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SOME Lp INEQUALITIES FOR POLYNOMIALS

Abdullah Mir, Kum K. Dewan, Naresh Singh

Abstract: In this paper we establish some Lp inequalities for polynomials having no zeros in
|z| < k, where k > 1. Our results not only generalizes some known polynomial inequalities, but
also a variety of interesting results can be deduced from these by a fairly uniform procedure.
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1. Introduction and statement of results

Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree at most n and p′(z) its derivative,

then
max
|z|=1

|p′(z)| 6 n max
|z|=1

|p(z)| (1)

and for every r > 1,

{ ∫ 2π

0

|p′(eiθ)|rdθ

} 1
r

6 n

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

. (2)

Inequality (1) is a classical result of Bernstein [13] (see also [16]), whereas in-
equality (2) is due to Zygmund [17] who proved it for all trigonometric polynomials
of degree n and not only for those which are of the form p(eiθ). Arestov [1] proved
that (2) remains true for 0 < r < 1 as well. If we let r →∞ in inequality (2), we
get (1).

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,
then both the inequalities (1) and (2) can be sharpened. In fact, if p(z) 6= 0 in
|z| < 1, then (1) and (2) can be respectively replaced by

max
|z|=1

|p′(z)| 6 n

2
max
|z|=1

|p(z)| (3)
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and { ∫ 2π

0

|p′(eiθ)|rdθ

} 1
r

6 nCr

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

, (4)

where

Cr =
{

1
2π

∫ 2π

0

|1 + eiα|rdα

}− 1
r

.

Inequality (3) was conjectured by Erdös and later verified by Lax [11], whereas in-
equality (4) was found out by De-Bruijn [6] for r > 1. Rahman and Schmeisser [15]
have shown that (4) holds for 0 < r < 1 also. If we let r →∞ in (4), we get (3).

As a generalization of (3) Malik [12] proved that if p(z) 6= 0 in |z| < k, k > 1,
then

max
|z|=1

|p′(z)| 6 n

1 + k
max
|z|=1

|p(z)| , (5)

whereas under the same hypothesis, Govil and Rahman [10] extended inequality (4)
by showing that

{ ∫ 2π

0

|p′(eiθ)|rdθ

} 1
r

6 nEr

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

, (6)

where

Er =
{

1
2π

∫ 2π

0

|k + eiα|rdα

}− 1
r

, r > 1 .

It was shown by Gardner and Weems [9] that inequality (6) also holds for
0 < r < 1.

Chan and Malik [5] generalized (5) in a different direction and proved that, if

p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n which does not vanish in

|z| < k, where k > 1, then

max
|z|=1

|p′(z)| 6 n

1 + kt
max
|z|=1

|p(z)| . (7)

Inequality (7) was independently proved by Qazi [14, Lemma 1] who also under
the same hypothesis proved that

max
|z|=1

|p′(z)| 6
(

n

1 + S1

)
max
|z|=1

|p(z)|, (8)

where

S1 = kt+1




(
t

n

)∣∣∣∣
at

a0

∣∣∣∣kt−1 + 1
(

t

n

)∣∣∣∣
at

a0

∣∣∣∣kt+1 + 1


 . (9)
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If p(z) = a0 +
n∑

v=t
avzv 6= 0 in |z| < k, k > 1, then

t

n

∣∣∣∣
at

a0

∣∣∣∣ kt 6 1, which can

also be taken as equivalent to S1 > kt. Hence inequality (8) is an improvement of
inequality (7).

Recently, Aziz and Shah [4] investigated the dependence max
|z|=1

|p(Rz)−p(z)| on

max
|z|=1

|p(z)| and proved that if p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree

n, p(z) 6= 0 in |z| < k, k > 1, then for every R > 1 and |z| = 1,

|p(Rz)− p(z)| 6
{

Rn − 1
1 + ψ1(R)

}
max
|z|=1

|p(z)| , (10)

where

ψ1(R) = kt+1




(
Rt − 1
Rn − 1

)∣∣∣∣
at

a0

∣∣∣∣kt−1 + 1
(

Rt − 1
Rn − 1

)∣∣∣∣
at

a0

∣∣∣∣kt+1 + 1


 . (11)

If we divide the two sides of (10) by R − 1, make R → 1 and noting that
ψ1(R) → S1 as R → 1, we get (8).

The following result which is due to Gardner, Govil and Weems [8] is of inde-
pendent interest, because it provides generalizations and refinements of inequalities
(3), (5), (7) and (8).

Theorem A. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having

no zeros in |z| < k where k > 1, then

max
|z|=1

|p′(z)| 6
(

n

1 + S0

){
max
|z|=1

|p(z)| −m

}
(12)

where m = min
|z|=k

|p(z)| and

S0 = kt+1




(
t

n

) |at|
|a0| −m

kt−1 + 1
(

t

n

) |at|
|a0| −m

kt+1 + 1


 (13)

In this paper, we shall generalize inequalities (10) and (12) to the Lr norm of
p(z) for every r > 0. We first prove the following interesting generalization of (12).

Theorem 1. Let p(z) = a0 +
n∑

v=t
avzv, t > 1, be a polynomial of degree n which

does not vanish in |z| < k, k > 1. Then for every complex number β with |β| 6 1
and for each r > 0,

{ ∫ 2π

0

∣∣∣∣p′(eiθ) +
mnβ

1 + S0

∣∣∣∣
r

dθ

} 1
r

6 nCr

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

, (14)
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where

m = min
|z|=k

|p(z)|, Cr =
{

1
2π

∫ 2π

0

|S0 + eiα|rdα

}− 1
r

and S0 is as defined in Theorem A.

If we let r → ∞ in (14), noting that Cr → 1
1 + S0

and choose argument of β

with |β| = 1 suitably, we get (12). For k = 1 = t and β = 0, Theorem 1 reduces
to De-Bruijn’s Theorem.

If we do not have the knowledge of min
|z|=k

|p(z)|, we obtain the following result

which is a special case of Theorem 1.

Corollary 1. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having

no zeros in |z| < k, k > 1, then for each r > 0,

{ ∫ 2π

0

|p′(eiθ)|rdθ

} 1
r

6 nDr

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

, (15)

where

Dr =
{

1
2π

∫ 2π

0

|S1 + eiα|rdα

}− 1
r

(16)

and S1 is defined by formula (9).

If we let r → ∞ in (15), we get (8). Several other interesting results easily
follow from Corollary 1. Here, we mention a few of these. Since it is well known
that S1 > kt. Using this fact in inequality (15), we immediately get the following
corollary.

Corollary 2. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having

no zeros in |z| < k, k > 1, then for each r > 0,

{ ∫ 2π

0

|p′(eiθ)|rdθ

} 1
r

6 n
{

1
2π

∫ 2π

0

|kt + eiα|rdα

} 1
r

×
{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

. (17)

For t = 1, inequality (17) reduces to inequality (6) for r > 0.
Instead of proving Theorem 1, we prove the following more general result which

includes not only Theorem 1 and inequality (10) as special cases, but also leads to
a standard development of interesting generalizations of some well known results.
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Theorem 2. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n which does

not vanish in |z| < k, k > 1, and m = min
|z|=k

|p(z)|, then for every complex number

β with |β| 6 1, r > 0, R > 1 and α real,

{ ∫ 2π

0

∣∣∣∣p(Reiθ)− p(eiθ) +
(

Rn − 1
1 + ψ0(R)

)
mβ

∣∣∣∣
r

dθ

} 1
r

6 (Rn − 1)Br

{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

, (18)

where

Br =
{

1
2π

∫ 2π

0

|ψ0(R) + eiα|rdα

}− 1
r

and

ψ0(R) = kt+1





(
Rt − 1
Rn − 1

) |at|
|a0| −m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| −m

kt+1 + 1





. (19)

If we let r →∞ in (18) and choose argument of β with |β| = 1 suitably, we get

max
|z|=1

|p(Rz)− p(z)| 6
(

Rn − 1
1 + ψ0(R)

){
max
|z|=1

|p(z)| −m

}
. (20)

Dividing the two sides of (20) by R−1, letting R → 1 and noting that ψ0(R) → S0

as R → 1, we get Theorem A.
From inequality (20), it follows that

max
|z|=R

|p(z)| 6
(

Rn + ψ0(R)
1 + ψ0(R)

)
max
|z|=1

|p(z)| −
(

Rn − 1
1 + ψ0(R)

)
m. (21)

It can be easily verified that for every n and R > 1, the function(
Rn + x

1 + x

)
max
|z|=1

|p(z)| −
(

Rn − 1
1 + x

)
m, is a non-increasing function of x. If we

combine this fact with Lemma 6 (stated in Section 2), according to which ψ0(R) >
kt for t > 1, we get

max
|z|=R

|p(z)| 6
(

Rn + kt

1 + kt

)
max
|z|=1

|p(z)| −
(

Rn − 1
1 + kt

)
m, (22)

which is a generalization of a result due to Aziz [2, Theorem 4].
If we divide the two sides of (18) by R − 1, make R → 1 and note that

ψ0(R) → S0 as R → 1, we get inequality (14) of Theorem 1.
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2. Lemmas

For the proofs of these theorems we need the following lemmas.

Lemma 1. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having no

zeros in |z| < k, k > 1, then for |z| = 1 and R > 1,

|q(Rz)− q(z)| > kt+1





(
Rt − 1
Rn − 1

)∣∣∣∣
at

a0

∣∣∣∣kt−1 + 1
(

Rt − 1
Rn − 1

)∣∣∣∣
at

a0

∣∣∣∣kt+1 + 1




|p(Rz)− p(z)| (23)

where q(z) = znp

(
1
z̄

)
.

The above lemma is due to Aziz and Shah [4].
The following lemma is due to Aziz and Rather [3].

Lemma 2. If p(z) is a polynomial of degree n having all its zeros in |z| 6 t, where
t 6 1, then

|p(Rz)− p(z)| >
(

Rn − 1
tn

)
min
|z|=t

|p(z)|, for |z| = 1 and R > 1 .

Lemma 3. The function

S(x) = kt+1





(
Rt − 1
Rn − 1

)( |at|
x

)
kt−1 + 1

(
Rt − 1
Rn − 1

)( |at|
x

)
kt+1 + 1





, R > 1,

is a non-decreasing function of x.

Proof of Lemma 3. The proof follows by considering the first derivative test for
S(x). ¥

Lemma 4. If p(z) =
n∑

v=0
avzv is a polynomial of degree n, p(z) 6= 0 in |z| < k

then |p(z)| > m for |z| < k, and in particular

|a0| > m ,

where m = min
|z|=k

|p(z)|.

The above lemma is due to Gardner, Govil and Musukula [7, Lemma 2.6],
however for the sake of completeness we present the brief outline of the proof. For
this, we can assume without loss of generality that p(z) has no zeros on |z| = k,
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for otherwise the result holds trivially. Since p(z), being a polynomial, is analytic
in |z| 6 k and has no zeros in |z| < k, by the minimum modulus principle,

|p(z)| > m for |z| 6 k,

which in particular implies |a0| = |p(0)| > m.

Lemma 5. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having no

zeros in |z| < k, k > 1 and q(z) = znp

(
1
z̄

)
, then for |z| = 1 and R > 1

kt+1





(
Rt − 1
Rn − 1

) |at|
|a0| −m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| −m

kt+1 + 1




|p(Rz)− p(z)|

6 |q(Rz)− q(z)| − (Rn − 1)m, (24)

where m = min
|z|=k

|p(z)|.

Proof of Lemma 5. Since m 6 |p(z)| for |z| = k .
Hence, it follows by Rouche’s Theorem that for m > 0 and for every complex

number α with |α| 6 1, the polynomial h(z) = p(z) − αm does not vanish in
|z| < k.

Applying Lemma 1 to the polynomial h(z) = p(z) − αm, we get for every
complex number α with |α| 6 1,

kt+1





(
Rt − 1
Rn − 1

) |at|
|a0 − αm|k

t−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0 − αm|k

t+1 + 1




|p(Rz)− p(z)| (25)

6 |q(Rz)− q(z)−mᾱ(Rn − 1)zn|
for |z| = 1 and R > 1. Since for every α, |α| 6 1 we have

|a0 − αm| > |a0| − |α|m > |a0| −m (26)

and |a0| > m by Lemma 4, we get on combining (25), (26) and Lemma 3 that for
every α where |α| 6 1,

kt+1





(
Rt − 1
Rn − 1

) |at|
|a0| −m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| −m

kt+1 + 1




|p(Rz)− p(z)|

6 |q(Rz)− q(z)−mᾱ(Rn − 1)zn| (27)

for |z| = 1 and R > 1.
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Also all the zeros of q(z) lie in |z| 6 1
k

6 1, it follows by Lemma 2 (with p(z)

replaced by q(z) and t by 1/k) that

|q(Rz)− q(z)| > (Rn − 1)kn min
|z|= 1

k

|q(z)|.

But
min
|z|= 1

k

|q(z)| = 1
kn

min
|z|=k

|p(z)|,

therefore, we have

|q(Rz)− q(z)| > (Rn − 1)m for |z| = 1 and R > 1 . (28)

Now choosing argument of α with |α| = 1 on the right hand side of (27) such that
for |z| = 1 and R > 1,

|q(Rz)− q(z)−mᾱ(Rn − 1)zn| = |q(Rz)− q(z)| − (Rn − 1)m

which is possible by (28), we conclude that

kt+1





(
Rt − 1
Rn − 1

) |at|
|a0| −m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| −m

kt+1 + 1




|p(Rz)− p(z)|

6 |q(Rz)− q(z)| − (Rn − 1)m

for |z| = 1 and R > 1, which is inequality (24) and that proves Lemma 5 com-
pletely. ¥

Lemma 6. If p(z) = a0 +
n∑

v=t
avzv, t > 1, is a polynomial of degree n having no

zeros in |z| < k, k > 1 and m = min
|z|=k

|p(z)|, then

ψ0(R) = kt+1





(
Rt − 1
Rn − 1

) |at|
|a0| −m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| −m

kt+1 + 1





> kt , R > 1 .

Proof of Lemma 6. Since, we have

Rt − 1
Rn − 1

6 t

n
(29)

holds for all R > 1 and 1 6 t 6 n by considering the first derivative test for the
function ϕ(R) = nRt − tRn.
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Also, we have by an inequality (see [8, Proof of Lemma 3]),

|at|kt

|a0| −m
6 n

t
, t > 1 . (30)

Considering (29) and (30), we get

|at|kt

|a0| −m
6 Rn − 1

Rt − 1
.

The above inequality is clearly equivalent to
(

Rt − 1
Rn − 1

) |at|kt

|a0| −m
(k − 1) 6 (k − 1) ,

which implies
(

Rt − 1
Rn − 1

) |at|kt+1

|a0| −m
+ 1 6

(
Rt − 1
Rn − 1

) |at|kt

|a0| −m
+ k ,

from which Lemma 6 follows. ¥

Lemma 7. If A,B and C are non-negative real numbers such that B + C 6 A,
then for every real number α,

|(A− C)eiα + (B + C)| 6 |Aeiα + B| .

Lemma 8. If p(z) is a polynomial of degree n which does not vanish in |z| < 1,
then for each r > 0, R > 1 and α real,

{∫ 2π

0

|(p(Reiθ)− p(eiθ)) + eiα

(
Rnp

(
eiθ

R

)
− p(eiθ)

)
|rdθ

} 1
r

6 (Rn − 1)
{ ∫ 2π

0

|p(eiθ)|rdθ

} 1
r

.

The result is best possible and equality holds for p(z) = λzn + µ, |λ| = |µ|.
The above two lemmas are due to Aziz and Rather [3].

3. Proofs of the Theorems

Proof of Theorem 2. Since p(z) 6= 0 in |z| < k, k > 1, therefore, by Lemma 5,
for each θ, 0 6 θ < 2π and R > 1, we have

ψ0(R)|p(Reiθ)− p(eiθ)| 6
∣∣∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣∣∣−m(Rn − 1),

where ψ0(R) is as defined in inequality (19).
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This implies

ψ0(R)
{
|p(Reiθ)− p(eiθ)|+

(
Rn − 1

1 + ψ0(R)

)
m

}

6
∣∣∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣∣∣−
(

Rn − 1
1 + ψ0(R)

)
m . (31)

Taking A =
∣∣∣∣Rnp

(
eiθ

R

)
−p(eiθ)

∣∣∣∣, B = |p(Reiθ)−p(eiθ)| and C =
(

Rn − 1
1 + ψ0(R)

)
m

in Lemma 7 and noting by Lemma 6 that ψ0(R) > kt > 1,

B + C 6 ψ0(R)(B + C) 6 A− C 6 A ,

we get for every real α,

∣∣∣∣
{∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣−
(

Rn − 1
1 + ψ0(R)

)
m

}
eiα

+
{
|p(Reiθ)− p(eiθ)|+

(
Rn − 1

1 + ψ0(R)

)
m

}∣∣∣∣

6
∣∣∣∣
∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣eiα + |p(Reiθ)− p(eiθ)|
∣∣∣∣ .

This implies for each r > 0,

∫ 2π

0

|F (θ) + eiαG(θ)|rdθ

6
∫ 2π

0

∣∣∣∣
∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣eiα + |p(Reiθ)− p(eiθ)|
∣∣∣∣
r

dθ, (32)

where

F (θ) = |p(Reiθ)− p(eiθ)|+
(

Rn − 1
1 + ψ0(R)

)
m

and

G(θ) =
∣∣∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣∣∣−
(

Rn − 1
1 + ψ0(R)

)
m.
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Integrating both sides of (32) with respect to α from 0 to 2π, we get with the help
of Lemma 8, for each r > 0, R > 1,

∫ 2π

0

∫ 2π

0

|F (θ) + eiαG(θ)|rdθdα

6
∫ 2π

0

{ ∫ 2π

0

∣∣∣∣
∣∣Rnp

(
eiθ

R

)
− p(eiθ)

∣∣eiα + |p(Reiθ)− p(eiθ)|
∣∣∣∣
r

dα

}
dθ

=
∫ 2π

0

{ ∫ 2π

0

∣∣∣∣
(

Rnp

(
eiθ

R

)
− p(eiθ)

)
eiα +

(
p(Reiθ)− p(eiθ)

)∣∣∣∣
r

dα

}
dθ

=
∫ 2π

0

{ ∫ 2π

0

∣∣∣∣
(

Rnp

(
eiθ

R

)
− p(eiθ)

)
eiα +

(
p(Reiθ)− p(eiθ)

)∣∣∣∣
r

dθ

}
dα

6 (Rn − 1)r

∫ 2π

0

∫ 2π

0

|p(eiθ)|rdθdα

= 2π(Rn − 1)r

∫ 2π

0

|p(eiθ)|rdθ . (33)

Now for every real α and t1 > t2 > 1, we have

|t1 + eiα| > |t2 + eiα|,

which implies for every r > 0

∫ 2π

0

|t1 + eiα|rdα >
∫ 2π

0

|t2 + eiα|rdα .

If F (θ) 6= 0, we take t1 =
∣∣∣∣
G(θ)
F (θ)

∣∣∣∣ and t2 = ψ0(R), then from (31) and noting by

Lemma 6 that ψ0(R) > 1, we have t1 > t2 > 1, hence

∫ 2π

0

|F (θ) + eiαG(θ)|rdα = |F (θ)|r
∫ 2π

0

∣∣∣∣1 +
G(θ)
F (θ)

eiα

∣∣∣∣
r

dα

= |F (θ)|r
∫ 2π

0

∣∣∣∣
G(θ)
F (θ)

+ eiα

∣∣∣∣
r

dα

= |F (θ)|r
∫ 2π

0

∣∣∣∣
∣∣∣∣
G(θ)
F (θ)

∣∣∣∣ + eiα

∣∣∣∣
r

dα

> |F (θ)|r
∫ 2π

0

|ψ0(R) + eiα|rdα

=
{
|p(Reiθ)− p(eiθ)|+

(
Rn − 1

1 + ψ0(R)

)
m

}r

×
∫ 2π

0

|ψ0(R) + eiα|rdα .
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For F (θ) = 0, this inequality is trivially true. Using this in (33), we conclude that
for each r > 0, R > 1,

∫ 2π

0

|ψ0(R) + eiα|rdα

∫ 2π

0

{
|p(Reiθ)− p(eiθ)|+

(
Rn − 1

1 + ψ0(R)

)
m

}r

dθ

6 2π(Rn − 1)r

∫ 2π

0

|p(eiθ)|rdθ . (34)

Now using the fact that for every complex number β with |β| 6 1,
∣∣∣∣p(Reiθ)− p(eiθ) + βm

(
Rn − 1

1 + ψ0(R)

)∣∣∣∣

6 |p(Reiθ)− p(eiθ)|+ m

(
Rn − 1

1 + ψ0(R)

)
,

the desired result follows from (34). ¥

Remark 1. If we divide both sides of (24) by R− 1 and let R → 1, we get

kt+1





(
t

n

) |at|
|a0| −m

kt−1 + 1
(

t

n

) |at|
|a0| −m

kt+1 + 1




|p′(z)| 6 |q′(z)| −mn . (35)

This inequality was also recently proved by Gardner, Govil andWeems [8, Lemma 8].

Remark 2. The proof of Theorem 1 follows along the lines of the proof of Theo-
rem 2, by applying inequality (35) instead of Lemma 5.
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