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Abstract: The convergence of families of linear polynomial operators in the scale of the
Lp-spaces with 0 < p 6 +∞ is studied. The convergence conditions are formulated in terms
of the Fourier transform of the generator of the kernel. The results are applied to methods
generated by classical kernels.
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Introduction

In this paper we continue the systematical study of the methods of trigonometric
approximation started in [2] and [7] - [11]. We consider Fourier means, interpo-
lation means and families of linear polynomial operators, which are defined as
follows. Let ϕ be a complex-valued continuous function on Rd , d ∈ N, with com-
pact support satisfying ϕ(0) = 1 and ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd. We put

W0(ϕ)(h) ≡ 1 , Wσ(ϕ)(h) =
∑

k∈Zd

ϕ

(
k

σ

)
eikh, σ > 0, h ∈ Rd. (1)

If f ∈ Lp(Td), 1 6 p 6 ∞ (Td stands for the d-dimensional torus) then the Fourier
means are given by

F (ϕ)
σ (f ;x) = (2π)−d

∫

Td

f(h)Wσ(ϕ)(x− h) dh, σ > 0, x ∈ Td. (2)
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If f belongs to the space C(Td) of continuous 2π-periodic (with respect to each
variable) functions then the interpolation means are defined as

I(ϕ)
σ (f ; x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN ) ·Wσ(ϕ) (x− tνN ) , σ > 0, x ∈ Td. (3)

Here
N = [ρ σ], ρ > ρ(ϕ) = sup{ | ξ | : ξ ∈ supp ϕ } ,

tνN =
2πν

2N + 1
, ν ∈ Zd ;

2N∑
ν=0

≡
2N∑

ν1=0

· · ·
2N∑

νd=0

.

The functions defined in (1), (2) and (3) are trigonometric polynomials of spherical
order not exceeding ρ (ϕ)σ. If f ∈ Lp(Td), 0 < p < ∞, or if f ∈ C(Td) then we
consider the functions given by

L(ϕ)
σ; λ(f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN + λ) ·Wσ(ϕ) (x− tνN − λ) . (4)

In the case that f ∈ Lp(Td), 0 < p < ∞, formula (4) makes sense for almost all
λ ∈ Rd and x ∈ Td. We interpret λ as a parameter and call {L(ϕ)

σ; λ} a family of
linear polynomial operators. In contrast to the classical methods of trigonometric
approximation the method of approximation by families (if σ → ∞) is compara-
tively new (see e. g. [7], [8]). Its systematical study was continued in [2], [9] and
other works. In particular, it was shown that the averaged approximation error
in Lp, 0 < p < +∞, with respect to the parameter λ can be estimated up to a
constant by the best approximation with respect to trigonometric polynomials of
order ³ σ, if the generator ϕ of the kernel Wσ(ϕ) is equal to 1 in a neighborhood
of 0 and if its Fourier transform belongs to Lp̃(Rd), where p̃ = min(1, p). For
applications of the method, in particular, for the algorithm of stochastic approxi-
mation (SA-algorithm), we refer to [9].

In this paper we give a complete picture of the behavior of families of linear
polynomial operators from the point of view of their convergence including results
on the comparison of approximation properties of all three methods in the scale
of the Lp-spaces. More precisely, we show that

• under the assumption 1 ∈ Pϕ = {p ∈ (0, +∞] : ϕ̂ ∈ Lp} the family {L(ϕ)
σ; λ}

converges in Lp if and only if p ∈ Pϕ. Here ϕ̂ stands for the Fourier trans-
form of the generator ϕ.

• for this reason the method of approximation by a family of linear polynomial
operators is universal in the sense that it is relevant both for p > 1 and p < 1
where the range of admissible parameters depends on the properties of its
generator ϕ and, moreover, the approximation error is equivalent to the ap-
proximation error of the corresponding Fourier means in the case of Lp(Td),
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1 6 p < ∞, or C(T) and to the approximation error of the corresponding
interpolation means in the case of C(Td);

• for families with classical kernels (Fejér, de la Vallée-Poussin, Rogosinski,
Bochner-Riesz) the ranges of convergence (the values of p such that the
family converges in Lp) can be determined precisely.

The paper is organized as follows. Section 1 is devoted to further definitions
and notations. The general approach to treat the methods defined in (2)–(4) by a
unified scheme is elaborated in Section 2. The Lp-norms of families are estimated
in Section 3 and in Section 4 we formulate and prove the main result of this paper
- the General Convergence Theorem (GCT). The sharp ranges of convergence of
the families generated by the kernels of Fejér, de la Vallée-Poussin, Rogosinski and
Bochner-Riesz (for parameters above the critical index) are found in Section 5.

1. Definitions, notations and preliminary remarks

Lp-spaces. As usual, Lp ≡ Lp(Td), where 0 < p < +∞, Td = [0, 2π)d, is the
space of measurable real valued 2π-periodic on each variable functions f(x) for
which

‖ f ‖p =




∫

Td

|f(x)|p dx




1/p

< +∞.

C ≡ C(Td) is the space of real valued 2π-periodic continuous functions equipped
with the Chebyshev norm

‖ f ‖∞ = max
x∈Td

|f(x)|.

For the Lp-spaces of non-periodic functions defined on a measurable set Ω ⊆ Rd

we will use the notation Lp(Ω).
Often we deal with functions in Lp(T2d) which depend on both the main

variable x ∈ Td and the parameter λ ∈ Td. Let us denote by ‖ · ‖p or ‖ · ‖p; x

the Lp(Td)-norm with respect to x. For the Lp(Td)-norm with respect to the
parameter λ we use the symbol ‖ · ‖p; λ. For shortness, Lp stands for the space
Lp(T2d) equipped with the norm

‖ · ‖p = (2π)−d/p
∥∥ ‖ · ‖p; x

∥∥
p; λ

. (1.1)

Analogously, we use the symbol ‖ · ‖∞ for the norm in the space C(T2d). Clearly,
Lp with 0 < p < ∞ and C(Td) can be considered as a subspace of Lp and C(T2d),
respectively, where

‖ f ‖p = ‖ f ‖p , f ∈ Lp (f ∈ C if p = ∞) .
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The functional ‖ · ‖p is a norm if and only if 1 6 p 6 +∞. For 0 < p < 1 it is
a quasi-norm, and the "triangle" inequality is valid for its p-th power. If we put
p̃ = min(1, p) then the inequality

‖ f + g ‖p̃
p 6 ‖ f ‖p̃

p + ‖ g ‖p̃
p , f, g ∈ Lp , (1.2)

will be valid for all 0 < p 6 +∞. This inequality is very convenient, because both
cases can be treated uniformly. Moreover, for the sake of convenience we shall use
the notation "norm" also in the case 0 < p < 1.
Spaces of trigonometric polynomials. Let σ be a real non-negative number.
Let us denote by Tσ the space of all real valued trigonometric polynomials of
(spherical) order σ. It means

Tσ =



 T (x) =

∑

k∈Zd

ck eikx : c−k = ck, | k | ≡ (k2
1 + . . . + k2

d)1/2 6 σ



 ,

where kx = k1x1 + . . . + kdxd and c is a complex conjugate to c. Further, T
stands for the space of all real-valued trigonometric polynomials of arbitrary order.
We denote by Tσ, p, where 0 < p 6 +∞, the space Tσ, if it is equipped with the
Lp-norm and we use the symbol Tσ, p to denote the subspace of Lp which consists
of functions g(x, λ) such that g(x, λ) as a function of x belongs to Tσ for almost
all λ. Clearly, Tσ, p can be considered as a part of Tσ, p with identity of the
norms. As we can see, in our notation the line over the index p indicates that we
are dealing with functions of 2d variables.

Generators. The conditions with respect to the generator of the method ϕ
and the definition of the corresponding kernels Wσ(ϕ) have been given in the
Introduction. The class of all admissible generators will be denoted by K. Recall
that the set K consists of all complex-valued functions ϕ defined on Rd and
satisfying

1) ϕ has a compact support (ρ(ϕ) = sup{ | ξ | : ξ ∈ suppϕ } < +∞);
2) ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd;
3) ϕ(0) = 1;
4) ϕ is continuous.

These conditions seem to be very natural. Indeed, 1)-3) guarantee that each func-
tion given by the approximation methods (2), (3) or (4) is a real-valued trigono-
metric polynomial and that the associated operators F (ϕ)

n , I(ϕ)
n and L(ϕ)

σ; λ map
constant functions onto itself. Condition 4) can be weakened in the sense that
discontinuous functions having some additional properties can be included in the
class of generators. However, for the classical kernels which are considered in this
paper such a modification is not needed.

Let us mention also that one usually deals with kernels produced by real-valued
even generators. Practically all known constructions like, for instance, the kernels
of Dirichlet, Fejér, Valle-Poussin, Rogosinski, Bochner-Riesz are of such a type.
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In forthcoming papers we shall show that the proposed extension of the class of
admissible generators turns out to be very useful for a constructive description of
smoothness of odd orders.

Fourier transform. The Fourier transform and its inverse are given by

ĝ(ξ) =
∫

Rd

g(x)e−ixξ dx , g∨(x) = (2π)−d

∫

Rd

g(ξ)eixξ dξ, g ∈ L1(Rd) .

Relations up to constants. By „A . B” we denote the relation A 6 cB , where
c is a positive constant independent of f ∈ Lp (or f ∈ C) and σ > 0. The symbol
„³” indicates equivalence. It means that A . B and B . A simultaneously.

2. Approximation by general linear polynomial operators

It turns out that some properties of the methods given by (2)–(4) such as the
convergence criterion and the comparison principle do not depend on their specific
structure. They can be obtained applying an universal approach which will be
described in this section. Let us consider linear operators

Lσ : Lp −→ Tγσ, p ⊂ Lp , σ > 0 , (2.1)

where 0 < p 6 +∞ and γ > 0. If p = ∞ the operators are defined on C. Clearly,
the operators given by (2)-(4) are of such a type with γ = ρ(ϕ). Moreover, for
Fourier means (2) and the interpolation means (3) the range space Tγσ, p can be
replaced by its subspace Tγσ, p.

As usual, a linear operator Lσ is bounded if its norm, given by

‖Lσ ‖(p) = sup
‖ f ‖p 6 1

‖Lσ(f) ‖p (2.2)

is finite. The family (Lσ) is called bounded in Lp if their norms are bounded by
a constant independent of σ. That is,

sup
σ>0

‖Lσ ‖(p) < +∞ . (2.3)

Recall that classical operators into Tγσ as defined in (2) and (3) are not relevant
for approximation in the case 0 < p < 1. Indeed, as it was mentioned in [2],
Lemma 3.2, p. 685 (see also [12], p. 37, for the case of functionals) for any σ > 0
and 0 < p < 1 there do not exist non-trivial linear bounded operators mapping
Lp into Tν ⊂ Lp if 0 < p < 1. In contrast to this situation sets of operators
mapping into the space Tγσ, p will be called families of linear polynomial operators
following [7] and [8] and can be successfully applied to approximation in Lp for
all 0 < p < +∞ as well as in C. A family (Lσ) is said to be convergent in Lp if
for each f ∈ Lp (f ∈ C if p = ∞)

lim
σ→+∞

‖ f − Lσ(f) ‖p = 0. (2.4)
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Obviously, for the approximation processes defined in (2) and (3) this concept
coincides with the Lp-convergence in usual sense.

The following general statement on the convergence of families of type (2.1) is
a direct consequence of the classical Banach-Steinhaus theorem for quasi-normed
spaces. We mention that in contrast to the classical cases in Approximation The-
ory we apply this theorem to operators whose range spaces can essentially differ
from the spaces where they are defined (doubled dimension).

Lemma 2.1. Let 0 < p 6 +∞ and γ > 0. A family of linear bounded operators
of type (2.1) converges in Lp if and only if the following conditions are satisfied:

a) lim
σ→+∞

‖ eik· − Lσ(eik·) ‖p = 0 for each k ∈ Zd ;

b) (Lσ) is bounded in Lp.

Now we establish the general comparison principle for families of type (2.1).
We follow the ideas in the paper [4] on approximation by band-limited functions,
where the rates of convergence of convolution integrals and generalized sampling
series were compared with each other in the space of bounded uniformly contin-
uous functions on R . For a trigonometric version we refer to [10], where the
equivalence of the rates of convergence of the Fourier means and the interpolation
means generated by the same kernel was proved.

Lemma 2.2. Let 0 < p 6 +∞, γ > 0 , σ > 0, and (L(j)
σ ), j = 1, 2, be families of

linear bounded operators of type (2.1). If they are bounded in Lp and if L(1)
σ (T ) =

L(2)
σ (T ) for all T ∈ Tγσ , then

‖ f − L(1)
σ (f) ‖p ³ ‖ f − L(2)

σ (f) ‖p , f ∈ Lp . (2.5)

Proof. Let f ∈ Lp (f ∈ C if p = ∞) and let σ > 0. Let us denote the function
L(1)

σ (f) by L(1)
σ; λ(f) . For almost all parameter λ it belongs to Tγσ (as a function

of x ). Therefore, we get

L(1)
σ

(
L(1)

σ; λ(f)
)

= L(2)
σ

(
L(1)

σ; λ(f)
)

(2.6)

in the sense of identity of two elements in Lp. Using (1.2), (2.2) and (2.6) we
obtain for almost all λ the estimate

‖ f − L(2)
σ (f) ‖p̃

p 6 ‖ f − L(1)
σ (f) ‖p̃

p + ‖L(1)
σ (f)− L(1)

σ (L(1)
σ; λ(f)) ‖p̃

p

+ ‖L(2)
σ (L(1)

σ; λ(f))− L(2)
σ (f) ‖p̃

p

6 ‖ f − L(1)
σ (f) ‖p̃

p +
( ‖L(1)

σ ‖p̃
(p) + ‖L(2)

σ ‖p̃
(p)

)

× ‖ f − L(1)
σ; λ(f) ‖p̃

p; x .

(2.7)
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Taking the Lp-norm with respect to λ and division by (2π)−d/p if 1 6 p 6 +∞
or integrating with respect to λ and division by (2π)−d if 0 < p < 1 lead to

‖ f − L(2)
σ (f) ‖p̃

p 6
(
1 + ‖L(1)

σ ‖p̃
(p) + ‖L(2)

σ ‖p̃
(p)

) · ‖ f − L(1)
σ (f) ‖p̃

p

6 c ‖ f − L(1)
σ (f) ‖p̃

p .

in view of the boundedness of (L(j)
σ ), j = 1, 2, in Lp. Changing the roles of L(1)

σ

and L(2)
σ in the above arguments we obtain the converse estimate. ¥

3. Norms of families of linear polynomial operators

In this section we estimate the norms of the family defined in (4) by means of the
Lp-norm of the Fourier transform of its generator ϕ. Notice (4) can be interpreted
as an operator of type (2.1). The norm of the family {L(ϕ)

σ; λ } given by (4) is, by
definition, the norm of the corresponding operator mapping into the space Lp(T2d)
(or C(T2d)). In view of (2.2) one has

‖ {L(ϕ)
σ; λ } ‖(p) = sup

‖ f ‖p61

‖L(ϕ)
σ; λ(f ; x) ‖p , σ > 0 . (3.1)

Lemma 3.1. Let ϕ ∈ K, 0 < p 6 +∞, p̃ = min(1, p), p̂ = p for 0 < p < +∞
p̂ = 1 for p = +∞, and σ > 0 . Then

(σ + 1)d(1/p̂−1) ‖Wσ(ϕ) ‖p̂ . ‖ {L(ϕ)
σ; λ } ‖(p) . (σ + 1)d(1/p̃−1) ‖Wσ(ϕ) ‖p̃ . (3.2)

Proof. Step 1. First we prove the upper estimate for 0 < p 6 1. By (4) and
(1.1)–(1.2) we get for each f ∈ Lp the estimates

(2π)d/p‖L(ϕ)
σ; λ(f ;x) ‖p

p

6 (2N + 1)−dp
2N∑
ν=0

‖ f(tkN + λ) ‖Wσ(ϕ)(x− tkN − λ) ‖p; x ‖p
p; λ

6 (2N + 1)−dp · ‖Wσ(ϕ) ‖p
p ·

2N∑
ν=0

‖ f(tkN + λ) ‖p
p

6 (2N + 1)d(1−p) ‖Wσ(ϕ) ‖p
p ‖ f ‖p

p .

This implies

‖ {L(ϕ)
σ; λ } ‖p 6 (2π)−d/p (2N + 1)d(1/p−1) ‖Wσ(ϕ) ‖p , 0 < p 6 1 . (3.3)

Step 2. In order to prove the lower estimate for 0 < p < +∞. we consider
the 2π-periodic function f∗ which is defined on [−π, π)d by

f∗(h) =

{
(µ(Dτ/2(0)))−1/p, h ∈ Dτ/2(0)
0, otherwise

,
(
τ =

2π

2N + 1

)
.
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Here Dδ(a) is the ball of the radius δ centered at the point a and µ denotes
the d-dimensional Lebesgue measure. For each λ ∈ Dτ/2(0) and for each vector
k ∈ Zd \ {0} with components 0 6 kj 6 2N , j = 1, . . . , d, we have

| tkN + λ | > | tkN | − |λ | > τ − τ/2 = τ/2 .

Hence, by definition of f∗ we get that

f∗(tkN + λ) = 0 for λ ∈ Dτ/2(0), k ∈ Zd, k 6= 0 , 0 6 kj 6 2N, j = 1, . . . , d .

Therefore, in view of (4)

L(ϕ)
n;λ(f∗; x) = (2N + 1)−d f∗(λ)Wn(ϕ)(x− λ), x ∈ Td, λ ∈ Dτ/2(0) . (3.4)

Moreover, it holds

L(ϕ)
n;λ+τ (f∗; x) = (2N + 1)−d ·

2N∑
ν=0

f
(
tν+1
N + λ

) ·Wσ(ϕ)
(
x− tν+1

N − λ
)

= (2N + 1)−d ·
2N+1∑
ν=1

f (tνN + λ) ·Wσ(ϕ) (x− tνN − λ)

= L(ϕ)
n;λ(f∗; x)

because of the 2π-periodicity of the functions f∗ and Wσ(ϕ). Taking also into
account that ‖f∗‖p = 1 we obtain the estimates

‖ {L(ϕ)
σ;λ} ‖p

(p) > ‖L(ϕ)
σ;λ(f∗;x) ‖p

p

= τ−d

∫

[−τ/2,τ/2]d

( ∫

Td

|L(ϕ)
σ;λ(f∗; x)|p dx

)
dλ

> τ−d

∫

Dτ/2(0)

( ∫

Td

| L(ϕ)
σ;λ(f∗; x)|p dx

)
dλ

= (2π)−d (2N + 1)d(1−p)

∫

Dτ/2(0)

| f∗(λ)|p
( ∫

Td

|Wσ(ϕ)(x− λ)|pdx
)
dλ

= (2π)−d (2N + 1)d(1−p) ‖Wσ(ϕ) ‖p
p

from (3.4). Finally,

‖ {L(ϕ)
σ;λ}‖(p) > (2π)−d/p (2N + 1)d(1/p−1) ‖Wσ(ϕ) ‖p , 1 < p < +∞ . (3.5)

Step 3. Now let p = +∞. Using the composition

L(ϕ)
σ; λ = S−λ ◦ I(ϕ)

σ ◦ Sλ , (3.6)



On convergence of families of linear polynomial operators 49

where Stf(·) = f(·+ t) is the translation operator, we obtain

‖ I(ϕ)
σ ‖(∞) 6 ‖{L(ϕ)

σ;λ}‖(∞) = sup
f∈C , ‖ f ‖∞ 6 1

max
λ
‖S−λ ◦ I(ϕ)

σ ◦ Sλ(f) ‖∞

= sup
f∈C , ‖ f ‖∞ 6 1

max
λ
‖ I(ϕ)

σ ◦ Sλ(f) ‖∞

6 sup
f∈C , ‖ f ‖∞ 6 1

max
λ
‖ I(ϕ)

σ ‖(∞) · ‖Sλ(f) ‖∞ = ‖ I(ϕ)
σ ‖(∞) .

Hence,
‖{L(ϕ)

σ;λ}‖(∞) = ‖ I(ϕ)
σ ‖(∞) .

Applying the known estimate for the norm of I(ϕ)
σ (see, for instance, [10]) we

obtain (3.2) for p = +∞.
Step 4. By the classical Riesz-Thorin interpolation theorem we get

‖ {L(ϕ)
σ; λ ‖(p) 6 ‖ {L(ϕ)

σ; λ}‖1/p
(1) · ‖ {L

(ϕ)
σ; λ}‖1−1/p

(∞)

for 1 < p < +∞ . This leads to the upper estimate for 1 < p < +∞ by Step 1–
Step 3. The proof is complete. ¥

Lemma 3.2. Let 0 < p 6 1. The set {σd(1/p−1) ‖Wσ(ϕ) ‖p : σ > 0 } is bounded
if and only if ϕ̂ ∈ Lp(Rd). Here, ϕ ∈ K . Moreover, in this case

lim
σ→+∞

σd(1/p−1) ‖Wσ(ϕ) ‖p = sup
σ>0

σd(1/p−1) ‖Wσ(ϕ) ‖p = ‖ ϕ̂ ‖Lp(Rd) . (3.7)

Proof. Step 1. Using the Poisson summation formula one easily obtains (see [2],
Lemma 2.2, p. 681, for details)

∥∥∥∥∥
∑

k∈Zd

g(k) · eikx

∥∥∥∥∥
p

6 ‖ ĝ ‖Lp(Rd) (3.8)

for all continuous function g with compact support satisfying ĝ ∈ Lp(Rd). Ap-
plying (3.8) to ϕ(·/σ) and using the equalities ϕ̂(σ−1·)(x) = σdϕ̂(σx) we get

sup
σ>0

σd(1/p−1) ‖Wσ(ϕ) ‖p 6 ‖ ϕ̂ ‖Lp(Rd) . (3.9)

Step 2. Now we prove: I f there exists a sequence (νn)n∈N of strictly increasing
natural numbers such that the sequence ν

d(1/p−1)
n ‖Wνn(ϕ)‖p is bounded, then

ϕ̂ ∈ Lp(Rd) and

‖ ϕ̂ ‖Lp(Rd) 6 sup
n∈N

νd(1/p−1)
n ‖Wνn(ϕ)‖p . (3.10)

Consider the sequence of functions Fn(x) , n ∈ N, given by

Fn(x) =

{
ν−dp

n

∣∣∣ Wνn(ϕ)
(

x
νn

)∣∣∣
p

, x ∈ [−πνn, πνn]d

0, otherwise
. (3.11)
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Clearly, the functions Fn, n ∈ N, are non-negative and measurable. Let x0 ∈ Rd.
Then there exists n0 ∈ N such that x0 ∈ [−πνn, πνn]d for n > n0. The function
ϕ(·)eix0· is integrable in the Riemannian sense on the cube Ω ⊂ Rd containing its
support. By definition of the Riemann-integral we get

lim
n→+∞

ν−d
n

∑

k∈Zd

ϕ

(
k

νn

)
· e(ikx0)/νn =

∫

Ω

ϕ(ξ) · eiξx0dξ = ϕ̂(−x0) .

Hence,
lim

n→+∞
Fn(x0) = | ϕ̂(−x0) |p . (3.12)

By definition of Fn in (3.11) it follows

sup
n∈N

∫

Rd

Fn(x)dx = sup
n∈N

νd(1−p)
n

∫

[−πνn,πνn]d

∣∣∣Wνn(ϕ)
( x

νn

)∣∣∣
p

ν−d
n dx

= sup
n∈N

νd(1−p)
n ‖Wνn

(ϕ) ‖p
p < +∞ .

(3.13)

Thus, we have proved that the sequence Fn(x), n ∈ N, satisfies all conditions of
the Fatou lemma. Combining it with (3.12) and (3.13) we obtain ϕ̂ ∈ Lp(Rd)
and (3.10).

Step 3. Now, the criterion and the second relation in (3.7) follow immediately
from the statements above. Suppose that the set σd(1/p−1) ‖Wσ(ϕ) ‖p is bounded
and let a be one of its accumulation points. By (3.9) a does not exceed the norm
of ϕ̂ in Lp(Rd). The inverse estimate follows from (3.10). As a consequence we
get (3.7). ¥

Let us mention that the idea of using the Poisson summation formula for esti-
mates of type (3.9) can be found in [6], where the case of infinitely differentiable
generators ϕ has been considered. For p = 1 the second relation in (3.7)
can be also derived from the results on the connections between periodic and
non-periodic multipliers [15], Theorem 3.8, p. 260; Theorem 3.18, p.264; Corol-
lary 3.28, p. 267, in combination with the criterion for non-periodic multipliers in
L1(Rd) [13], pp. 28, 95. The existence of the limit and formula (3.7) in this case
were established in [10].

4. General Convergence Theorem

Before we formulate and prove the main result of this paper - the General Conver-
gence theorem (GCT) - we introduce two sets of parameters p which are associated
with the generator ϕ. For ϕ ∈ K we put

Pϕ = { p ∈ (0,+∞] : ϕ̂ ∈ Lp(Rd) } .
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Since lim|x|→+∞ | ϕ̂(x) | = 0 we have ϕ̂ ∈ Lq(Rd) for p 6 q 6 ∞ if ϕ̂ ∈ Lp(Rd) .
Hence, Pϕ is (p0, +∞] or [p0, +∞], where p0 = inf Pϕ. The set

Cϕ = { p ∈ (0,+∞] : {L(ϕ)
σ; λ } converges in Lp }

is called range of convergence of the family {L(ϕ)
σ; λ }.

Theorem 4.1. Let ϕ ∈ K and assume 1 ∈ Pϕ. Then, Cϕ = Pϕ. Moreover, for
1 6 p 6 +∞

‖ f − L(ϕ)
σ; λ(f) ‖p ³ ‖ f −F (ϕ)

σ (f) ‖p , f ∈ Lp (f ∈ C if p = ∞), σ > 0 . (4.1)

If p = +∞ then (4.1) holds with I(ϕ)
σ in place of F (ϕ)

σ for all f ∈ C and σ > 0.

Proof. Step 1. Recall ρ > ρ(ϕ) . First we claim that for all trigonometric
polynomials T (x) =

∑
k∈Zd

ck eikx ∈ Tρσ and for all σ > 0

Fϕ
σ (T ; x) =

∑

k∈Zd

ϕ
(k

σ

)
ck eikx (4.2)

Iϕ
σ (T ; x) =

∑

k∈Zd

ϕ
(k

σ

)
ck eikx = Fϕ

σ (T ;x) (4.3)

L(ϕ)
σ; λ(T ; x) =

∑

k∈Zd

ϕ
(k

σ

)
ckeikx = Fϕ

σ (T ; x) . (4.4)

The proofs of (4.2) and (4.3) are straightforward and can be found, for instance,
in [10]. Equality (4.4) immediately follows from (4.3) and (3.6). Hence, the op-
erators defined in (2) - (4) coincide on the space of trigonometric polynomials
Tρσ.

Step 2. Let 0 < p 6 +∞. Suppose ν ∈ Zd, λ ∈ Rd and σ > |ν|/ρ. Using
(4.4) we get

‖ eiν· − L(ϕ)
σ; λ(eiν·) ‖p =

∣∣∣ 1− ϕ
(ν

σ

) ∣∣∣ · ‖ eiν· ‖p = (2π)d/p
∣∣∣ 1− ϕ

(ν

σ

) ∣∣∣ .

Taking into account that ϕ is continuous we obtain therefrom

lim
σ→+∞

‖ eiν· − L(ϕ)
σ; λ(eiν·) ‖p = 0, ν ∈ Zd . (4.5)

Step 3. By assumption Pϕ contains the interval [1, +∞]. We show that
[1,+∞] ⊂ Cϕ as well. Indeed, by Lemmas 3.1 and 3.2 we get

‖ {L(ϕ)
σ; λ } ‖(p) . ‖Wσ(ϕ) ‖1 6 ‖ ϕ̂ ‖L1(Rd) < +∞

for 1 6 p 6 +∞ which is the boundedness of {L(ϕ)
σ; λ } in Lp. Combining this and

(4.5) we obtain by Lemma 2.1 the convergence in Lp. Hence, [1,+∞] ⊂ Cϕ.
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In order to complete the proof of the coincidence of Pϕ and Cϕ it is enough
to show that p ∈ (0, 1) belongs or does not belong to Pϕ and Cϕ simultane-
ously. Indeed, the statement ”p ∈ Pϕ” is equivalent to the boundedness of the
set {σd(1/p−1) ‖Wσ(ϕ) ‖p , σ > 0 } by Lemma 3.2 and to the boundedness of the
family {L(ϕ)

σ; λ } in Lp by Lemma 3.1. In view of (4.5) and Lemma 2.1 this state-

ment is equivalent to the convergence of {L(ϕ)
σ; λ } in Lp , that is, to the statement

”p ∈ Cϕ”. Taking into account that the condition ”1 ∈ Pϕ” implies the bounded-
ness of F (ϕ)

σ in Lp with 1 6 p 6 +∞ and I(ϕ)
σ in C(Td) (see, for instance, [10]

for references) we conclude the equivalence of the approximation errors of {L(ϕ)
σ; λ }

and F (ϕ)
σ for 1 6 p 6 +∞ as well as of {L(ϕ)

σ; λ } and I(ϕ)
σ in C(Td) from Step 1

and Lemma 2.2. The proof is complete. ¥

5. Families generated by classical kernels

In this section we apply the General Convergence Theorem to families of linear
polynomial operators generated by the classical kernels in order to find their sharp
ranges of convergence. In general, the classical kernels are of type (1), where the set
{σ > 0 } is replaced by a certain sequence (νn)n∈N0 satisfying lim

n→+∞
νn = +∞.

It should be noticed in this respect that such a replacement does not affect the
results above.

For more information concerning classical trigonometric kernels and approx-
imation processes of types (2) and (3) and results for the spaces Lp(Td) with
1 6 p < +∞ and C(Td) we refer to [5] and [3]. The convergence of the methods
generated by Bochner-Riesz kernels has been investigated in [11]. For properties
of the families related to Fejér and de la Vallée-Poussin kernels we refer to [1].
Nevertheless, in order to demonstrate the power of our general approach and for
the sake of completeness we consider here these kernels as well.

The Fejér kernel is defined by (1) with ϕ(ξ) = ( 1 − | ξ | )+ as generator
(a+ = max(a, 0)), where {σ > 0 } is replaced by the set of non-negative natural
numbers N0. The corresponding family {Fn; λ} is given by (4) with n ∈ N0 in
place of σ. Straightforward calculation gives

ϕ̂(x) =
4 sin2(x/2)

x2
.

Hence, Pϕ = (1/2, +∞]. By the GCT the family {Fn; λ} generated by the Fejér
kernel converges in Lp if and only if 1/2 < p 6 +∞.

The de la Vallée-Poussin kernel is defined by (1) with

ϕ(ξ) =





1, ξ | 6 1
2− | ξ |, 1 < | ξ | 6 2
0, | ξ | > 2

,
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where the set {σ > 0 } is replaced by N0. The corresponding family {Vn; λ} is
given by (4) with n ∈ N0 in place of σ. Again, by straightforward calculation
one has

ϕ̂(x) =
4 sin(x/2) sin((3x)/2)

x2
.

Hence, we have the same range of convergence Pϕ = (1/2, +∞] as in the case of
Fejér and by our GCT the family {Vn; λ} generated by the de la Vallée-Poussin
kernels converges in Lp if and only if 1/2 < p 6 +∞.

The Rogosinski kernel is of type (1) with

ϕ(ξ) =

{
cos πξ

2 , | ξ | 6 1
0, | ξ | > 1

as generator and σ = n + 1/2, n ∈ N0. In a straightforward manner we get

ϕ̂(x) =
π cosx

(π/2)2 − x2
, Pϕ = (1/2,+∞] .

By the GCT the family {Rn; λ} generated by the Rogosinski kernel converges in
Lp if and only if 1/2 < p 6 +∞.

The Bochner-Riesz kernels with the index α in the d-dimensional case are
given by (1), where ϕ(x) = ϕα(ξ) =

(
1− | ξ |2)α

+
and σ = n, n ∈ N0. As it is

known ([14], Ch. 9, pp. 389-390),

ϕ̂α(x) = π−α Γ(α + 1) |x |−α−d/2 Jα+d/2(|x |) ,

where Js(x), s > −1/2, denotes the Bessel function of order s. Using the proper-
ties of Bessel functions, in particular, their asymptotic formula (see, for example,
[14], Ch. 8, pp. 356-357) we see that Js(x) can be estimated from above and from
below by |x |−1/2 on a certain set of infinite measure. In particular, we find

‖ ϕ̂α ‖p
Lp(Rd) ³

∫

|x|> 1

|x |−p(α+d/2+1/2) dx ³
+∞∫

1

rσ dr ,

where σ = −p(α + d/2 + 1/2) + d− 1. Hence,

Pϕα = ( 2d/(d + 2α + 1), +∞ ] .

Thus, 1 ∈ Pϕα if and only if α > (d − 1)/2 (Bochner’s critical index). By the
GCT we obtain the convergence of the family {B(α)

n; λ} generated by a kernel ϕα

with α > (d− 1)/2 in Lp if and only if 2d/(d + 2α + 1) < p 6 +∞.
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