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BILATERAL q-SERIES IDENTITIES AND RECIPROCAL
FORMULAE

Wenchang Chu, Wenlong Zhang

Abstract: By splitting bilateral series into two unilateral series, we derive several reciprocal for-
mulae from Ramanujan’s 1ψ1 and Bailey’s 6ψ6 series identities, which generalize the reciprocity
theorems due to Ramanujan and Andrews (1981).

Keywords: Ramanujan’s 1ψ1-series identity, Bailey’s well-poised 6ψ6-series identity, reciprocity
theorem.

For two indeterminate x and q, the shifted-factorial of x with base q is defined by

(x; q)0 = 1 and (x; q)n = (1− x) (1− xq) · · · (1− xqn−1) for n ∈ N.

When |q| < 1, we have two well-defined infinite products

(x; q)∞ =
∞∏

k=0

(1− qkx) and (x; q)n = (x; q)∞ / (xqn; q)∞ .

The product and fraction of shifted factorials are abbreviated respectively to

[ α, β, · · · , γ; q ]n = (α; q)n (β; q)n · · · (γ; q)n ,[
α, β, · · · , γ
A, B, · · · , C

∣∣∣q
]

n

=
(α; q)n (β; q)n · · · (γ; q)n

(A; q)n (B; q)n · · · (C; q)n

.

Following Gasper and Rahman [14], the basic hypergeometric series is defined by
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1+rφs

[
a0, a1, · · · , ar

b1, · · · , bs

∣∣∣q; z
]

=
∞∑

n=0

{
(−1)nq(

n
2)

}s−r
[

a0, a1, · · · , ar

q, b1, · · · , bs

∣∣∣q
]

n

zn,

rψs

[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣q; z
]

=
+∞∑

n=−∞

{
(−1)nq(

n
2)

}s−r
[

a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣q
]

n

zn;

where the base q will be restricted to |q| < 1 for nonterminating q-series.
In his lost notebook [16, P 40], Ramanujan recorded a beautiful reciprocity

theorem, which may be reproduced equivalently as follows.

Theorem 1. For two complex numbers a, c 6= q−n with n ∈ N, then

ρ(a, c)− ρ(c, a) =
(1

a
− 1

c

) [q, qa/c, qc/a; q]∞
[qa, qc; q]∞

where

ρ(a, c) :=
(
1− 1

c

) ∞∑
n=0

(−a/c)n

(qa; q)n
q(

n+1
2 ).

The first published proof of this theorem is due to Andrews [3]. Other proofs
can be found in [1, 8, 15, 17]. In particular, Berndt et al [6] gave three proofs,
one of which being purely combinatorial. In the same paper, Andrews generalized
Ramanujan’s 1ψ1-series identity to a four-free-variable formula, which may be
stated in the following more symmetric form.

Theorem 2 (Andrews [3, Theorem 6]).

y

∞∑
n=0

[q/ax, bdxy; q]n
[by, dy; q]n+1

(ay)n − x

∞∑
n=0

[q/ay, bdxy; q]n
[bx, dx; q]n+1

(ax)n

= (y − x)
[

q, qx/y, qy/x, abxy, adxy, bdxy
ax, ay, bx, by, dx, dy

∣∣∣q
]

∞
.

Liu [19] rederived this relation by applying the q-exponential operator to Ra-
manujan’s 1ψ1-series identity. As conceived by Andrews [3] and Agarwal [2], the
last relation could be deduced from a three-term relation [14, III-33] for 3φ2-series
by Sears (1951). This is fulfilled recently by Kang [18], who established also mul-
tiparameter generalizations of the quintuple product identity.

The purpose of the present paper is to show reciprocal relations exclusively
by writing bilateral basic hypergeometric series in terms of two unilateral ones.
First, we shall review a couple of easier reciprocal relations through Ramanu-
jan’s 1ψ1-series identity. Even though this has been an extensively beaten path
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(cf. [1, 6, 7, 15, 17]), it seems that the approach through Bailey’s well-poised 6ψ6-
series identity has not been explored. Therefore our next natural task is to employ
Bailey’s identity on well-poised 6ψ6-series to generalize Andrews’ identity and de-
rive a common extension of Jacobi’s triple product identity and the quintuple
product identity. Finally, the three-term relation expressing nonterminating well-
poised 8φ7-series in terms of two balanced 4φ3-series will be used to reformulate
our generalized reciprocal formula to another one. This last result not only ex-
tends again Andrews’ theorem, but also remedies the failed attempt recently made
by Zhang [20], who proved a false result via the q-exponential operator method.

1. Reciprocal Formulae from Ramanujan’s 1ψ1-series Identity

One of the fundamental identities in the theory of basic hypergeometric series is
Ramanujan’s identity of bilateral 1ψ1-series (cf. [11] and [14, II-29]):

1ψ1

[
a
c

∣∣∣q; z
]

=
[

q, c/a, az, q/az
c, q/a, z, c/az

∣∣∣q
]

∞
, where |c/a| < |z| < 1. (1)

Splitting the bilateral 1ψ1-series just displayed into two unilateral series

1ψ1

[
a
c

∣∣∣q; z
]

=
(1− a)z

1− c
2φ1

[
q, qa

qc

∣∣∣q; z
]

+ 2φ1

[
q, q/c

q/a

∣∣∣q; c

az

]
(2)

and then applying Heine’s transformation formula [14, III-2]

2φ1

[
a, b

c

∣∣∣q; z
]

=
[

c/a, az
c, z

∣∣∣q
]

∞
2φ1

[
abz/c, a

az

∣∣∣q; c

a

]
(3)

to the first 2φ1-series, we get the following relation

[
q, c/a, az, q/az
c, q/a, z, c/az

∣∣∣q
]

∞

=
(1− a)z

1− c

1− c

1− z
2φ1

[
q, qaz/c

qz

∣∣∣q; c
]

+ 2φ1

[
q, q/c

q/a

∣∣∣q; c

az

]
.

Replacing a, c, z respectively by 1/a, cx, c and then making some simplification,
we obtain the following reciprocity theorem.

Theorem 3. For two complex numbers a, c 6= q−n with n ∈ N and |ax|, |cx| < 1,
then

λ(a, c)− λ(c, a) =
(1

a
− 1

c

)[
q, qa/c, qc/a, acx
qa, qc, ax, cx

∣∣∣q
]

∞
where

λ(a, c) :=
(
1− 1

c

) ∞∑
n=0

(q/cx; q)n

(qa; q)n

(ax)n.
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Instead of Heine’s transformation (3), applying Jackson’s formula [14, III-4]

2φ1

[
a, b

c

∣∣∣q; z
]

=
(az; q)∞
(z; q)∞

2φ2

[
a, c/b
az, c

∣∣∣q; bz
]

(4)

to both 2φ1-series displayed in (2), Kang [18, §4] finds another relation

[
q, c/a, az, q/az
c, q/a, z, c/az

∣∣∣q
]

∞
=

(1− a)z
(1− c)(1− z)2φ2

[
q, c/a
qc, qz

∣∣∣q; qaz

]

+
1

1− c/az
2φ2

[
q, c/a

qc/az, q/a

∣∣∣q; q

az

]
.

Replacing a, c, z respectively by 1/a, cx, c and then simplifying the result, we
recover another generalization of Ramanujan’s reciprocity theorem.

Theorem 4 (Kang [18, Theorem 4.1]). For two complex numbers a, c 6= q−n

with n ∈ N and |ax|, |cx| < 1, then

µ(a, c)− µ(c, a) =
(1

a
− 1

c

) [
q, qa/c, qc/a, acx
qa, qc, ax, cx

∣∣∣q
]

∞

where

µ(a, c) :=
(
1− 1

c

) ∞∑
n=0

(acx; q)n (−a/c)n

(qa; q)n (ax; q)n+1

q(
n+1

2 ).

When x → 0, both Theorems 3 and 4 reduce to the reciprocity theorem of
Ramanujan anticipated at the beginning of the paper.

2. Reciprocal Formulae from Bailey’s 6ψ6-series Identity

Among the classical hierarchy of basic hypergeometric series identities, the most
important one perhaps is the very well-poised 6ψ6-series identity discovered by
Bailey [4] (see also [12] and [14, II-33]), which may be stated as

6ψ6

[
q
√

a, −q
√

a, b, c, d, e√
a, −√a, qa/b, qa/c, qa/d, qa/e

∣∣∣q; qa2

bcde

]
(5a)

=
[

q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣q
]

∞
(5b)

provided that |qa2/bcde| < 1 for convergence.
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Split the last bilateral 6ψ6-series into two unilateral series

6ψ6

[
q
√

a, −q
√

a, b, c d, e√
a, −√a, qa/b, qa/c, qa/d, qa/e

∣∣∣q; qa2

bcde

]
(6a)

=
∞∑

n=0

1− aq2n

1− a

[
b, c d, e

qa/b, qa/c, qa/d, qa/e

∣∣∣q
]

n

( qa2

bcde

)n

(6b)

− q(1− q2/a)(1− a/b)(1− a/c)(1− a/d)(1− a/e)
a(1− a)(1− q/b)(1− q/c)(1− q/d)(1− q/e)

(6c)

×
∞∑

n=0

1− q2n+2/a

1− q2/a

[
qb/a, qc/a, qd/a, qe/a
q2/b, q2/c, q2/d, q2/e

∣∣∣q
]

n

( qa2

bcde

)n

. (6d)

Equating (5b) with (6b-6c-6d) and then relabeling the parameters a, b, c, d, e
respectively with qy/x, q/bx, q/cx, q/dx, q/ax, we derive, after some routine
simplification, the following general reciprocity theorem.

Theorem 5 (|abcdx2y2/q| < 1).

y

∞∑
n=0

{
1− q2n+1y/x

} [q/ax, q/bx, q/cx, q/dx; q]n
[ay, by, cy, dy; q]n+1

(abcdx2y2/q)n

− x

∞∑
n=0

{
1− q2n+1x/y

} [q/ay, q/by, q/cy, q/dy; q]n
[ax, bx, cx, dx; q]n+1

(abcdx2y2/q)n

= (y − x)
[

q, qy/x, qx/y, abxy, acxy, adxy, bcxy, bdxy, cdxy
ax, ay, bx, by, cx, cy, dx, dy, abcdx2y2/q

∣∣∣q
]

∞
.

In particular, specifying a, c respectively by
√

q/xy, −
√

q/xy, we get from the
last theorem the following reciprocity theorem.

Proposition 6 (Reciprocal formula).

y

∞∑
n=0

[q/bx, q/dx; q]n
[by, dy; q]n+1

(−bdxy)n − x

∞∑
n=0

[q/by, q/dy; q]n
[bx, dx; q]n+1

(−bdxy)n

= (y − x)
(bdxy; q)∞

[
q2, q2y/x, q2x/y, qb2xy, qd2xy; q2

]
∞

[bx, by, dx, dy,−bdxy; q]∞
.

Letting b → 0, d → 1, x → b, y → d further, we obtain the following reciprocal
formula, which is quite different from those displayed in Theorems 1, 3 and 4.

Corollary 7. For two complex numbers b, d 6= q−n with n ∈ N, then

%(b, d)− %(d, b) =
(1

b
− 1

d

)[
q2, q2b/d, q2d/b, qbd; q2

]
∞

[qb, qd; q]∞
where

%(b, d) :=
(
1− 1

d

) ∞∑
n=0

q(
n+1

2 ) (q/d; q)n

(qb; q)n

bn.
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Proof. The last reciprocal formula can also be derived from the following trans-
formation due to Andrews [3, Eq 3.27]:

∞∑
n=0

qn(qbd; q2)n

[qb, qd; q]n
=

(
1−1

b

) ∞∑
n=0

q(
n+1

2 ) (q/b; q)n

(qd; q)n
dn+

(qbd; q2)∞
b[qb, qd; q]∞

∞∑
n=0

q2(n+1
2 )(−d/b)n.

In fact, writing

%(b, d) =
∞∑

n=0

qn(qbd; q2)n

[qb, qd; q]n
− (qbd; q2)∞

d[qb, qd; q]∞

∞∑
n=0

q2(n+1
2 )(−b/d)n

and then canceling the symmetric parts in common, we can reformulate the sym-
metric difference as follows:

%(b, d)− %(d, b) =
(qbd; q2)∞
[qb, qd; q]∞

×
{

1
b

∞∑
n=0

q2(n+1
2 )(−d/b)n − 1

d

∞∑
n=0

q2(n+1
2 )(−b/d)n

}
.

Making the replacement n → −n−1 for the second sum and then applying Jacobi’s
triple product identity, we can factorize the difference displayed in the last line into
the following product:

1
b

∞∑
n=0

q2(n+1
2 )(−d/b)n +

1
b

−1∑
n=−∞

q2(n+1
2 )(−d/b)n

=
1
b

+∞∑
n=−∞

q2(n+1
2 )(−d/b)n =

{1
b
− 1

d

}
[q2, q2b/d, q2d/b; q2]∞.

This confirms the reciprocal relation stated in Corollary 7. ¥

Letting a → 0 in Theorem 5 recovers also the following reciprocal formula.

Proposition 8 (Kang [18, Theorem 1.2]).

y

∞∑
n=0

{
1− q2n+1y/x

} [q/bx, q/cx, q/dx; q]n
[by, cy, dy; q]n+1

q(
n
2)(−bcdxy2)n

− x

∞∑
n=0

{
1− q2n+1x/y

} [q/by, q/cy, q/dy; q]n
[bx, cx, dx; q]n+1

q(
n
2)(−bcdx2y)n

= (y − x)
[

q, qy/x, qx/y, bcxy, bdxy, cdxy
bx, by, cx, cy, dx, dy

∣∣∣q
]

∞
.

As observed by Kang [18, §4], this proposition is equivalent to Andrews’ reci-
procity displayed in Theorem 2, which is justified by reformulating both sums
in the proposition via the limiting case of Watson’s transformation formula [14,
III-17] from the terminating very well-poised 8φ7-series to the balanced 4φ3-series.
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Therefore, Theorem 5 may be considered as a generalization of Theorem 2 due to
Andrews.

Performing the replacements y → 1, a → y, b → b/xy, c → c/xy, d → d/xy
and appealing to the following relation

(q/a; q)n = (−1)nq(
n+1

2 )a−n
(
q−na; q

)
n

we derive from Theorem 5 the following common generalization of Jacobi’s triple
product identity and quintuple product identity with five free-parameters.

Theorem 9 (|bcd/qxy2| < 1).

∞∑
n=0

{
1− q2n+1/x

} [q/xy, q−nb/y, q−nc/y, q−nd/y; q]n
[y, b/xy, c/xy, d/xy; q]n+1

q
n(3n+1)

2 (−y/x)n

− x

∞∑
n=0

{
1− q2n+1x

} [q/y, q−nb/xy, q−nc/xy, q−nd/xy; q]n
[xy, b/y, c/y, d/y; q]n+1

q
n(3n+1)

2 (−x2y)n

=
[

q, x, q/x, b, c, d, bc/xy2, bd/xy2, cd/xy2

y, xy, b/y, c/y, d/y, b/xy, c/xy, d/xy, bcd/qxy2

∣∣∣q
]

∞
.

This theorem contains the following interesting special cases.

• Berndt et al [6, Theorem 3.1]: b, c, d → 0.
• Bhargava et al [7]: b, d → 0.
• Kang [18, Theorem 6.1]: c → 0.

They have originally been discovered by different approaches.
In addition, two special cases are worth mentioning. First, letting b, c, d → 0

in the last theorem, we recover the following limiting case of Bailey’s 6ψ6-series:

+∞∑
n=−∞

{
1− q2n+1/x

} (q/xy; q)n

(qy; q)n

q3(n
2)(−q2y/x)n =

[
q, x, q/x
qy, xy

∣∣∣q
]

∞
. (7)

Then, multiplying both sides of the formula in Theorem 9 by 1 − y and letting
y → 1 and x → 1/x, we recover the well-known q-Dougall sum [14, II-20]:

∞∑
n=0

{
1− xq2n+1

} [qx, q−nb, q−nc, q−nd; q]n
[q, qbx, qcx, qdx; q]n

q3(n
2)(−q2x)n (8a)

=
[

qx, bcx, bdx, cdx
qbx, qcx, qdx, bcdx/q

∣∣∣q
]

∞
, where |bcdx/q| < 1. (8b)

The first identity extends both identities of triple and quintuple product (cf. [9]
and [10, 13]), while the last one results in a generalization of Sylvester’s identity.
For the details, the readers can consult Kang [18, §6].



160 Wenchang Chu, Wenlong Zhang

3. Further Reciprocal Relation

Recall the nonterminating three-term transformation formula [14, III-36]:

8φ7

[
a, q

√
a, −q

√
a, b, c, d, e, f√

a, −√a, qa/b, qa/c, qa/d, qa/e, qa/f

∣∣∣q; q2a2

bcdef

]
(9a)

=
[

qa, qa/de, qa/df, qa/ef
qa/d, qa/e, qa/f, qa/def

∣∣∣q
]

∞
4φ3

[
qa/bc, d, e, f

qa/b, qa/c, def/a

∣∣∣q; q
]

(9b)

+
[

qa, qa/bc, d, e, f, q2a2/bdef, q2a2/cdef
qa/b, qa/c, qa/d, qa/e, qa/f, q2a2/bcdef, def/qa

∣∣∣q
]

∞
(9c)

× 4φ3

[
qa/de, qa/df, qa/ef, q2a2/bcdef
q2a2/bdef, q2a2/cdef, q2a/def

∣∣∣q; q
]

. (9d)

We utilize this relation to transform Theorem 5 to another reciprocity theorem.
Writing (6b) in terms of a 8φ7-series and then reformulating it through the last

three-term transformation formula, we have

8φ7

[
a, q

√
a, −q

√
a, b, c, d, e, q√

a, −√a, qa/b, qa/c, qa/d, qa/e, a

∣∣∣q; qa2

bcde

]

=
[

qa, qa/de, a/d, a/e
qa/d, qa/e, a, a/de

∣∣∣q
]

∞
4φ3

[
q, d, e, qa/bc

qa/b, qa/c, qde/a

∣∣∣q; q
]

+
[

qa, qa/bc, d, e, q, qa2/bde, qa2/cde
qa/b, qa/c, qa/d, qa/e, a, qa2/bcde, de/a

∣∣∣q
]

∞

× 3φ2

[
a/d, a/e, qa2/bcde
qa2/bde, qa2/cde

∣∣∣q; q
]

.

Similarly, we can reformulate (6d) as the following expression:

8φ7

[
q2/a, q2/

√
a, −q2/

√
a, qb/a, qc/a, qd/a, qe/a, q

q/
√

a, −q/
√

a, q2/b, q2/c, q2/d, q2/e, q2/a

∣∣∣q; qa2

bcde

]

=
[

q3/a, qa/de, q/d, q/e
q2/d, q2/e, q2/a, a/de

∣∣∣q
]

∞
4φ3

[
q, qd/a, qe/a, qa/bc
q2/b, q2/c, qde/a

∣∣∣q; q
]

+
[

q3/a, qa/bc, qd/a, qe/a, q, q2a/bde, q2a/cde
q2/b, q2/c, q2/d, q2/e, q2/a, qa2/bcde, de/a

∣∣∣q
]

∞

× 3φ2

[
q/d, q/e, qa2/bcde
q2a/bde, q2a/cde

∣∣∣q; q
]

.

Substituting both three-term transformation formulae into (6a-6b-6c-6d) and then
replacing a, b, c, d, e respectively by qy/x, q/bx, q/dx, q/ax, q/cx, we find, after
some simplification, the following equivalent form of Theorem 5.
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Theorem 10 (Reciprocal formula).

y

∞∑
n=0

[q/ax, q/cx, bdxy; q]n qn

(q2/acxy; q)n [by, dy; q]n+1

− x

∞∑
n=0

[q/ay, q/cy, bdxy; q]n qn

(q2/acxy; q)n [bx, dx; q]n+1

= (y − x)
[

q, qy/x, qx/y, abxy, acxy/q, adxy, bcxy, bdxy, cdxy
ax, ay, bx, by, cx, cy, dx, dy, abcdx2y2/q

∣∣∣q
]

∞

+
acxy

q

[
q, q/ax, q/ay, q/cx, q/cy, bdxy
bx, by, dx, dy, q2/acxy, abcdx2y2/q

∣∣∣q
]

∞

×
{

y

[
bx, dx, abcxy2, acdxy2

ay, cy, q/ay, q/cy

∣∣∣q
]

∞
3φ2

[
ay, cy, abcdx2y2/q

abcxy2, acdxy2

∣∣∣q; q
]

− x

[
by, dy, abcx2y, acdx2y

ax, cx, q/ax, q/cx

∣∣∣q
]

∞
3φ2

[
ax, cx, abcdx2y2/q

abcx2y, acdx2y

∣∣∣q; q
]}

.

When c → 0, the last theorem reduces to Andrews’ one displayed in Theo-
rem 2. This theorem corrects the reciprocal formula due to Zhang [20], where the
correcting terms displayed in the last three lines have been missing.
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