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ON THE CONSTANT IN THE MERTENS PRODUCT
FOR ARITHMETIC PROGRESSIONS. I. IDENTITIES

Alessandro Languasco, Alessandro Zaccagnini

Abstract: We prove new identities for the constant in the Mertens product over primes in the
arithmetic progressions a mod q.
Keywords: Mertens product, primes in arithmetic progressions.

1. Introduction

Let a, q be integers with (q, a) = 1 and denote by p a prime number. In 1974
Williams [9] proved that

P (x; q, a) =
∏

p6x
p≡a mod q

(
1− 1

p

)
=

C(q, a)
(log x)1/ϕ(q)

+O
(

1
(log x)1/ϕ(q)+1

)
(1)

as x → +∞, where C(q, a) is real and positive and satisfies

C(q, a)ϕ(q) = e−γ q

ϕ(q)

∏

χ6=χ0

(K(1, χ)
L(1, χ)

)χ(a)

,

where γ is the Euler constant, ϕ is the Euler totient function, L(s, χ) is the Dirich-
let L-function associated to the Dirichlet character χ mod q and χ0 is the principal
character to the modulus q. The function K is defined by means of

K(s, χ) =
+∞∑
n=1

kχ(n)n−s,

where kχ(n) is the completely multiplicative function whose value at primes is
given by

kχ(p) = p

(
1−

(
1− χ(p)

p

)(
1− 1

p

)−χ(p)
)

.
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In our recent paper [4] we obtained a version of Williams’s result stated in (1)
which is uniform in the q aspect. In the same paper, as a by-product, we also
obtained the following elementary expression for C(q, a):

C(q, a)ϕ(q) = e−γ
∏
p

(
1− 1

p

)α(p;q,a)

(2)

where α(p; q, a) = ϕ(q) − 1 if p ≡ a mod q and α(p; q, a) = −1 otherwise. The
infinite product is convergent, though not absolutely, by the Prime Number Theo-
rem for Arithmetic Progressions. Actually, a slightly simpler proof of identity (2)
than the one we gave in [4], sect. 6, can be obtained as follows, once the relevant
limit is known to exist: taking logarithms in (1) and using the classical Mertens
Theorem, we find

log C(q, a) = lim
x→+∞

{
log

∏

p6x
p≡a mod q

(
1− 1

p

)
+

1
ϕ(q)

log log x

}

= − γ

ϕ(q)
+ lim

x→+∞

{
log

∏

p6x
p≡a mod q

(
1− 1

p

)
− log

∏

p6x

(
1− 1

p

)1/ϕ(q)
}

= − γ

ϕ(q)
+

1
ϕ(q)

log

{
lim

x→+∞

∏

p6x

(
1− 1

p

)α(p;q,a)
}

.

The product in (2) is very slowly convergent and it is difficult to compute an accu-
rate numerical approximation to C(q, a) from it. Our aim here to give a different
form for the constant defined in (2): unfortunately, this form is not suitable for
numerical computations, a problem we tackle in part II [5].

As a corollary of the identities proved in the first part of the paper, we derive
the formulae that Uchiyama [8] gave in the case q = 4 and a ∈ {1, 3}, though
Uchiyama’s direct proof is obviously much simpler. We also derive the explicit
expressions that Williams gave in Theorem 2 of [9] for C(24, a) for every integer
a such that (24, a) = 1 and the ones that Grosswald [3] obtained for C(q, a) for
q ∈ {4, 6, 8} and every integer a coprime to q. We recall that, in Proposition 1
of [7], Moree gives formula (8) below when q is a prime number and a = 1.

The statement of these new formulae themselves is not simple, and reflects both
the structure of the group Z∗q and the properties of the residue class a. For this
reason, we will not state a formal theorem here, but rather point to the various
results as formula (8) or its alternative version (9) when Z∗q is cyclic and a = 1,
then (13) for general q and a = 1, and (15) in the most general case. We think
our results will be clearer if we go through stages of increasing generality.

We may summarize our main result saying that, in the case a = 1, for each
reduced residue class b we have to determine a positive integer tb (actually, the
order of b in the multiplicative group Z∗q) and we will then express C(q, 1) as
a sort of Euler product where a prime p has the exponent −tp. Collecting all
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residue classes of maximal order, we may reduce the number of factors needed, at
the price of the computation of the power of a suitable value of the Riemann zeta
function at an even integer. The important feature of (13) is that tb > 2 for all
b 6= 1, whereas the exponent of all primes in the Euler factors in (2) are −1.

The case a 6= 1 is genuinely more complicated: in fact, in general it will not
be possible to give a simple closed form for the Euler factors, though they can be
expressed by means of a rapidly convergent power series. On the other hand, the
constant defined in (16) will arise: it is related to the so-called Meissel–Mertens
constant; for its computation in the case q = 1 see §2.2 of Finch [2] and [6] for the
general case.

We would like to thank Pieter Moree for providing us some references and
Giuseppe Molteni for suggesting a simplification in the proof of Lemma 1.

2. Reduction to character sums

It turns out to be better to get rid of the prime factors of q at the outset: therefore,
we let c(q, a) be defined by means of

C(q, a)ϕ(q) = e−γ q

ϕ(q)
c(q, a) so that c(q, a) =

∏

p-q

(
1− 1

p

)α(p;q,a)

(3)

and let
c(x; q, a) =

∏

p6x
p-q

(
1− 1

p

)α(p;q,a)

denote its partial product. Our strategy is to express the product of c(x; q, a)
and partial products of powers of L(1, χ) as a complicated but quickly convergent
product, where χ ranges over all non-principal Dirichlet characters modulo q.
When necessary, we use the abbreviation

Π(q, a) =
∏

χ mod q
χ6=χ0

L(1, χ)−χ(a). (4)

By orthogonality, we have

c(x; q, a)
∏

χ mod q
χ 6=χ0

∏

p6x

(
1− χ(p)

p

)−χ(a)

=
∏

p6x
p-q

∏

χ mod q
χ6=χ0

{(
1− 1

p

)χ(a)χ(p)(
1− χ(p)

p

)−χ(a)
}

.

(5)

Using the Taylor series expansion of log(1− t) we see that

∑

χ mod q
χ 6=χ0

log

{(
1− 1

p

)χ(a)χ(p)(
1− χ(p)

p

)−χ(a)
}

=
∑

m>2

1
mpm

Sm(p; q, a), (6)
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say, where Sm(p; q, a) is the character sum defined by

Sm(p; q, a) =
∑

χ mod q

χ(a)
(
χm(p)− χ(p)

)
. (7)

It is this character sum that reflects the structure of Z∗q and the properties of
the element a. We will prove below in (10) and (11) that either p ≡ a mod
q, or Sm(p; q, a) vanishes unless m belongs to a suitable arithmetic progression
modulo a divisor of ϕ(q). The simplest case, not surprisingly, is when Z∗q is cyclic
and a = 1.

3. The character sum Sm in the simplest case

We notice that, obviously, Sm(1; q, a) = 0, and we may assume that p 6≡ 1 mod q.
For the time being, we also assume that a = 1. Let tp denote the order of p
in the multiplicative group Z∗q , that is, the smallest positive integer k such that
pk ≡ 1 mod q, and notice that tp > 2 since p 6≡ 1 mod q. It is then quite easy to
see that

∑

χ mod q

χm(p) =
∑

χ mod q

χ(pm) =

{
ϕ(q) if tp | m
0 otherwise.

Hence, using orthogonality and the Taylor series for log(1− t) again, we have

∑

m>2

1
mpm

Sm(p; q, 1) =
∑

n>1

ϕ(q)
ntppntp

= log
(
1− 1

ptp

)−ϕ(q)/tp

.

We classify primes according to their residue class b mod q, and notice that tp
depends only on b, if p ≡ b mod q. Substituting into (5) and letting x → +∞, we
see that

c(q, 1) = Π(q, 1)
∏

b∈Z∗q\{1}

∏

p≡b mod q

(
1− 1

ptb

)−ϕ(q)/tb

. (8)

We notice that the quantity Π(q, 1) is connected to the Dedekind zeta function of
the q-th cyclotomic field K = Q(ζq) by means of the relation

Π(q, 1)−1 = Res
s=1

ζK(s)
∏

χ mod q
χ 6=χ0

∏

p|q

(
1− χf (p)

p

)
,

where χf denotes the primitive character that induces χ and f is its conductor.
Assume that Z∗q is cyclic. Relation (8) is our first formula, and it is worth

noticing that a slightly better form, from the point of view of the explicit com-
putation of C(q, 1), can be given grouping the contribution of primes of maximal
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order. More specifically, we may rewrite (8) as

c(q, 1) = Π(q, 1)
∏

n|ϕ(q)
n>1

∏

p
tp=n

(
1− 1

pn

)−ϕ(q)/n

= Π(q, 1)
∏

p
tp=ϕ(q)

(
1− 1

pϕ(q)

)−1 ∏

n|ϕ(q)
1<n<ϕ(q)

∏

p
tp=n

(
1− 1

pn

)−ϕ(q)/n

= Π(q, 1)
∏

p-q

(
1− 1

pϕ(q)

)−1 ∏

p≡1 mod q

(
1− 1

pϕ(q)

)

×
∏

n|ϕ(q)
1<n<ϕ(q)

∏

p
tp=n

{(
1− 1

pn

)−ϕ(q)/n(
1− 1

pϕ(q)

)}

= ζ(ϕ(q))Π(q, 1)
∏

p|q

(
1− 1

pϕ(q)

) ∏

p≡1 mod q

(
1− 1

pϕ(q)

)

×
∏

n|ϕ(q)
1<n<ϕ(q)

∏

p
tp=n

{(
1− 1

pn

)−ϕ(q)/n(
1− 1

pϕ(q)

)}
. (9)

The value of ζ(ϕ(q)) is easily computed, at least when q is comparatively small,
by means of the Bernoulli numbers, since ϕ(q) is even for q > 3. It is also worth
noticing that the exponents of the prime numbers in the last product are all
at least 2, though they are usually much larger. Uchiyama’s formula (17) for
C(4, 1) in [8] is the case q = 4 of the above expression: there is only one non-
principal character χ modulo 4, and L(1, χ) = π/4. The last product is empty,
and ζ(2) = π2/6. The formula for C(4, 3) is easily deduced from this and the
classical Mertens Theorem since C(4, 3)C(4, 1) = 2e−γ . Grosswald’s formula (18)
for C(6, 1) in [3] is another special case of (3) and (9) since ϕ(6) = 2, there is only
one non-principal character χ modulo 6, and L(1, χ) = π/(2

√
3). By the Mertens

Theorem we have C(6, 5)C(6, 1) = 3e−γ and the formula for C(6, 5) can be easily
deduced. Our formula (9) also contains Moree’s [7] which is the special case where
q is prime.

4. The sum Sm in the general case

Lemma 1. Let Sm be the character sum defined in (7). If a ≡ b mod q then there
exists a positive integer ta dividing ϕ(q) such that

Sm(a; q, a) =

{
−ϕ(q) if m 6≡ 1 mod ta,
0 otherwise.

(10)

In this case, ta is precisely the order of a in the group Z∗q , so that ta > 2 unless
a = b = 1. If a 6≡ b mod q then either the equation by ≡ a mod q has no solution
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y ∈ N, or there exist a positive integer tb dividing ϕ(q) and an integer sb such that
1 6 sb 6 tb and

Sm(b; q, a) =

{
ϕ(q) if by ≡ a mod q has a solution, and m ≡ sb mod tb,
0 otherwise.

(11)

In particular, if a = 1 then Sm(1; q, 1) = 0, while, if b 6≡ 1 mod q, then there is an
integer tb > 2 such that Sm(b; q, 1) = ϕ(q) if m ≡ 0 mod tb and is 0 otherwise.

Proof. The complete multiplicativity of the Dirichlet characters implies that

Sm(b; q, a) =
∑

χ mod q

(
χ(bma−1)− χ(ba−1)

)

If a ≡ b ≡ 1 mod q then Sm(a; q, a) = 0. If a ≡ b 6≡ 1 mod q then the equation
ay ≡ a mod q has the solution y ≡ 1 mod ta, where ta is the order of a in Z∗q .
Hence, Sm(a; q, a) = 0 if m ≡ 1 mod ta and Sm(a; q, a) = −ϕ(q) otherwise, by
orthogonality.

If a 6≡ b mod q and the equation by ≡ a mod q has no solution, then Sm(b, q, a) =
0 by orthogonality. If the equation above has the solution y ≡ sb mod tb (where
tb > 2 is a suitable divisor of ϕ(q) and sb is an integer with 1 6 sb 6 tb) then
Sm(b; q, a) = ϕ(q) if m ≡ sb mod tb and is 0 otherwise. ¥

It is quite clear from the Lemma above that the case a = 1 is indeed much
simpler than the general one. We see that we have proved that (8) holds also
in the general case, where tb is the divisor of ϕ(q) such that the solution of the
equation by ≡ 1 mod q is the class 0 mod tb, that is, the order of b in Z∗q . The
computations that lead to (9) are still essentially valid, with one modification. We
recall the definition of the Carmichael λ function: if q = 2αpα1

1 · · · pαk

k , then

λ(q) =

{
lcm{ϕ(2α), ϕ(pα1

1 ), . . . , ϕ(pαk

k )} if α 6 2;
lcm{2α−2, ϕ(pα1

1 ), . . . , ϕ(pαk

k )} if α > 3.
(12)

In other words, λ(q) is the highest order of the elements of the group Z∗q . Let
A(q) = {b ∈ Z∗q \ {1} : bk ≡ 1 mod q for some positive k < λ(q)} denote the set of
elements of Z∗q \ {1} whose order is not maximal. Arguing as in the proof of (9),
that is, grouping the contribution of the primes of maximal order, we obtain the
following Theorem, which generalizes Williams’s [9] and Grosswald’s [3] formulae
for C(24, 1) and C(8, 1) respectively and contains (9) as a special case.

Theorem 1. For all integers q > 3 the value of the constant c(q, 1) is given by

c(q, 1) = ζ(λ(q))ϕ(q)/λ(q)Π(q, 1)

×
∏

p|q

(
1− 1

pλ(q)

)ϕ(q)/λ(q) ∏

p≡1 mod q

(
1− 1

pλ(q)

)ϕ(q)/λ(q)

(13)

×
∏

b∈A(q)

∏

p≡b mod q

{(
1− 1

ptb

)−ϕ(q)/tb
(
1− 1

pλ(q)

)ϕ(q)/λ(q)
}
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where Π(q, a) is defined in (4), λ is the Carmichael lambda function defined in (12),
tb denotes the order of b in the group Z∗q and A(q) = {b ∈ Z∗q \ {1} : tb < λ(q)}.

5. The general formula

In this section we assume that a 6≡ 1 mod q, and we let B(q, a) denote the set
{b ∈ Z∗q \ {1, a} : the equation by ≡ a mod q has a solution}. For the elements of
this set, we implicitly define the integers tb and sb as in the proof of Lemma 1. In
order to state the formula corresponding to (13) in general, we need to introduce
the function ft,s which is defined, for positive integers t and s with 1 6 s 6 t and
real x with |x| < 1, by means of the relation

ft,s(x) =
∑

n>1
n≡s mod t

xn

n
=

∫ x

0

us−1

1− ut
du. (14)

The rightmost equality is proved computing the derivative of the function ft,s and
then summing the ensuing geometric progression. Notice that, when s = t, a closed
form for the integral can be easily given in terms of the logarithmic function, as
we did above: indeed, ft,t(x) = −t−1 log(1− xt). In general, the Taylor series for
ft,s is fairly quickly convergent since we will compute it at x = p−1.

Lemma 1 above amounts to saying that, given integers q and a and a reduced
residue class b mod ϕ(q), either the equation by ≡ a mod q does not have a solution,
or its solution is a congruence class sb mod tb, where tb | ϕ(q) and we may assume
that 1 6 sb 6 tb and that tb > 2, since tb = 1 if and only if a = b = 1. Moreover,
unless a = b, the congruence class sb will not be 1 mod q. Therefore, classifying
primes according to their residue class b mod q again, and substituting either (10)
or (11) into (6), we see that the corresponding factor in the product (5) is 1 if
b = 1 or b 6∈ B(q, a) ∪ {a}, and is

∏

p≡b mod q

exp
(
ϕ(q)ftb,sb

(p−1)
)

if b ∈ B(q, a). Recall that for b ≡ a mod q we have sa = 1: hence, for primes
p ≡ a mod q we have a factor

∏

p≡a mod q

exp
(
−ϕ(q)

∑

m>2
m 6≡1 mod ta

1
mpm

)

=
∏

p≡a mod q

exp
(
ϕ(q)

∑

m>2
m≡1 mod ta

1
mpm

− ϕ(q)
∑

m>2

1
mpm

)

=
∏

p≡a mod q

exp
(
ϕ(q)fta,1

(1
p

)
− ϕ(q)

∑

m>1

1
mpm

)

= exp
(
ϕ(q)

∑

p≡a mod q

(1
p

+ log
(
1− 1

p

)))
exp

(
ϕ(q)

∑

p≡a mod q

(
fta,1

(1
p

)
− 1

p

))
.
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Finally, collecting all identities, we see that we have proved the following result.

Theorem 2. For all integers q > 3 and all integers a such that (q, a) = 1 and
a 6≡ 1 mod q, the value of the constant c(q, a) is given by

c(q, a) = Π(q, a)
∏

b∈B(q,a)

∏

p≡b mod q

exp
(
ϕ(q)ftb,sb

(1
p

))

× exp(ϕ(q)B(q, a)) exp
(
ϕ(q)

∑

p≡a mod q

(
fta,1

(1
p

)
− 1

p

))
, (15)

where B(q, a) = {b ∈ Z∗q \ {1, a} : the equation by ≡ a mod q has a solution},

B(q, a) =
∑

p≡a mod q

(1
p

+ log
(
1− 1

p

))
, (16)

Π(q, a) is defined in (4) and ft,s is defined in (14).

For the special cases q ∈ {4, 6, 8, 24} and (q, a) = 1 with a 6≡ 1 mod q,
equation (15) collapses to the formulae given by Uchiyama [8], Williams [9] and
Grosswald [3].

For some special values of t and s it is possible to compute a closed form for ft,s

as in the previous sections, and give a more explicit result: the following section
contains some examples.

6. Explicit values

Using (3), (9) and (13), we can compute explicitly a few values of the constant
C(q, a). For the evaluation of L(1, χ) needed to determine Π(q, 1) we refer to
Corollary 10.3.2 and Proposition 10.3.5 of Cohen [1]. The value (17) is due to
Uchiyama while the values (18) and (19) are due to Grosswald. Notice that
A(8) = ∅ and that Π(8, 1) = 32π−2(log(3 + 2

√
2))−1.

C(4, 1)2 = π e−γ
∏

p≡1 mod 4

(
1− 1

p2

)
(17)

C(6, 1)2 =
2π
√

3
3

e−γ
∏

p≡1 mod 6

(
1− 1

p2

)
(18)

C(8, 1)4 =
1
32

π4 e−γ Π(8, 1)
∏

p≡1 mod 8

(
1− 1

p2

)2

=
π2e−γ

log(3 + 2
√

2)

∏

p≡1 mod 8

(
1− 1

p2

)2

. (19)

For q = 24 we recover the value given on page 357 of Williams [9]: using (3) and
(13) we get

C(24, 1)8 =
2π4e−γ

9 log(2 +
√

3) log(1 +
√

2) log(5 + 2
√

6)

∏

p≡1 mod 24

(
1− 1

p2

)4
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since ϕ(24) = 8, λ(24) = 2, A(24) = ∅ and

Π(24, 1) =
486

π4 log(2 +
√

3) log(1 +
√

2) log(5 + 2
√

6)
.

For the more complicated case q = 15 we get

C(15, 1)8 =
15
8

π8

902

33282

33752
e−γ Π(15, 1)

×
∏

p≡1 mod 15

(
1− 1

p4

)2 ∏

b∈{4,11,14}
p≡b mod 15

(1 + p−2

1− p−2

)2

where we have used the fact that A(15) = {4, 11, 14} and the values ζ(4) = π4/90
and λ(15) = 4. A fairly lengthy computation reveals that

Π(15, 1)−1 =
29 π4

3 · 154

(
log2

( sin(π/15)
sin(4π/15)

)

+ log2
( sin(7π/15)

sin(2π/15)

))
log

(1 +
√

5
2

)
.

This can be made more explicit using suitable trigonometrical identities and the
value for sin(π/15),

Using (9) we can compute C(5, 1):

C(5, 1)4 =
5
4

π4

90
e−γ Π(5, 1)

624
625

∏

p≡1 mod 5

(
1− 1

p4

) ∏

p≡4 mod 5

(
1− 1

p2

)−2(
1− 1

p4

)

=
13
√

5 π2 e−γ

150 log((1 +
√

5)/2)

∏

p≡1 mod 5

(
1− 1

p4

) ∏

p≡4 mod 5

(1 + p−2

1− p−2

)

where we have used the value Π(5, 1) = 25
√

5π−2(4 log((1 +
√

5)/2))−1 and the
fact that A(5) = {4}.

The last examples are for q = 5 and a ∈ {2, 3, 4}. A short computation shows
that

f4,1(x) =
1
4

log
(1 + x

1− x

)
+

1
2

arctan(x)

f4,2(x) =
1
4

log
(1 + x2

1− x2

)

f4,3(x) =
1
4

log
(1 + x

1− x

)
− 1

2
arctan(x).

Furthermore, using the fact that Z∗5 is generated by 2, we see that B(5, 2) = {3}
(with s3 = 3 and t3 = 4), B(5, 3) = {2} (with s2 = 3 and t2 = 4) and B(5, 4) =
{2, 3} (with s2 = s3 = 2 and t2 = t3 = 4). These results show that



26 Alessandro Languasco, Alessandro Zaccagnini

c(5, 2) = Π(5, 2) exp(4B(5, 2))

×
∏

p≡3 mod 5

exp
(
4f4,3

(1
p

))
exp

(
4

∑

p≡2 mod 5

(
f4,1

(1
p

)
− 1

p

))

c(5, 3) = Π(5, 3) exp(4B(5, 3))

×
∏

p≡2 mod 5

exp
(
4f4,3

(1
p

))
exp

(
4

∑

p≡3 mod 5

(
f4,1

(1
p

)
− 1

p

))

c(5, 4) = Π(5, 4) exp(4B(5, 4))

×
∏

b∈{2,3}
p≡b mod 5

exp
(
4f4,2

(1
p

))
exp

(
4

∑

p≡4 mod 5

(
f2,1

(1
p

)
− 1

p

))
,

and the corresponding values for the constants C(5, a) can be found using (3). In
the case of C(5, 4) we can be slightly more explicit since f2,1(x) =
1/2 log((1 + x)/(1− x)), so that

c(5, 4) = Π(5, 4) exp(4B(5, 4))
∏

b∈{2,3}
p≡b mod 5

(1 + p−2

1− p−2

) ∏

p≡4 mod 5

(1 + p−1

1− p−1

)2

e−4/p.
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