime}, V^{\prime \prime} \approx V$. From (2.10) we have

$$
n\left(u, q, q_{1}, v\right)=\left(40 A^{2} v^{-1} q^{2} q_{1} u^{-1}\right)^{\frac{1}{6}}(1+O(\Delta)), \Delta=\frac{Q_{1}^{2}+q_{1}^{2}}{N^{2}}
$$

Thus we find that for $P\left(v, q_{1}\right)=C A^{\frac{1}{6}} v^{-\frac{1}{6}} q_{1}^{\frac{1}{6}} \quad(C \neq 0)$

$$
F_{2}\left(n\left(u, q, q_{1}, v\right), q, q_{1}, v\right)=P\left(v, q_{1}\right) q^{\frac{2}{6}} u^{\frac{5}{6}}(1+O(\Delta)) .
$$

Similarly we get for $1 \leqslant i+j \leqslant 5$ (here $\left.(\xi)_{i}=\xi(\xi-1) \ldots(\xi-i+1)\right)$

$$
\frac{\partial^{i+j} F_{2}}{\partial q^{i} \partial u^{j}}\left(n\left(u, q, q_{1} v\right), q, q_{1}, v\right)=P\left(v, q_{1}\right)\left(\frac{2}{6}\right)_{i}\left(\frac{5}{6}\right)_{j} q^{\frac{2}{6}-i} u^{\frac{5}{6}-j}(1+O(\Delta))
$$

We use Weyl's inequality (after relaxing the summation restriction for v) to get

$$
\begin{equation*}
L^{-2} S_{4}^{2} \ll N U^{-1}\left\{\left(V Q_{1}\right)^{2} R^{-1}+V Q_{1} R^{-1} \sum_{1 \leqslant|r| \leqslant R}\left|\sum_{(q, v) \in E_{r}} e\left(G_{3}\left(u, q, q_{1}, v, r\right)\right)\right|\right\}, \tag{2.13}
\end{equation*}
$$

where $R \in\left(10, V L^{-1}\right)$ is a parameter, $E_{r}=\left\{(q, v) \mid q \sim Q_{1},(v+r) \approx V\right.$, $(v-r) \approx V\}$, and

$$
G_{3}\left(u, q, q_{1}, v, r\right)=G_{2}\left(u, q, q_{1}, v+r\right)-G_{2}\left(u, q, q_{1}, v-r\right) .
$$

Now we are in a position of using Theorem 1 of [L3] to estimate the inner double exponential sum of (2.13). We assume

$$
\begin{equation*}
Q_{2} \leqslant Q_{1} \tag{2.14}
\end{equation*}
$$

Then we have, with

$$
\begin{gathered}
F_{1}=\frac{F Q_{1}\left|q_{1}\right| R}{N^{2} V}, \quad \Delta=Q_{1}^{2} N^{-2}+R^{2} V^{-2}, \quad \Phi=0, \\
L^{-6} S_{4}^{2} \ll
\end{gathered} \begin{aligned}
& N U^{-1}\left\{\left(V Q_{1}\right)^{2} R^{-1}+\sqrt[6]{F_{1}^{2}\left(V Q_{1}\right)^{9}}\right. \\
& \\
& \left.+\sqrt[6]{F_{1}^{-2}\left(V Q_{1}\right)^{13}}+\sqrt[10]{F_{1}^{2}\left(V^{19} Q_{1}^{15}+V^{15} Q_{1}^{19}\right) \Delta^{4}}\right\}=\sum_{1 \leqslant i \leqslant 4} T_{i} .
\end{aligned}
$$

Note that if we take $R=\frac{N^{2} V^{2}}{F\left|q_{1}\right|}$, then $F_{1}=V Q_{1}, T_{2}=T_{3}$. Thus we choose

$$
R=\min \left(\frac{N^{2} V^{2}}{F\left|q_{1}\right|}, V L^{-1}\right)
$$

and thus in (2.6) we get

$$
\begin{align*}
L^{-8} S_{2}^{2} \ll & \frac{\left(N V Q_{1}\right)^{2}}{Q_{2}}+\sqrt{F V^{3} Q_{1}^{5} Q_{2}}+\sqrt{F^{2} V^{2} N^{-2} Q_{1}^{5} Q_{2}^{2}} \\
& +\sqrt[12]{F^{6} V^{23} Q_{1}^{29} Q_{2}^{6}}+\sqrt[12]{F^{4} V^{25} N^{4} Q_{1}^{29} Q_{2}^{4}} \\
& +\sqrt[20]{\left(V^{41} Q_{1}^{35}+V^{37} Q_{1}^{39}\right) F^{10} N^{-8} Q_{2}^{10}} \tag{2.15}\\
& +\sqrt[20]{\left(V^{49} Q_{1}^{47}+V^{45} Q_{1}^{51}\right) F^{2} N^{16} Q_{2}^{2}} \\
& +Q_{1}^{2} N V^{2}+\sqrt{F Q_{1}^{9} N^{-4} V^{4} Q_{2}} \\
& +\sqrt{N^{6} V^{4} F^{-1} Q_{1}^{3} Q_{2}^{-1}}+Q_{1} N^{4} V^{2} F^{-1} Q_{2}^{-1}
\end{align*}
$$

(Note that in view of (2.8), the bound between (2.11) and (2.12) holds also in case $F Q_{1} q_{1} N^{-3}<\epsilon$). We impose the conditions $Q_{2} \leqslant F Q_{1} N^{-2}$ and $F Q_{1} N^{-2}>1$,
thus in (2.15) the last two terms can be neglected as compared with the first term. We then use Lemma 2.4 of [SW] to choose (see (2.14)) $Q_{2} \in\left(0, \min \left(F Q_{1} N^{-2}\right.\right.$, $\left.Q_{1} L^{-1}\right)$) optimally in (2.15) and get

$$
\begin{align*}
L^{-5} S_{2} \ll & \sqrt[6]{F V^{5} Q_{1}^{7} N^{2}}+\sqrt[8]{F^{2} Q_{1}^{9} N^{2} V^{6}}+\sqrt[36]{F^{6} V^{35} Q_{1}^{41} N^{12}} \\
& +\sqrt[32]{F^{4} Q_{1}^{37} V^{33} N^{12}}+\sqrt[60]{\left(V^{61} Q_{1}^{55}+V^{57} Q_{1}^{59}\right) F^{10} N^{12}} \tag{2.16}\\
& +\sqrt[44]{\left(V^{53} Q_{1}^{51}+V^{49} Q_{1}^{55}\right) F^{2} N^{20}}+\sqrt[6]{F Q_{1}^{11} N^{-2} V^{6}} \\
& +\sqrt{N^{2} V^{2} Q_{1}}+\sqrt{N^{4} V^{2} Q_{1} F^{-1}} .
\end{align*}
$$

In view of the last term of (2.16), we find that (2.16) holds also in case $F Q_{1} N^{-2} \leqslant 1$. Put this in (2.5), we get

$$
\begin{align*}
L^{-6} S_{1} \ll & \sqrt[6]{F V^{2} Q_{1}^{7} N^{2}}+\sqrt[8]{F^{7} V^{2} Q_{1}^{9} N^{2}}+\sqrt[36]{F^{6} V^{17} Q_{1}^{41} N^{12}} \\
& +\sqrt[32]{F^{4} Q_{1}^{37} V^{17} N^{12}}+\sqrt[60]{\left(V^{31} Q_{1}^{55}+V^{27} Q_{1}^{59}\right) F^{10} N^{12}} \\
& +\sqrt[44]{\left(V^{31} Q_{1}^{29}+V^{27} Q_{1}^{33}\right) F^{2} N^{20}}+\sqrt[6]{F Q_{1}^{11} N^{-2} V^{3}} \tag{2.17}\\
& +\sqrt{N^{2} V Q_{1}}+\sqrt{N^{4} V Q_{1} F^{-1}}+Q_{1} N V^{-\frac{1}{2}} \\
& +Q_{1} W^{-\frac{1}{2}} N+Q_{1}^{3} N^{-1} V^{\frac{1}{2}}+Q_{1} N V^{-1} W^{-\frac{1}{2}}
\end{align*}
$$

In view of (2.2) we see that (2.17) holds also in case $V \leqslant \epsilon$. Thus by (2.1) and (2.17) we get

$$
\begin{align*}
L^{-7} S^{2} \ll & (N W)^{2} Q^{-1}+\sqrt[6]{F^{3} Q^{3} W^{7} N^{6}}+\sqrt[8]{F^{4} Q^{3} W^{10} N^{8}} \\
& +\sqrt[36]{F^{23} Q^{22} W^{37} N^{31}}+\sqrt[32]{F^{21} Q^{18} W^{31} N^{27}} \\
& +\sqrt[60]{F^{41} Q^{42} W^{61} N^{43}}+\sqrt[60]{F^{37} Q^{42} W^{65} N^{47}} \\
& +\sqrt[44]{F^{33} Q^{16} W^{6} N}+\sqrt[44]{F^{29} Q^{16} W^{39} N^{37}} \tag{2.18}\\
& +\sqrt[6]{F^{4} Q^{8} N W^{6}}+\sqrt{F N^{3} W^{2}}+\sqrt{N^{5} W^{2}} \\
& +\sqrt{F Q^{5} W^{2} N^{-1}}+N^{3} W^{2} F^{-1} Q^{-1}+\sqrt{N^{5} W^{4} F^{-1} Q^{-1}}
\end{align*}
$$

Assume that $F \geqslant N$ and $Q \leqslant F N^{-1}$. Then the last two terms of (2.18) can be neglected as compared with the first term. We choose optimally a parameter $Q \in\left(0, \min \left(N L^{-1}, F N^{-1}\right)\right)$ to infer

$$
\begin{align*}
L^{-4} S & \ll \sqrt[18]{F^{3} W^{13} N^{12}}+\sqrt[22]{F^{4} W^{16} N^{14}}+\sqrt[116]{F^{23} W^{81} N^{75}} \\
& +\sqrt[100]{F^{21} W^{67} N^{65}}+\sqrt[172]{F^{41} W^{111} N^{93}}+\sqrt[172]{F^{37} W^{115} N^{97}} \\
& +\sqrt[120]{F^{33} W^{67} N^{65}}+\sqrt[120]{F^{29} W^{71} N^{69}}+\sqrt[4]{F W^{2} N^{3}} \tag{2.19}\\
& +\sqrt[4]{N^{5} W^{2}}+\sqrt[14]{F N^{9} W^{12}}+\sqrt{N W^{2}}+\sqrt{F^{-1} N^{3} W^{2}}
\end{align*}
$$

In view of the last term of (2.19), we see that (2.19) holds also in case $F<N$.

3. Proof of Theorem 1.1

We use (2.19) to replace Lemma 2.1 of [W2] in the proof of (3.1) of [W2] for estimating the three-dimensional exponential sum of the shape

$$
\sum_{h \sim H} \sum_{m \sim M} \sum_{n \sim N} a_{h} e\left(\frac{h x}{m n^{2}}\right) .
$$

Thus we can obtain, instead of (4.4) of [W2], the following estimate

$$
\begin{aligned}
L^{-5} S\left(H_{0}, \mathbf{N}\right) \ll & \left(\sqrt[18]{H_{0}^{2} G^{7} N_{1}^{12} N_{2}^{5}}+\sqrt[22]{H_{0}^{3} G^{9} N_{1}^{14} N_{2}^{6}}+\sqrt[116]{H_{0}^{11} G^{46} N_{1}^{75} N_{2}^{35}}\right. \\
& +\sqrt[100]{H_{0}^{5} G^{38} N_{1}^{65} N_{2}^{33}}+\sqrt[172]{H_{0}^{5} G^{66} N_{1}^{93} N_{2}^{61}} \\
& +\sqrt[172]{H_{0}^{9} G^{66} N_{1}^{97} N_{2}^{57}}+\sqrt[120]{H_{0}^{-13} G^{40} N_{1}^{65} N_{2}^{53}} \\
& +\sqrt[120]{H_{0}^{-9} G^{40} N_{1}^{69} N_{2}^{49}}+\sqrt[28]{H_{0}^{6} G^{12} N_{1}^{17} N_{2}^{6}} \\
& +\sqrt[4]{H_{0}^{-1} G N_{1}^{3} N_{2}^{2}}+\sqrt[4]{H_{0}^{-2} N_{1}^{5} N_{2}^{2}}+\sqrt[14]{H_{0}^{4} G^{6} N_{1}^{9} N_{2}^{2}} \\
& \left.+\sqrt{H_{0} G N_{1}}+N_{1}^{\frac{3}{2}}\right) H_{0}:=\left(\sum_{1 \leqslant i \leqslant 14} G_{i}\right) H_{0}
\end{aligned}
$$

Using this and the bound for $S\left(H_{0}, \mathbf{N}\right)$ given at the last lines in proving Lemma 4.1 of [W2], we thus get $\left(\delta=\epsilon^{2}\right)$

$$
\begin{equation*}
x^{-\delta} S\left(H_{0}, \mathbf{N}\right) \ll\left(\sum_{i \neq 7,8,10,11} G_{i}+\sum_{i=7,8,10,11} G_{i}^{*}+\sqrt[8]{x^{3} N_{1}^{-2}}+x^{1 / 3}\right) H_{0}, \tag{3.1}
\end{equation*}
$$

where (by letting $\left.\sigma=\sqrt[35]{H_{0}^{3} G^{14} N_{1}^{22} N_{2}^{11}}\right) G_{i}^{*}=\min \left(G_{i}, \sigma\right)$. Using the usual manner to diminish the power of H_{0}, we can get (using $G:=\left(x N_{1}^{-a} N_{2}^{-b}\right)^{\frac{1}{c}} \ll$ $x N_{1}^{-2} N_{2}^{-1}$ for any permutation (a, b, c) of $\left.(1,1,2)\right)$

$$
\begin{aligned}
& G_{7}^{*} \ll \sqrt[815]{G^{302} N_{1}^{481} N_{2}^{302}} \ll \sqrt[815]{x^{302} N_{1}^{-123}}:=T_{1}, \\
& G_{8}^{*} \ll \sqrt[225]{G^{82} N_{1}^{135} N_{2}^{82}} \ll \sqrt[225]{x^{82} N_{1}^{-29}}:=T_{2} \\
& G_{10}^{*} \ll \sqrt[82]{G^{28} N_{1}^{59} N_{2}^{28}} \ll \sqrt[82]{x^{28} N_{1}^{3}}:=T_{3} \\
& G_{11}^{*} \ll \sqrt[47]{G^{17} N_{1}^{31} N_{2}^{17}} \ll \sqrt[47]{x^{17} N_{1}^{-3}}:=T_{4}
\end{aligned}
$$

We then insert (3.1) into (4.3) of [W2] and choose H_{0} optimally to get

$$
\begin{align*}
x^{-\delta} S(\mathbf{u}, \mathbf{N} ; x) \ll & \sqrt[25]{x^{9} N_{1}^{-1}}+\sqrt[127]{x^{46} N_{1}^{-6}}+\sqrt[105]{x^{38} N_{1}^{-5}}+\sqrt[177]{x^{66} N_{1}^{-34}} \\
& +\sqrt[181]{x^{66} N_{1}^{-26}}+\sqrt[34]{x^{12} N_{1}^{-1}}+\sqrt[18]{x^{6} N_{1}}+N_{1}^{3 / 2} \tag{3.2}\\
& +\sqrt[8]{x^{3} N_{1}^{-2}}+\sum_{1 \leqslant i \leqslant 4} T_{i}+x^{\theta}
\end{align*}
$$

where $\theta=\frac{63}{178}$. Now if $N_{1}>x^{\frac{98}{534}}=: x^{\rho}$ our result follows from Lemma 4.1 of [W2], and if $N_{1}<x^{\frac{187}{1068}}:=x^{\eta}$ our result follows from Lemma 4.2 of [W2]. Thus we can assume $x^{\eta} \leqslant N_{1} \leqslant x^{\rho}$, and our result follows from (3.2). The proof is finished.

References

[B] E.Bombieri, On the large sieve, Mathematika 12 (1965), 201-225.
[K] E. Kratzel, On the average number of direct factors of a finite abelian groups, Acta Arith. 51 (1988), 369-379.
[L1] H.-Q.Liu, On some divisor problems, ibid, 68 (1994), 193-200.
[L2] H.-Q.Liu, Divisors problems of 4 and 3 dimensions, ibid, 73 (1995), 249-269.
[L3] H.-Q.Liu, On the estimates for double exponential sums, ibid, 129 (2007), 203-247.
[M] S.H.Min, On the order of $\zeta\left(\frac{1}{2}+i t\right)$, Trans. Amer. Math. Soc. 65 (1949), 448-472.
[RS] M.Redouaby et P.Sargos, Sur la transformation B de Van der Corput, Expositiones Math. 17 (1999), no.3, 207-232.
[S] P.G.Schmidt, Zur Anzahl unitarer Factoren abelscher Grupppen, Acta Arith. 64 (1993), 237-248.
[SW] P.Sargos and J.Wu, Multiple exponential sums with monomials and their applications in number theory, Acta Math. Hungar. 87 (2000), 333-354.
[W1] J.Wu, On the average number of unitary factors of finite abelian groups, Acta Arith. 84 (1998), 17-29.
[W2] J.Wu, Double exponential sums and some applications, Mh. Math. 128 (1999), 255-262.

Address: Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R.China.

