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EXPONENTIAL SUMS AND THE ABELIAN GROUP PROBLEM

H.-Q. Liu

Abstract: We give new estimates for multiple exponential sums, which infers
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,

where L = log x, A(x) is the number of non-isomorphic abelian groups of orders 6 x, and x is
large.
Keywords: Abelian groups, exponential sums.

1. Introduction

For a positive integer n let a(n) be the number of distinct abelian groups (up to
isomorphism) of order n, and let

A(x) =
∑

n6x

a(n),

where x is a large positive number. Recently in [RS] the authors deduced the
following wonderful result:

A(x) = C1x + C2x
1
2 + C3x

1
3 + ∆(x), ∆(x) ¿ x

1
4+ε, (1.1)

where ε is any given small positive constants (as usual, C1, C2 and C3 are the three
standard constants). Previously, in 1993 in [L2] we showed the estimation:

∆(x) ¿ x
50
199+ε,

50
199

= 0.25125 . . . , (1.2)

and in 2000 in [SW], the authors improved the exponent of (1.2) to 55
219 = 0.25114 . . .

by using an ingenious result of [BS]. Stimulated by works of Bombieri and
Iwaniec [BI], and [W], the new idea of [RS] is to give up the use of the Weyl’s
inequality of van der Corput’s method, and instead it uses only the Cauchy’s

2000 Mathematics Subject Classification: primary: 11L06; secondary: 11M20



114 H.-Q. Liu

inequality (and then it reduces the related ”spacing problem” to a problem of
evaluating an integration). In fact, just as we observed in [L2] (see p.296, the
”Concluding remarks”), that if we use the Weyl’s inequality, we can never attain
the exponent 1

4 , because to study the corresponding ”spacing problem” one must
use the Taylor’s expansion, which then requires that Q cannot be too large as
compared with M .

In this paper, we are stimulated by the work of Vinogradov’s mean-value the-
orem (see Chapter VI of [T]), to present a refined version of the work of [RS] for
evaluating an integration, and from which we can deduce a new estimation for
triple exponential sums with monomials.

Theorem 1.1. Let M,M1, N1 > 1
2 ,

S =
∑

m1∼M1

∑

n1∼N1

∑

m∈I

φmψm1n1e
(
Amαmγ

1nδ
1

)
,

(as usual e(ξ) = exp(2πiξ)), and t ∼ T means 1 6 t/T < 2) here φm is meaningful
for m ∼ M , and |φm| 6 1, |ψm1n1 | 6 1, Aαγδ 6= 0, α 6= 1, α 6= 2, A, α, γ, δ are
real, I is an interval, I ⊆ [M, 2M), and I may depend on both m1 and n1. Let
F = |A|MαMγ

1 N δ
1 , L = log(9M), and L = log(10M1N1). Then, if F À 1 we have

S ¿
(
MM1N1F

−1/4 + 4
√

M4(M1N1)3 + M1N1M
1/2 + 4

√
(M1N1)3FM2

)
eΦ(M)L,

where Φ(M) = (L log L)
1
2 + O

(
L

1
2 (log L)−

1
2

)
.

Our Theorem 1.1 is an improvement of Theorem 1 of [RS].
Let τ(1, 2, 3;n) =

∣∣{(n1, n2, n3) |n = n1n
2
2n

3
3, ni(1 6 i 6 3) be positive

integers} | . In 1968, P.G.Schmidt [S1] first got the symmetric version for the error
term in the asymptotic formula:

∑

n6x

τ(1, 2, 3; n) = c1x + c2x
1
2 + c3x

1
3 + ∆1(x), (1.3)

where

c1 = ζ(2)ζ(3), c2 = ζ

(
1
2

)
ζ

(
3
2

)
, c3 = ζ

(
1
3

)
ζ

(
2
3

)
.

Using Schmidt’s formula, from Theorem 1.1 we can deduce the following:

Theorem 1.2. For x > 10, L = log x, one has the bound

∆1(x) = O
(
x

1
4 eR(x)

)
, with R(x) =

1√
3
(L log L)

1
2 + O

(
L

1
2 (log L)−

1
2

)
.

In [S1], Schmidt showed that for all β > 1
4 ,

∆1(x) ¿ xβ ⇒ ∆(x) ¿ xβ ,

where ∆(x) and ∆1(x) are given by (1.1) and (1.3) respectively. Along the similar
line of approach, from Theorem 1.2 we can deduce the following essentially new
bound for ∆(x):
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Theorem 1.3. For the abelian group problem, we have for x > 10,

∆(x) = O
(
X

1
4 eV (x)

)
,

where V (x) = 1√
3
(L log L)

1
2 + O

(
L

1
2 (log L)−

1
2

)
, L = log x.

We should add a few more words here to clarify the historical background
for the study of the abelian group problem. B.R.Srinivasan’s work of [Sr] was
untenable, because Srinivasan’s theory of the so-called ”two dimensional exponent
pairs” was suspected by P.G.Schmidt, see the paper [S2] of Schmidt. The result
of G.Kolesnik [K] was also untenable, because although we can remedy the proof
of Theorem 1 of [K] dy developing some new techniques (see [L4]), we are unable
to remedy the proof of the last bound of S0 of Lemma 6 of [K]. Our works of [L1]
and [L2] are tenable, for although they used Theorem 1 of [K], for the statement
and the proof of Theorem 1 of [K] have been corrected in our recent paper [L4].

2. Preliminaries

We prove several lemmas in this section.

Lemma 2.1. Let A be a set of finitely many distinct positive numbers, A1 and A2

are two positive constants, such that if n ∈ A then A1 6 n/N < A2. Let ω(u) be
a real valued function with positive arguments, let δ > 0, and V (A, δ) denote the
number of ordered (u1, u2, v1, v2)’s of the four dimensional euclidean space such
that ∣∣∣∣∣∣

∑

16m62

(ω (um)− ω (vm))

∣∣∣∣∣∣
6 δ, and u1, u2, v1, v2 ∈ A.

Let

T (A, x) =
∑

u∈A
u−

1
2 e(ω(u)x), W (A, δ) =

D∫

0

|T (A, x)|4 dx,

where D = (2δ)−1.

(i) We have

8A2
1π
−2N2δW (A, δ) 6 V (A, δ) 6 π2A2

2N
2δW (A, δ).

(ii) If A ⊆ A′, δ′ > δ > 0, and D′ = (2δ′)−1, then (for A′, n ∈ A′ ⇒ n/N ∈
[A1, A2))

8A2
1δW (A, δ) 6 π4A2

2δ
′W (A′, δ′).

(iii) Let hu be any complex numbers with |hu| 6 1, then

V (A, δ) > 8A2
1N

2δπ−2




D∫

0

∣∣∣∣∣
∑

u∈A
u−1/2hue(xω(u))

∣∣∣∣∣

4

dx


 .
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Proof. (i) can be proven similarly with the proof of Lemma 2.1 of [W]. Using (i)
and the obvious inequality V (A, δ) 6 V (A, δ′) 6 V (A′, δ′), we can get (ii). Using
again the method of showing (i), but in a more careful manner, we can get (iii)
(see also (2.3) on p.5 of [RS]). ¥

Lemma 2.2. Let M > 0, c > 2, M 6 N1 < N2 6 cM, zm be complex numbers.
Then

∣∣∣∣∣
∑

N1<m<N2

zm

∣∣∣∣∣

4

6 (1 + log(cM + 1))3




1
2∫

− 1
2

∣∣∣∣∣∣
∑

M6m<cM

zme(mt)

∣∣∣∣∣∣

4

L(t)dt


 ,

where L(t) = min
(
cM, 1

2|t|
)

.

Proof. It can be proven similarly with Lemma 2 of [RS]. ¥

Lemma 2.3. Let 2X > X1 > 0, X > Y > 0,M > 0, c > 2, |am| 6 1, φ(m)
is a real valued function with natural number arguments, Mi(x) = xhKi, here
h,K1 and K2 do not depend on x (i = 1, 2), and when X1 6 x 6 2X holds
M 6 M1(x) < M2(x) 6 cM, then

2X∫

X1

∣∣∣∣∣∣
∑

M1(x)<m<M2(x)

amm− 1
2 e(xφ(m))

∣∣∣∣∣∣

4

dx

6 π8c4

64
· X

Y
(1 + log(cM + 1))4




2Y∫

0

∣∣∣∣∣∣
∑

M6m<cM

m− 1
2 e(xφ(m))

∣∣∣∣∣∣

4

dx


 .

Proof. It can be proven similarly with Lemma 3 of [RS], by using instead our
Lemmas 1 and 2. ¥

Lemma 2.4. For a real number α with α 6= 0, α 6= 1, there is a positive number
c(α), such that

M3/2∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx 6 c(α)M2.

Proof. It can be proven similarly with Lemma 5 of [RS], by adding one more step
to the partial summation. ¥

3. Estimation of integration

The purpose of this section is to deduce the following important theorem by using
the mathematical induction.
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Theorem 3.1. Let M > 1, 0 < ε 6 1, α 6= 0, α < 1, then

M2−ε∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx 6 M2(P (α))6[1/ε](log(Q(M,α)))4[1/ε],

(3.1)
where [1/ε] is the largest number not exceeding 1/ε,

Q(M, α) = 2
(
|α|+

∣∣∣∣
α

α− 1

∣∣∣∣ + 1
)

M + e3,

P (α) =





8 + c(α) + c

(
α

α− 1

)
+ λ10(α)

+ λ̃10

(
α

α− 1

)
+ µ(α) + µ̃

(
α

α− 1

), if 0 < α < 1,

8 + c(α) + c

(
α

α− 1

)
+ λ̃10(α)

+ λ10

(
α

α− 1

)
+ µ̃(α) + µ

(
α

α− 1

), if α < 0,

where c(α) is the positive constant of Lemma 4, µ(ξ) and λ10(ξ) are the positive
functions defined for ξ ∈ (0, 1), their expressions can actually be written down
explicitly, and similarly µ̃(ξ) and λ̃10(ξ) are the positive functions defined for ξ < 0,
their concrete values will be clear in the context of our following arguments. (note
that P (α) = P (α/(α− 1)), and Q(M, α) = Q(M, α/(α− 1))). (we think that it is
unnecessary to give the precise expressions of c(ξ), µ(ξ), µ̃(ξ), λ10(ξ) and λ̃10(ξ)
here, which is possible)

Proof. For any ε ∈ (0, 1], there is the unique positive integer N for which ε ∈(
1

N+1 , 1
N

]
. We shall use the mathematical induction for N , to show that the

estimation (3.1) is true for any ε ∈ (0, 1], any M > 1, and any α < 1 (α 6= 0).
For N = 1, ε ∈ (

1
2 , 1

]
, by Lemma 4 we see that (3.1) is true for any M > 1 and

0 6= α < 1. Assume that (3.1) is true, when ε ∈
(

1
k+1 , 1

k

]
(k > 1), with arbitrary

M > 1 and any α < 1 (α 6= 0). Then, to complete the induction, we must show
that (3.1) is true also whenever ε ∈

(
1

k+2 , 1
k+1

]
, with any M > 1 and any α < 1

(α 6= 0). Denote the left hand side of (3.1) as S(M, ξ, α). Let δ = ε/(1− ε), then
δ ∈

(
1

k+1 , 1
k

]
. We have

S(M, ε, α) = S(M, δ, α) +

M2−ε∫

M2−δ

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx. (3.2)

Since k 6 δ−1 < k + 1, thus
[
δ−1

]
= k. By the inductive hypothesis we get

S(M, δ, α) 6 M2(P (α))6k(log Q(M, α))4k. (3.3)
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Let I =
[(

log M δ−ε)/ log 2
)]

(> 0), then 2IM2−δ 6 M2−ε < 2I+1M2−δ. Let
Xi = 2iM2−δ, where 0 6 i 6 I, then

M2−ε∫

M2−δ

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx

6
∑

06i6I




2Xi∫

Xi

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx


 . (3.4)

For each i (0 6 i 6 I), write Xi = X for simplicity, and denote the integration
inside the summation of the right hand side of (3.4) as T (X, M, α). For the tech-
nical reason of using Theorem 3 of [L3], we shall consider respectively the cases
for α ∈ (−∞, 0) and α ∈ (0, 1). First, consider the case of α ∈ (0, 1). When
X 6 x 6 2X, by Theorem 3 of [L3] we get

∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
=

(
−i (1− α)

1
2

) ( ∑

V1<v<V2

v−
1
2 e(g(x, v, M))

)

+ E1 + E2 + E3

(3.5)

where

V1 = V1(x, α,M) = α2α−1xM−1,

V2 = V2(x, α,M) = αxM−1,

g(x, v, M) =
(
α−1 − 1

) (
αxM−α

)1/(α−1))
vα/(α−1)),

|E1|+ |E2| 6 c1(α)
(
MX−1

) 1
2 ,

|E3| 6 c2(α)M− 1
2 log(3 + M)

(we use ci(α) to denote certain positive constants which depend on α). Let L =
X/M, then 1 6 M1−δ 6 L 6 M1−ε. We have g(x) = τ(x)

(
v
L

)β , here β =
α/(α− 1), and

τ(x) =
(
α−1 − 1

)
(αx)1/(1−α)xβ . (3.6)

By Hölder’s inequality we have

 ∑

16i64

|Φi|



4

6


 ∑

16i64

1




3 
 ∑

16i64

|Φi|4

 , (3.7)

thus from (3.5) we get
∣∣∣∣∣∣

∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

6 λ1(α)

∣∣∣∣∣
∑

V1<v<V2

v−
1
2 e

(
τ(x)

( v

L

)β
)∣∣∣∣∣

4

+ λ2(α)L−2 + λ3(α)M−2(log(3 + M))4,
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and thus

T (X,M,α) 6 λ1(α)

2X∫

X

∣∣∣∣∣
∑

V1<v<V2

v−
1
2 e

(
τ(x)

( v

L

)β
)∣∣∣∣∣

4

dx

+ λ2(α)XL−2 + λ3(α)XM−2(log(3 + M))4

(3.8)

(λi(α) are indeed explicite positive constants depending at most on α). We make
the variable substitution τ(x) = y in the integration of the right side of (3.8), and
since we have dy = α−β (X/x)β

dx by (3.8), we get

2X∫

X

∣∣∣∣∣
∑

V1<v<V2

v−
1
2 e

(
τ(x)

( v

L

)β
)∣∣∣∣∣

4

dx

6 λ4(α)

Y1(α)∫

Y2(α)

∣∣∣∣∣
∑

W1<v<W2

v−
1
2 e

(
y

( v

L

)β
)∣∣∣∣∣

4

dy,

(3.9)

where Y1(α) =
(
α−1 − 1

)
(2α)1/(1−α)X, Y2(α) =

(
α−1 − 1

)
α1/(1−α)X and W1 =

W1(y) = c3(α)XαM−1y1−α, W2 = W2(y) = c3(α)21−αXαM−1y1−α with c3(α) =
2α−1

(
α−1 − 1

)α−1. Since

W1 > c3(α)XαM−1(Y2(α))1−α = α2α−1L,

W2 6 c3(α)21−αXαM−1(Y1(α))1−α = 2αL 6 α2α+1L,

if we set Y1(α) = 2X (note that this ”X” is not the one appearing in (3.8)
and (3.9)), X1 = Y2(α), c4(α) = 1

2 min
((

α2α−1
)2

,
(
α−1 − 1

)
(2α)1/(1−α)

)
, Y =

c4(α)L2−δ, V = α2α−1L and c = 4 in Lemma 2.4, then from X > Y (by M2−ε > X
we get X > L2−δ) we have

Y1(α)∫

Y2(α)

∣∣∣∣∣
∑

W1<v<W2

v−
1
2 e

(
y

( v

L

)β
)∣∣∣∣∣

4

dy

6 λ5(α)(log(2αL + 3))4XLδ−2




2Y∫

0

∣∣∣∣∣∣
∑

V 6v<4V

v−
1
2 e

(
y

( v

L

)β
)∣∣∣∣∣∣

4

dy


 .

(3.10)

By the choice of the parameters we get 2Y 6 V 2−δ. Thus using Hölder’s inequality
(similarly with (3.7)) we get

2Y∫

0

∣∣∣∣∣∣
∑

V 6v<4V

v−
1
2 e

(
y

( v

L

)β
)∣∣∣∣∣∣

4

dy 6 8
(

S

(
V, δ,

α

α− 1

)
+ S

(
2V, δ,

α

α− 1

))
.

(3.11)
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If V < 1, then obviously (using the trivial estimate)

S

(
V, δ,

α

α− 1

)
+ S

(
2V, δ,

α

α− 1

)
6 8 · 34. (3.12)

If V > 1, then by the fact δ ∈
(

1
k+1 , 1

k

]
and inductive hypothesis we get (note

that here α
α−1 < 0)

S

(
V, δ,

α

α− 1

)
6 V 2

(
P

(
α

α− 1

))6k (
log Q

(
V,

α

α− 1

))4k

, (3.13)

S

(
2V, δ,

α

α− 1

)
6 2V 2

(
P

(
α

α− 1

))6k (
log Q

(
2V,

α

α− 1

))4k

. (3.14)

If 2V > M, then from (see the arguments after (3.5))

M1−δ 6 X

M
= L 6 M1−ε, V = α · 2α−1L,

it follows that α · 2α ·M1−ε > M, and thus M ε 6 α · 2α, and the trivial estimate
gives (for the definition of T (M, δ, α), see (3.8) and (3.4))

T (M, δ, α) 6 X(M + 1)4M−2 6
(
(α2α)1/ε + 1

)4

6 (2α · 2α + 2)4/ε

6
(
α2α+1 + 2

)6[1/ε] 6 (P (α))6[1/ε].

(3.15)

(here we can show a bit more by distinguishing the cases 2α · α > 1 or 2α · α < 1,
and choose µ(α) = α · 2α+1 + 2). If 2V < M, then from

Q

(
tV,

α

α− 1

)
= Q(tV, α) (t = 1, 2), P (α) = P

(
α

α− 1

)
,

(by the definitions), we can deduce in view of (3.9) to (3.14) that (using log(2αL+
1) 6 log(2αM + 1) 6 log Q(M,α))

2X∫

X

∣∣∣∣∣
∑

V1<v<V2

v−
1
2 e

(
τ(x)

( v

L

)β
)∣∣∣∣∣

4

dx

6 λ6(α)(log Q(M,α))4XLδ−2V 2(P (α))6k(log Q(M, α))4k

+ λ7(α)(log Q(M,α))4XLδ−2

6 λ8(α)
(
X1+δM−δ + M

)
(P (α))6k(log Q(M, α))4(k+1).

(3.16)

Since M2−δ 6 X 6 M2−ε, L = X/M, it is easy to verify that X1+δM−δ > XL−2

and M > XM−2, and thus from (3.16) and (3.8) we get

T (X, M, α) 6 λ9(α)
(
X1+δM−δ + M

)
(P (α))6k(log Q(M, α))4(k+1). (3.17)
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From (3.15) and X1+δM−δ = XLδ > 1, we see that (3.17) holds also if 2V > M
(obviously, we can take λ9(α) > 1). Using X = Xi = M2−δ2i (0 6 i 6 I) to make
summation for i on both sides of (3.17), and noting that

∑

i

X1+δ =
(
2(1+δ)(1+I) − 1

) (
21+δ − 1

)−1 (
M2−δ

)1+δ

6 M (2−δ)(1+δ)2(1+δ)(1+I)

6 M (2−δ)(1+δ)2(1+δ)(1+(log Mδ−ε)/(log 2))

6 4M (δ−ε)(1+δ)+(2−δ)(1+δ) = 4M (2−ε)(1+δ),

and

M (2−ε)(1+δ)M−δ = M2,

we deduce from (3.17) and (3.4) that

M2−ε∫

M2−δ

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx

6 λ10(α)M2(P (α))6k(log Q(M,α))4(k+1).

(3.18)

From (3.2), (3.3) and (3.18), and the value of P (α), we obtain

S(M, ε, α) 6 M2(P (α))6(k+1)(log Q(M,α))4(k+1). (3.19)

Thus the estimation (3.1) is true also for 0 < α < 1 and ε ∈
(

1
k+2 , 1

k+1

]
.

When α < 0 (then α
α−1 ∈ (0, 1)), we can proceed by the same manner, but

replace the constants ci(α) and λj(α) of (3.5) to (3.18) by the similar constants
c̃i(α) and λ̃j(α) respectively (in fact all these constants can be chosen explicitly),
and we can also obtain (3.19). Thus, the induction can always be completed. The
proof of Theorem 3.1 is thus finished. ¥

Theorem 3.2. Let α be a real number, and α 6= 0, 1. Then for all M > 1 one has

M2∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx ¿ M2eF (M),

where F (m) = 4(log 3M)
1
2 (log log 3M)

1
2

(
1 + O

(
1

log log 3M

))
, and the constant

implied by the ”¿” and the ”O” symbols depending at most on α.
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Proof. At first we assume that α 6= 0 and α < 1. For any ε ∈ (
0, 1

2

)
, by (ii) of

Lemma 2.1 and Theorem 3.1, we get

M2∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx

¿ M ε

M2−ε∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx

6 M2+ε
(
log

(
C(α)M + e3

))4/ε
(P (α))6/ε,

(3.20)

where ”¿” constant depends neither on α nor on ε, C(α) = 2
(
|α|+

∣∣∣ α
α−1

∣∣∣ + 1
)

,

and P (α) is a positive number depending only on α. Let M be large enough, such
that

C(α)M + e3 6 M2, (3.21)

thus we find out that the quantity of (3.20) does not exceed

(3M)2+ε(log 3M)4/ε(2P (α))6/ε. (3.22)

For sufficiently large M, we have

ε := 2
(

log log(3M)
log(3M)

) 1
2

<
1
2
,

and we find that out the quantity of (3.22) is

(3M)2 exp
(
4(L · log L)

1
2 + O

(
(L/ log L)

1
2

))
,

where L = log 3M. Thus there is a number M0(α) such that for M > M0(α) the
required bound holds. Of course, in case M < M0(α) the required estimate holds
trivially. Hence, the result is true when α < 1 (α 6= 0).

For α < 0, we deduce similarly and obtain the result.
For α > 1, we note that actually we can first prove a theorem which is similar

to Theorem 3.1, and since α
α−1 > 1 when α > 1, the corresponding constant P (α)

of (3.1) should be

P (α) = 8 + c(α) + c

(
α

α− 1

)
+ µ(α) + µ

(
α

α− 1

)
+ λ10(α) + λ10

(
α

α− 1

)
,

where the values of c(α), µ(α) and λ10(α) can all be determined similarly as those
appearing in the proof of Theorem 3.1; then, using such a theorem, we can deduce
the conclusion of Theorem 3.2 similarly. ¥
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4. Proof of Theorem 1.1

Let α 6= 0, 1 (α is real), ∆ > 0, t(M, ∆) be the number of ordered lattice points
(m1,m2,m3,m4) satisfying

|mα
1 + mα

2 −mα
3 −mα

4 | 6 ∆Mα, M 6 mi < 2M (1 6 i 6 4).

In [RS] the authors showed that

t(M, ∆) ¿ (
M2 + ∆M4

)
M ε,

for any given small positive constant ε. Using our Theorem 3.2, we can improve
their estimation.

Theorem 4.1. For α 6= 0, 1,M > 1, ∆ > 0, we have

t(M, ∆) ¿ (
M2 + ∆M4

)
eT (M), (4.1)

where T (M) = 4(L · log L)
1
2 + O

(
L

1
2 (log L)−

1
2

)
, L = log 6M.

Proof. By (i) of Lemma 2.1 we have

t
(
M,M−2

) ¿
M2∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx. (4.2)

If ∆ 6 M−2, then from t(M, ∆) 6 t
(
M,M−2

)
, (4.2) and Theorem 3.2 we get

(4.1). If ∆ > M−2, then by (i) of Lemma 2.1 we have

t(M, ∆) ¿ M2∆

(2∆)−1∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx

6 M2∆

M2∫

0

∣∣∣∣∣∣
∑

M6m<2M

m− 1
2 e

(
x

( m

M

)α)
∣∣∣∣∣∣

4

dx.

(4.3)

Using Theorem 3.2 and (4.3) we also get (4.1). Thus Theorem 4.1 is true. ¥

Proof of Theorem 1.1. Suppose that min (M, M1N1) > 100. Let L = log 9M.
At first, similarly with the work of p.264 of [L1], by using Lemma 2.1 of [L1] we
can get

L−1|S| ¿
∑

m1∼M1

∑

n1∼N1

∣∣∣∣∣
∑

m∼M

φ̃me
(
Amγ

1nδ
1m

α
)
∣∣∣∣∣ ,
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where
∣∣∣φ̃m

∣∣∣ 6 1. By Cauchy’s inequality we have

L−2|S|2 ¿ M1N1

∑

m1∼M1

∑

n1∼N1

∣∣∣∣∣
∑

m∼M

φ̃me
(
Amγ

1nδ
1m

α
)
∣∣∣∣∣

2

¿ M1N1 (M1N1M + S1) ,

S1 =
∑

m1∼M1

∑

n1∼N1

∑

m,m̃∼M

m>m̃

φ̃mφ̃m̃e
(
Amγ

1nδ
1 (mα − m̃α)

)
.

Let X = C|A|Mγ
1 N δ

1 , Y = CMα, C is a sufficiently large constant (it may depend
on γ, δ and α), such that

∣∣Amγ
1nδ

1

∣∣ 6 X and |mα − m̃α| 6 Y always hold. By
Lemma 4 of [L1] (which is the new type of the large sieve inequality) we get

|S1|2 ¿ (XY + 1)B1B2,

where B1 is the number of lattice points (m1, m̃1, n1, ñ1) such that
∣∣Amγ

1nδ
1 −Am̃γ

1 ñ1

∣∣ 6 Y −1, m1, m̃1 ∼ M1, n1, ñ1 ∼ N1,

and B2 is the number of lattice points (m, m̃, n, ñ) satisfying

|mα − m̃α − nα + ñα| 6 X−1, m, m̃, n, ñ ∼ M.

By Lemma 5 of [L1] we have

B1 ¿
(
M1N1 + F−1M2

1 N2
1

)
(log (10M1N1))

2
.

By our Theorem 4.1 (choosing ∆ ≈ F−1 in it) we have

B2 ¿
(
M2 + F−1M4

)
eT (M).

Since XY ≈ F À 1, combining the above inequalities we get

|S1|2 ¿
(
M1N1M

2F + M1N1M
4 + (MM1N1)

2 + F−1M2
1 N2

1 M4
)

eT (M)L2,

here L = log (10M1N1) . Put this bound into the inequality for |S|2, we find that
the required estimate for |S| follows. The proof is finished. ¥

5. Proof of Theorem 1.2

By the preliminary work on p.266 of [L1], to prove our Theorem 1.2 it suffice to
show that for each H ∈ [

1
2 , x2

]
we always have the estimate

Φ(H, M, N) = H−1
∑

h∼H

∣∣∣∣∣∣
∑

(m,n)∈D

e(hf(m, n))

∣∣∣∣∣∣

¿ xθ exp
(

1√
3

(L · log L)
1
2 + O

(
L

1
2 (log L)−

1
2

))
,

(5.1)
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where θ = 1
4 , f(m, n) =

(
xm−bn−c

)1/a, (a, b, c) is an arbitrary permutation of
(1, 2, 3), and we have chosen K = x in the inequality between (3.14) and (3.15) on
p.266 of [L1], and M and N satisfy

MN > xθ, 2M > N > 1
2
, Ma+bN c 6 x. (5.2)

Let G =
(
xM−bN−c

)1/a
. First, using our Theorem 1.1 directly to the triple sum

of Φ(H, M, N) (recall that D = D(M, N) =
{
(m,n)|m ∼ M, n ∼ N, ma+bnc 6 x,

m > n}), we get

L−1Φ(H, M,N) ¿
(
MN(HG)−1/4 + 4

√
M4N3H−1 + M

1
2 + 4

√
GM2N3

)
eΦ(M),

(5.3)
where L = log x. From (5.2) we have M ¿ x1/3, thus

Φ(M) 6 1√
3
(L · log L)

1
2 + O

(
L

1
2 (log L)−

1
2

)
. (5.4)

Since a + b + c = 6, a + b > 3, from (5.2) we have MN ¿ (
Ma+bN c

)1/3 ¿ x1/3,
and thus

M
1
2 N ¿ (MN)3/4 ¿ xθ, M2a−bN3a−c ¿ (MN)

1
2 (5a−b−c) ¿ xa−1, (5.5)

and hence
4
√

GM2N3 = 4a
√

xM2a−bN3a−c ¿ xθ. (5.6)

When H > M4N3x−1, we also have bounds (using (5.2))

4
√

M4N3H−1 ¿ xθ, (5.7)

MN(HG)−
1
4 ¿ 4a

√
xa−1M bNa+c ¿ 4a

√
xa−1Ma+bN c ¿ xθ. (5.8)

Hence, from (5.3) to (5.8) we see that (5.1) is true in case of H > M4N3x−1. In
the following we assume that

H < M4N3x−1. (5.9)

Similarly to (27) on p.269 of [L1], we get

Φ(H, M, N) ¿ H−1
(
HGM−2

)− 1
2 Φ1(H,M,N) + MN(HG)−

1
2 + NL, (5.10)

where

Φ1(H, M, N) =
∑

h∼H

∑

n∼N

∣∣∣∣∣
∑

u1<u<u2

G1(u)e (G2(h, n, u))

∣∣∣∣∣ ,

ui ≈ U =
HG

M
(i = 1, 2),
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where |G1(u)| 6 1 and G2(h, n, u) = B2

(
xhaubn−c

)1/(a+b) with

B2 = −
(a

b

)b/(a+b)

−
(

b

a

)a/(a+b)

< 0.

By Theorem 1.1 we get the estimate

L−1Φ1(H, M, N) ¿
(
H(HG)3/4M−1N + 4

√
H7G4M−4N3

+
√

H3GM−1N2 + 4
√

H6G3M−2N3
)

eΦ(c1
HG
M ),

(5.11)

where c1 is an absolute positive constant. By (5.9) and (5.2) (see also (5.5)) we
find that

HG/M < M3N3x−1G =
(

a
√

x1−aM2a−bN3a−c
)

M ¿ M ¿ x1/3,

and thus

Φ
(

c1
HG

M

)
6 1√

3
(L · log L)

1
2 + O

(
L

1
2 (log L)−

1
2

)
. (5.12)

From (5.10) and (5.11) we get

L−2Φ(H,M,N) ¿
(

4
√

HGN4 + 4
√

HG2N3 + NM
1
2 + 4

√
GM2N3

)
eΦ(c1HG/M)

+ MNG−
1
2 + N. (5.13)

From (5.2) we have G À M À N, and hence 4
√

HGN4 ¿ 4
√

HG2N3, MNG−
1
2 ¿

NM
1
2 , and from (5.13) we get the estimate

L−2Φ(H, M,N) ¿
(

4
√

HG2N3 + NM
1
2 + 4

√
GM2N3

)
eΦ(c1HG/M). (5.14)

In view of (5.9), by (5.5) and (5.6) we find that

4
√

HG2N3 ¿ 4
√

M4N6x−1G2 ¿ 4a
√

x2−aM4a−2bN6a−2c ¿ xθ,

M
1
2 + 4

√
GM2N3 ¿ xθ,

and thus from (5.12) and (5.14) we also get (5.1). The proof is finished.
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6. Proof of Theorem 1.3

Let x > 100, L = log x, and M = [L/ log 2] + 1. Then, it is well-known that

A(x) =
∑

n1n2
2···nr

r···6x

1 =
∑

n1n2
2···nM

M 6x

1, (6.1)

(see p.261 of [L1], for instance), where the two summations of (6.1) are taken over
the lattice points (n1, n2, · · · , nr, · · · ) and (n1, n2, · · · , nM ) respectively (the latter
is an M -dimensional lattice point). Let

b(m) =

{
1, if m = g1g

2
2g3

3 , g1, g2 and g3 are positive integers,
0, otherwise,

B(n) =

{
1, if n = g4

4 · · · gM
M , with positive integers gi (4 6 i 6 M),

0, otherwise.

Then from (6.1) and our Theorem 1.2 we get

A(x) =
∑

mn6x

b(m)B(n) =
∑

n6x

B(n)


 ∑

m6x/n

b(m)




=
∑

n6x

B(x)
(

c1

(x

n

)
+ c2

(x

n

) 1
2

+ c3

(x

n

) 1
3

+ O

((x

n

)θ

· eξ(x)

))

= c1x
∑

n6x

B(n)
n

+ c2x
1
2

∑

n6x

B(n)
n

1
2

+ c3x
1
3

∑

n6x

B(n)
n

1
3

+ O


xθeξ(x)

∑

n6x

B(n)
nθ


 ,

(6.2)

where θ = 1
4 , ξ(x) = 1√

3
(L · log L)

1
2 + O

(
L

1
2 (log L)−

1
2

)
, and

ci =
∏

16j63
j 6=i

ζ

(
j

i

)
, for 1 6 i 6 3.

Using the inequalities

(1− 1/y)−1 6 1 + 2/y (for y > 2), z > log(1 + z) (for z > 0)
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we deduce that

∑

n6x

B(n)n−θ =
∑

g4
4 ···gM

M 6x

(
g4
4 · · · gM

M

)−θ
<


 ∑

g46x

g−1
4


 ζ(5θ) · · · ζ(Mθ)

¿ L (ζ(5θ) · · · ζ(Mθ)) = L
∏

56k6M

∏
p

(
1− p−kθ

)−1

6 L
∏

56k6M

∏
p

(
1 + 2p−kθ

)
= L

∏

56k6M

∏
p

exp
(
log

(
1 + 2p−kθ

))

6 L
∏

56k6M

∏
p

exp
(
2p−k

)
= L

∏
p

exp


2

∑

56k6M

p−kθ




< L

(∏
p

exp
(
2p−5θ

(
1− p−θ

)−1
))

= O(L). (6.3)

Note that although the definition of B(n) depends on x (since M = M(x)), from
the derivation of (6.3) we see that we can already show that for λ > θ there holds

∞∑
n=1

B(n)n−λ =
∞∑

g4=1

· · ·
∞∑

gM=1

(
g4
4 . . . gM

M

)−λ
= O(1),

and the constant implied by O-symbol is absolute. Thus, if φ > θ, letting δ =
1
2 (φ− θ), by (6.3) we get

∑

n6x

B(n)n−φ =
∞∑

n=1

B(n)n−φ −
∑

x<n6x2

B(n)
nθ

· 1
nφ−θ

−
∑

n>x2

B(n)
nθ+δ

· 1
nφ−θ−δ

=
∞∑

n=1

B(n)n−φ + O
(
Lxθ−φ

)
=

∏

46k6M

ζ(kφ) + O
(
Lxθ−φ

)
. (6.4)

Since (for k > 4)
∑

p>2

log
((

1− p−kφ
)−1

)
6 2

∑

p>2

p−kφ 6 C(φ)2−kφ,

it follows that

∏

46k6M

ζ(kφ) = exp


 ∑

46k6M

∑
p

log
(
1− p−kθ

)−1




= exp


∑

k>4

∑
p

log
(
1− p−kθ

)−1
+ O

(
x−φ

)



=


∏

k>4

ζ(kφ)


 (

1 + O
(
x−φ

))
.

(6.5)
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From (6.4) and (6.5) we get, for any φ > θ, that
∑

n6x

B(n)n−φ =
∏

k64

ζ(kφ) + O
(
Lxθ−φ

)
. (6.6)

Theorem 1.3 follows from (6.2), (6.3) and (6.6).
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