A NOTE ON DENSITY MODULO 1 OF CERTAIN SETS OF SUMS

 Roman Urban
Abstract

Let $a_{1}>a_{2}>1$ and $b_{1}>b_{2}>1$ be two distinct pairs of multiplicatively independent integers. If $b_{1}>a_{1}$ and $a_{2}>b_{2}$ or $b_{1}<a_{1}$ and $a_{2}<b_{2}$ then we prove that for every ξ_{1}, ξ_{2}, with at least one ξ_{i} irrational, there exists $q \in \mathbb{N}$ such that for any sequence of real numbers r_{m} the set of sums $$
\left\{a_{1}^{m} a_{2}^{n} q \xi_{1}+b_{1}^{m} b_{2}^{n} q \xi_{2}+r_{m}: m, n \in \mathbb{N}\right\}
$$

is dense modulo 1 . The sets with algebraic numbers a_{i}, b_{i} are also considered.
Keywords: Density modulo 1, topological dynamics, multiplicatively independent algebraic numbers.

1. Introduction and main results

In 1967 Furstenberg proved the following
Theorem 1.1 (Furstenberg, [2]). If $p, q>1$ are multiplicatively independent integers (i.e., $\log p / \log q$ is irrational) then for every irrational ξ the set

$$
\begin{equation*}
\left\{p^{m} q^{n} \xi: m, n \in \mathbb{N}\right\} \tag{1.1}
\end{equation*}
$$

is dense modulo 1.
The following two theorems proved by Kra in [3] generalize Furstenberg's theorem.

Theorem 1.2 ([3, Theorem 1.2]). Suppose that the pairs $p_{i}, q_{i} \in \mathbb{N}$ are multiplicatively independent with $1<p_{i}<q_{i}$ for $i=1, \ldots, k, k \in \mathbb{N},\left(p_{i}, q_{i}\right) \neq\left(p_{j}, q_{j}\right)$ for $i \neq j$, and $p_{1} \leqslant p_{2} \leqslant \ldots \leqslant p_{k}$. Then for distinct $\xi_{1}, \ldots, \xi_{k} \in[0,1]$ with at least one $\xi_{i} \notin \mathbb{Q}$ the set

$$
\left\{\sum_{i=1}^{k} p_{i}^{m} q_{i}^{n} \xi_{i}: m, n \in \mathbb{N}\right\}
$$

is dense modulo 1.
Research supported in part by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability" MTKD-CT-2004-013389 and by the MNiSW research grant N201 012 31/1020.

2000 Mathematics Subject Classification: 11J71, 11R04, 54H20

Theorem 1.3 ([3, Corollary 2.2]). Let $p, q>1$ be multiplicatively independent integers and let r_{m} be any sequence of real numbers. Then for any irrational ξ,

$$
\left\{p^{n} q^{m} \xi+r_{m}: n, m \in \mathbb{N}\right\}
$$

is dense modulo 1.
For some generalizations of Theorem 1.2 and Theorem 1.3 to the case of algebraic numbers see $[5,6]$ and $[7]$, respectively.

The aim of this note is to prove the following result, which can be considered as a kind of a mixture of Theorem 1.2 and Theorem 1.3.

Theorem 1.4. Let $a_{1}>a_{2}>1$ and $b_{1}>b_{2}>1$ be two pairs of multiplicatively independent integers. Suppose that

$$
\begin{equation*}
a_{1}<b_{1} \quad \text { and } \quad a_{2}>b_{2} . \tag{1.2}
\end{equation*}
$$

Then, for any real numbers ξ_{1}, ξ_{2} with at least one ξ_{i} irrational, there exists $q \in \mathbb{N}$ such that for any sequence of real numbers r_{m}, the set

$$
\begin{equation*}
\left\{a_{1}^{m} a_{2}^{n} q \xi_{1}+b_{1}^{m} b_{2}^{n} q \xi_{2}+r_{m}: m, n \in \mathbb{N}\right\} \tag{1.3}
\end{equation*}
$$

is dense modulo 1 .
Remark 1.1. It is clear that we can consider sets of the form (1.3) with not necessarily all of a_{i}, b_{i} positive. In fact, using squares of the original parameters we have a subset of (1.3).

In the proof of Theorem 1.4 we use topological dynamics methods from [3] extended to our setting.

It is a natural question to ask what happens if we replace integers a_{i}, b_{i} by algebraic numbers. It turns out that using results from [5] and [6] we can extend Theorem 1.4 to the case of algebraic integers and algebraic numbers of degree 2, respectively.

Theorem 1.5. Let λ_{1}, μ_{1} and λ_{2}, μ_{2} be two distinct pairs of multiplicatively independent real algebraic integers of degree 2. Assume that
(i) $\left|\lambda_{i}\right|,\left|\mu_{1}\right|>1, i=1,2$, and the absolute values of their conjugates, $\tilde{\lambda}_{i}, \tilde{\mu}_{i}$ are also greater than 1 .
(ii) $\mu_{i}=g_{i}\left(\lambda_{i}\right)$, for some $g_{i} \in \mathbb{Z}[x], i=1,2$.
(iii) In each pair λ_{i}, μ_{i} there is at least one element with the property that for every $n \in \mathbb{N}$, its n-th power is irrational.
(iv) There exist $k, l, k^{\prime}, l^{\prime} \in \mathbb{N}$ such that

$$
\min \left\{\left|\lambda_{2}\right|^{k}\left|\mu_{2}\right|^{l},\left|\tilde{\lambda}_{2}\right|^{k}\left|\tilde{\mu}_{2}\right|^{l}\right\}>\max \left\{\left|\lambda_{1}\right|^{k}\left|\mu_{1}\right|^{l},\left|\tilde{\lambda}_{1}\right|^{k}\left|\tilde{\mu}_{1}\right|^{l}\right\}
$$

and

$$
\min \left\{\left|\lambda_{1}\right|^{k^{\prime}}\left|\mu_{1}\right|^{l^{\prime}},\left|\tilde{\lambda}_{1}\right|^{k^{\prime}}\left|\tilde{\mu}_{1}\right|^{l^{\prime}}\right\}>\max \left\{\left|\lambda_{2}\right|^{k^{\prime}}\left|\mu_{2}\right|^{l^{\prime}},\left|\tilde{\lambda}_{2}\right|^{k^{\prime}}\left|\tilde{\mu}_{2}\right|^{l^{\prime}}\right\} .
$$

Then for any real numbers ξ_{1}, ξ_{2} with at least one $\xi_{i} \neq 0$, there exists a natural number q such that for any real sequence r_{m} the set

$$
\left\{\lambda_{1}^{n} \mu_{1}^{m} q \xi_{1}+\lambda_{2}^{n} \mu_{2}^{m} q \xi_{2}+r_{m}: n, m \in \mathbb{N}\right\}
$$

is dense modulo 1 .
In order to prove Theorem 1.5 we generalize the proof of Theorem 1.4 to higher dimension. Namely, the idea of the proof is to construct, using the companion matrices associated with λ_{i} 's, an appropriate semigroup M of endomorphisms of the 4-dimensional torus $\mathbb{T}^{4}=\mathbb{R}^{2} / \mathbb{Z}^{2} \times \mathbb{R}^{2} / \mathbb{Z}^{2}$. Then we have to chose a point α in \mathbb{T}^{4} such that in the coordinates of the orbit $M \alpha$ we can recognize the expression we are interested in.

In the next result we do not need to assume that a_{i}, b_{i} are algebraic integers.
Theorem 1.6. Let λ_{1}, μ_{1} and λ_{2}, μ_{2} be two distinct pairs of multiplicatively independent algebraic numbers of degree 2. Assume that
(i) $\left|\lambda_{i}\right|,\left|\mu_{1}\right|>1, i=1,2$, and the absolute values of their conjugates, $\tilde{\lambda}_{i}, \tilde{\mu}_{i}$ are also greater than 1 .
(ii) $\mu_{i}=g_{i}\left(\lambda_{i}\right)$, for some $g_{i} \in \mathbb{Q}[x], i=1,2$.
(iii) At least one element in each pair λ_{i}, μ_{i} has all non-negative powers irrational.

Let $S=\left\{\infty, p_{1}, p_{2}, \ldots, p_{s}\right\}$, where for $k=1, \ldots, s, p_{k} \geqslant 2$ are the primes appearing in the denominators of coefficients of $g_{1}, g_{2} \in \mathbb{Q}[x]$, and the minimal polynomials $P_{\lambda_{1}}, P_{\lambda_{2}} \in \mathbb{Q}[x]$ of λ_{1} and λ_{2}, respectively.

Assume further that
(iv) there exist $k, l, k^{\prime}, l^{\prime} \in \mathbb{N}$ such that

$$
\min _{p \in S}\left(\min \left\{\left|\lambda_{2}\right|_{p}^{k}\left|\mu_{2}\right|_{p}^{l},\left|\tilde{\lambda}_{2}\right|_{p}^{k}\left|\tilde{\mu}_{2}\right|_{p}^{l}\right\}\right)>\max _{p \in S}\left(\max \left\{\left|\lambda_{1}\right|_{p}^{k}\left|\mu_{1}\right|_{p}^{l},\left|\tilde{\lambda}_{1}\right|_{p}^{k}\left|\tilde{\mu}_{1}\right|_{p}^{l}\right\}\right)
$$

and

$$
\min _{p \in S}\left(\min \left\{\left|\lambda_{1}\right|_{p}^{k^{\prime}}\left|\mu_{1}\right|_{p}^{l^{\prime}},\left|\tilde{\lambda}_{1}\right|_{p}^{k^{\prime}}\left|\tilde{\mu}_{1}\right|_{p}^{l^{\prime}}\right\}\right)>\max _{p \in S}\left(\max \left\{\left|\lambda_{2}\right|_{p}^{k^{\prime}}\left|\mu_{2}\right|_{p}^{l^{\prime}},\left|\tilde{\lambda}_{2}\right|_{p}^{k^{\prime}}\left|\tilde{\mu}_{2}\right|_{p}^{l^{\prime}}\right\}\right)
$$

where $|\cdot|_{p}$ is the p-adic norm, whereas $|\cdot|_{\infty}$ stands for the usual absolute value, and

$$
\min \left\{\left|\lambda_{i}\right|_{p},\left|\mu_{i}\right|_{p},\left|\tilde{\lambda}_{i}\right|_{p},\left|\tilde{\mu}_{i}\right|_{p}: i=1,2, p \in S\right\}>1 .
$$

Then for any pair of real numbers ξ_{1}, ξ_{2}, with at least one ξ_{i} non-zero, there exists a natural number q such that for any sequence of real numbers r_{m} the set

$$
\left\{\lambda_{1}^{n} \mu_{1}^{m} q \xi_{1}+\lambda_{2}^{n} \mu_{2}^{m} q \xi_{2}+r_{m}: n, m \in \mathbb{N}\right\}
$$

is dense modulo 1 .
We shall omit the proof of Theorem 1.6 as it goes along the lines of the proof of Theorem 1.5. The difference is that instead of the dynamical system on $\mathbb{T}^{2} \times \mathbb{T}^{2}$ one would have to consider a similar system on the product of appropriate solenoids as in [6].

2. Proof of Theorem 1.4

Let $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be the 2-dimensional torus. Consider a semigroup $S=\left\langle s_{1}, s_{2}\right\rangle \subset$ $\operatorname{End}\left(\mathbb{T}^{2}\right)$ of toral endomorphisms generated by the following two matrices:

$$
s_{1}=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right), \quad s_{2}=\left(\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right) .
$$

Let $\xi=\left(\xi_{1}, \xi_{2}\right)+\mathbb{Z}^{2} \in \mathbb{T}^{2}$ and denote by F the closure of the orbit of the point ξ under the action of the semigroup S :

$$
F=\overline{S \xi}
$$

Clearly, F is closed and S-invariant subset of \mathbb{T}^{2}.
Lemma 2.1. The set F is infinite.
Proof. By the assumption one of ξ_{i} 's is irrational. Suppose that $\xi_{1}\left(\xi_{2}\right.$, resp.) is irrational. Then, by Theorem 1.1, for every $x \in \mathbb{T}(y \in \mathbb{T}$, resp.) there are subsequences n_{k} and $m_{k} \subset \mathbb{N}$ such that $a_{1}^{n_{k}} a_{2}^{m_{k}} \xi_{1} \rightarrow x\left(b_{1}^{n_{k}} b_{2}^{m_{k}} \xi_{2} \rightarrow y\right.$, resp.) as $k \rightarrow \infty$. Since \mathbb{T} is compact it follows that there exists $y \in \mathbb{T}(x \in \mathbb{T}$, resp.) such that $(x, y) \in F$. Hence F is infinite.

By [3, Corollary 3.2] it follows that F contains a non-isolated rational point $r=p / q, q \in \mathbb{N}, p \in \mathbb{Z}^{2}$. Define

$$
F^{\prime}=q F
$$

Then $(0,0) \in F^{\prime}$, and we have the following.
Lemma 2.2. The set F^{\prime} contains at least one of the following sets

$$
\begin{align*}
& T_{1}=\mathbb{T} \times\{0\}, \\
& T_{2}=\{0\} \times \mathbb{T} \tag{2.1}
\end{align*}
$$

Proof. It follows from [3, Lemma 3.4] since (1.2) implies that the condition (3) of [3, Lemma 3.4] can not hold.

Proof of Theorem 1.4. We extend the proof of [3, Lemma 2.1] to our setting. Consider the set

$$
\mathcal{O}=\overline{\left\{s_{1}^{k} q \xi: k \in \mathbb{N}\right\}} .
$$

We consider the space $\mathcal{C}_{\mathbb{T}^{2}}$ of all closed subsets of \mathbb{T}^{2} with the Hausdorff metric d_{H}, defined as

$$
d_{H}(A, B)=\max \left\{\max _{x \in A} d(x, B), \max _{x \in B} d(x, A)\right\}
$$

where $d(x, B)=\min _{y \in B} d(x, y)$ is the distance of x from the set B. The space $\left(\mathcal{C}_{\mathbb{T}^{2}}, d_{H}\right)$ is a compact metric space.

Let

$$
\mathcal{G}:=\overline{\left\{s_{2}^{l} \mathcal{O}: l \in \mathbb{N}\right\}} \subset \mathcal{C}_{\mathbb{T}^{2}}
$$

Since the set \mathcal{O} is s_{1}-invariant, it follows that every element (set) $G \in \mathcal{G}$ is also s_{1}-invariant. Define,

$$
\mathcal{T}=\bigcup_{G \in \mathcal{G}} G \subset \mathbb{T}^{2}
$$

By definition $F^{\prime} \subset \mathcal{T}$. Hence, by Lemma 2.2, \mathcal{T} contains at least one of the sets T_{1}, T_{2}. Assume that

$$
T_{1} \subset \mathcal{T}
$$

(The proof for T_{2} contained in \mathcal{T} is the same.)
There exists $t_{1} \in T_{1}$ such that the orbit $\left\{s_{1}^{n} t_{1}: n \in \mathbb{N}\right\}$ is dense in $\mathbb{T}=T_{1}$, i.e.,

$$
\begin{equation*}
\overline{\left\{s_{1}^{n} t_{1}: n \in \mathbb{N}\right\}}=T_{1} . \tag{2.2}
\end{equation*}
$$

Clearly, $t_{1} \in G$ for some $G \in \mathcal{G}$. By definition of \mathcal{G}, there is a sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that

$$
\begin{equation*}
G=\lim _{k} s_{2}^{n_{k}} \mathcal{O} \tag{2.3}
\end{equation*}
$$

and the limit is taken in the Hausdorff metric d_{H}. Since $t_{1} \in G$ and G is s_{1}-invariant, we get $G \supset \overline{\left\{s_{1}^{n} t_{1}: n \in \mathbb{N}\right\}}$. Hence, by (2.2),

$$
\begin{equation*}
G \supset T_{1} . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) it follows that for every $\varepsilon>0$ there is an $l \in \mathbb{N}$ such that $s_{2}^{l} \mathcal{O}$ is ε-dense in T_{1}.

Let $v_{l}=\left(0, r_{l}\right)+\mathbb{Z}^{2} \in \mathbb{T}^{2}$. Since

$$
\begin{equation*}
s_{2}^{l} \mathcal{O}+v_{l} \tag{2.5}
\end{equation*}
$$

is a translate of an ε-dense set in T_{1}, it is also ε-dense in T_{1}. Now, taking the sum of the first and the second coordinate of the set (2.5), we get 2ε-dense subset of the 1-dimensional torus

$$
\left(s_{2}^{l} \mathcal{O}+v_{l}\right)_{1}+\left(s_{2}^{l} \mathcal{O}+v_{l}\right)_{2} \subset \mathbb{T}
$$

Comparing the above set with expression (1.3) the theorem follows.

3. Proof of Theorem 1.5

Let $\nu>1$ be a real algebraic integer of degree 2 with minimal (monic) polynomial $P_{\nu} \in \mathbb{Z}[x], P_{\nu}(x)=x^{2}+c_{1} x+c_{0}$. A companion matrix of P_{ν} or ν is the matrix of the form

$$
\sigma_{\nu}=\left(\begin{array}{cc}
0 & 1 \\
-c_{0} & -c_{1}
\end{array}\right) .
$$

We associate with λ_{i}, the companion matrices $\sigma_{i}=\sigma_{\lambda_{i}}$ and with μ_{i} we associate matrices $\tau_{i}=g_{i}\left(\sigma_{i}\right)$. For $i=1,2$, we denote by $\Sigma_{i}=\left\langle\sigma_{i}, \tau_{i}\right\rangle$ the semigroups
generated by σ_{i} and τ_{i}. We put $M_{\sigma}=\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right)$ and $M_{\tau}=\left(\begin{array}{cc}\tau_{1} & 0 \\ 0 & \tau_{2}\end{array}\right)$. Let $M=$ $\left\langle M_{\sigma}, M_{\tau}\right\rangle$ be the semigroup of endomorphisms of $\mathbb{T}^{2} \times \mathbb{T}^{2}$ generated by the matrices M_{σ} and M_{τ}.

Consider the orbit $M \alpha$ of the point $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ under the action of M. Taking as α_{1} and α_{2} the common eigenvectors of the semigroups Σ_{1} and Σ_{2}, respectively, $\alpha_{1}=\xi_{1}\left(1, \lambda_{1}\right)$ and $\alpha_{2}=\xi_{2}\left(1, \lambda_{2}\right)$, we get

$$
M \alpha=\left\{\left(\lambda_{1}^{n} \mu_{1}^{m} \xi_{1}, \lambda_{1}^{n+1} \mu_{1}^{m} \xi_{1}, \lambda_{2}^{n} \mu_{2}^{m} \xi_{2}, \lambda_{2}^{n+1} \mu_{2}^{m} \xi_{2}\right): n, m \in \mathbb{N}\right\} .
$$

Let

$$
X_{\alpha}=\overline{M \alpha}
$$

It is clear that the set X_{α} is closed and M-invariant.
Definition 1 ([1]). We say that the semigroup Σ of continuous endomorphisms of a d-dimensional torus \mathbb{T}^{d} has the ID-property (or simply that Σ is an IDsemigroup) if the only infinite closed Σ-invariant subset of \mathbb{T}^{d} is \mathbb{T}^{d} itself.

Lemma 3.1. The set X_{α} is infinite.
Proof. It follows from [1, Theorem 2.1] that the semigroup $\Sigma_{1}=\left\langle\sigma_{1}, \tau_{1}\right\rangle$ is an ID-semigroup. Therefore, since α_{1} is not a rational point the orbit $\Sigma_{1} \alpha_{1}$ is dense in \mathbb{T}^{2}. Hence, we obtain that for every $x \in \mathbb{T}^{2}$ there exist sequences $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$, tending to infinity, such that $\sigma_{1}^{n_{k}} \tau_{1}^{m_{k}} \alpha_{1} \rightarrow x$, as $k \rightarrow \infty$. Since \mathbb{T}^{2} is compact, we can assume, choosing a subsequence, that $\sigma_{2}^{n_{k}} \tau_{2}^{m_{k}} \alpha_{2} \rightarrow y$, for some $y \in \mathbb{T}^{2}$. Therefore, for every $x \in \mathbb{T}^{2}$ there exists $y \in \mathbb{T}^{2}$ so that $(x, y) \in X_{\alpha}$.

Theorem 3.2 ([5, Proposition 5.7]). With the assumptions of Theorem 1.5 if $(0,0) \in X_{\alpha}$ then one of the following holds:
(1) The point $(0,0)$ is isolated in X_{α}.
(2) The set X_{α} contains the whole $\mathbb{T}^{2} \times\{0\}$ or $\{0\} \times \mathbb{T}^{2}$.

Remark 3.1. Actually, instead of X_{α} we may take in Theorem 3.2 an arbitrary closed, infinite, $M_{\sigma^{-}}$and $M_{\tau^{-}}$-invariant subset of $\mathbb{T}^{2} \times \mathbb{T}^{2}$ containing $(0,0)$. The proof remains the same.

By [5, Lemma 4.3] X_{α} contains a rational point $p / q, p \in \mathbb{Z}^{2}$ and $q \in \mathbb{N}$. Let $\tilde{X}_{\alpha}=q X_{\alpha}$. Then \tilde{X}_{α} contains zero and by Remark 3.1 contains either $T_{1}:=$ $\mathbb{T}^{2} \times\{0\}$ or $T_{2}:=\{0\} \times \mathbb{T}^{2}$.

Proof of Theorem 1.5. We proceed as in the proof of Theorem 1.4. Instead of $\mathbb{T} \times \mathbb{T}$ we consider $\mathbb{T}^{2} \times \mathbb{T}^{2}$. Instead of matrices s_{1}, s_{2} we consider M_{σ}, M_{τ}. To prove the existence of $t_{1} \in T_{1}=\mathbb{T}^{2} \times\{0\}$ such that $\overline{\left\{M_{\sigma}^{n} t_{1}: n \in \mathbb{N}\right\}}=T_{1}$ we use the fact that the restriction of M_{σ} to the 2-dimensional sub-torus T_{1} is σ_{1}, and σ_{1} is a hyperbolic toral endomorphism (i.e., without eigenvalues of absolute value $1)$. Hence, σ_{1} is ergodic and the existence of t_{1} follows (see [4, Proposition 2.6, p. 104]).

References

[1] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280(2), (1983), 509-532.
[2] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49.
[3] B. Kra, A generalization of Furstenberg's Diophantine theorem, Proc. Amer. Math. Soc. 127(7) (1999), 1951-1956.
[4] R. Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Springer-Verlag, Berlin, 1987.
[5] R. Urban, On density modulo 1 of some expressions containing algebraic integers, Acta Arith. 127(3) (2007), 217-229.
[6] R. Urban, Algebraic numbers and density modulo 1, J. Number Theory 128(3) (2008), 645-661.
[7] R. Urban, Sequences of algebraic numbers and density modulo 1, Publ. Math. Debrecen 72 No.1-2, (2008), 141-154.

Address: Institute of Mathematics, Wroclaw University, Plac Grunwaldzki 2/4, 50-384 Wroclaw, Poland.

E-mail: urban@math.uni.wroc.pl
Received: 19 January 2009; revised: 5 March 2009

