DIVISION ON A COMPLEX SPACE WITH ARBITRARY SINGULARITIES

Michae Jasiczak

Dedicated to Professor Bogdan Bojarski on the occasion of his 75th birthday

Abstract

We study a division problem for holomorphic functions that vanish to sufficiently high order near the singularity of a singular complex space.

Keywords: Division problem, singular complex space.

1. Introduction

In [4] J. E. Fornaess, N. Øvrelid and S. Vassiliadou obtained existence result for $\bar{\partial}$-problem on a complex space with arbitrary singularity. The aim of this note is to show that the method used in ibid. (however, not the result itself) can be applied to obtain a solution to the division problem for holomorphic functions vanishing to high order near the singularity.

Before we present the results, we need to recall the setting. Namely, let X be a pure n-dimensional reduced Stein space, $A \supset X_{\text {sing }}$ a lower dimensional complex analytic subset with empty interior (we refer the Reader to [5] for background concerning Stein spaces). Let Ω be an open relatively compact Stein domain in X and $K=\widehat{\bar{\Omega}}$ be the holomorphic convex hull of the closure of Ω in X. K has a neighborhood basis of Oka-Weil domains in X and let $X_{0} \subset X$ be such a neighborhood of K in X. Importantly, X_{0} can be realized as a holomorphic subvariety of an open polydisk in \mathbb{C}^{N} for some $N>0$. Set $\Omega^{*}:=\Omega \backslash A$. Observe that since Ω^{*} is embedded in the polydisk $\mathbb{P}^{N} \subset \mathbb{C}^{N}$, it can be equipped with the Hermitian metric, which is the restriction of the ambient space metric to Ω^{*}. This induces a norm $|\cdot|$ on $\Lambda \mathbb{C} T_{z}^{*} \Omega^{*}$ for $z \in \Omega^{*}$ and implies the existence of the volume element $d V$ on Ω^{*}. Hence, for any $\Omega^{\prime} \subset \Omega$ and $N \in \mathbb{Z}$ we may define the following

[^0]seminorms
\[

$$
\begin{aligned}
\|u\|_{\Omega^{\prime}, N}^{2} & :=\int_{\Omega^{\prime}}|u|^{2} d_{A}^{-N} d V \\
\|u\|_{\Omega, N}^{2} & :=\int_{\Omega}|u|^{2} d_{A}^{-N} d V
\end{aligned}
$$
\]

The symbol d_{A} stands for the distance to A. Our first result is the following theorem:

Theorem 1. Let X, Ω be as above and assume that for each $\Omega^{\prime} \subset \subset \Omega$ holomorphic functions $f_{1}, \ldots, f_{m} \in H(\Omega)$ satisfy the following condition

$$
\begin{equation*}
\sup _{\Omega^{\prime}} d_{A}^{\tilde{N}}\left(\sum_{j=1}^{m}\left|f_{j}\right|^{2}\right)^{-1}<\infty \tag{1}
\end{equation*}
$$

for some $\tilde{N} \in \mathbb{N}_{0}$.
For every $N_{0} \geqslant 0$, there exists $N \geqslant 0$ such that if F is a holomorphic function in Ω with $\|F\|_{\Omega, N}<\infty$, then there exist functions $g_{1}, \ldots, g_{m} \in H\left(\Omega^{*}\right)$ such that $\left\|g_{j}\right\|_{\Omega^{\prime}, N_{0}} \leqslant C\|F\|_{\Omega, N}$ for any $\Omega^{\prime} \subset \subset \Omega$ and

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j} g_{j}=F \tag{2}
\end{equation*}
$$

in Ω^{*}. The constant C depends on $\Omega^{\prime}, N, N_{0}$ and f_{1}, \ldots, f_{m}.
Theorem 1 is proved by adapting the Koszul complex technique (cf. [8]) to sheaf cohomology argument based on a generalization of the result proved by Y. T. Siu in [10]. The result, which generalizes to lower order sheaf cohomology groups Theorem obtained by Y. T. Siu was proved by J. E. Fornaess, N. Øvrelid and S. Vassiliadou in [4].

Theorem 1 implies immediately the following fact.
Corollary 1. Let X, Ω be as above and assume that for each $\Omega^{\prime} \subset \subset \Omega$ functions $f_{1}, \ldots, f_{m} \in H(\Omega)$ satisfy condition (1). Furthermore, assume that X is normal.

For every $N_{0} \geqslant 0$, there exists $N \geqslant 0$ such that if F is a holomorphic function in Ω with $\|F\|_{\Omega, N}<\infty$, then there exist functions $g_{1}, \ldots, g_{m} \in H(\Omega)$, which satisfy the equation (2) and $\left\|g_{j}\right\|_{\Omega^{\prime}, N_{0}} \leqslant C\|F\|_{\Omega, N}, j=1, \ldots, m$ for any $\Omega^{\prime} \subset \subset \Omega$. The constant C depends on $\Omega^{\prime}, N, N_{0}$ and f_{1}, \ldots, f_{m}.

Indeed, Corollary 1 is an immediate consequence of the first Riemann extension theorem, which holds on normal complex spaces (cf. [7]). Recall that a complex space X is normal at $x \in X$ if \mathcal{O}_{x} is reduced and integrally closed in \mathcal{M}_{x} - the field of germs of meromorphic functions at x. A complex space X is normal provided it is normal at each of its point. In particular if X is smooth, then x is normal.

The Authors in [4] were able to strengthen their result in case of isolated singularities. Namely, they proved that if $A \cap \bar{\Omega}$ is a finite subset of $\bar{\Omega}$ with $b \Omega \cap A=\emptyset$, then a weighted L^{2} estimate on the whole Ω holds for the solution to the equation $\bar{\partial} u=f$.

Theorem 2 (Fornaess, Øvrelid, Vassiliadou). Let X, Ω be as above and assume that $A \cap \bar{\Omega}$ is a finite subset of $\bar{\Omega}$ with $b \Omega \cap A=\emptyset$. Furthermore, assume that Ω is Stein and $\bar{\Omega}$ has a Stein neighbourhood.

For each N_{0} there exists N such that for every $\bar{\partial}$-closed (p, q)-form f with $\|f\|_{N, \Omega}<\infty$, there is a solution to $\bar{\partial} u=f$ such that $\|u\|_{\Omega, N_{0}} \leqslant c\|f\|_{\Omega, N}$ with a constant c independent of f.

This result can be used to obtain the following theorem:
Theorem 3. Let X, Ω be as above. Assume additionally, that $A \cap \bar{\Omega}$ is a finite subset of Ω with $b \Omega \cap A=\emptyset$. Also, let Ω be Stein and assume that $\bar{\Omega}$ has a Stein neighbourhood.

If $f_{1}, \ldots, f_{m} \in H(\bar{\Omega})$ and there exist $\tilde{N}_{1}, \tilde{N}_{2} \in \mathbb{Z}$ such that $\left\|f_{j}\right\|_{\tilde{N}_{1}, \Omega}<\infty$ for $j=1, \ldots, m$ and

$$
\begin{equation*}
\sup _{\Omega^{\prime}} d_{A}^{\tilde{N}_{2}}\left(\sum_{j=1}^{m}\left|f_{j}\right|^{2}\right)^{-1}<\infty \tag{3}
\end{equation*}
$$

then for every N_{0} there exists N such that for each F with $\|F\|_{\Omega, N}<\infty$ there exist g_{1}, \ldots, g_{m} such that (2) holds and

$$
\begin{equation*}
\left\|g_{j}\right\|_{\Omega, N_{0}} \leqslant C\|F\|_{\Omega, N}, \quad j=1, \ldots, m \tag{4}
\end{equation*}
$$

where C depends on N_{0} only.
One comment is in order at this moment. Namely, in Theorem 3 we made the additional assumption that f_{1}, \ldots, f_{m} are holomorphic on $\bar{\Omega}$. The reason for this is, naturally, that we wanted to get rid of the impact of $b \Omega$ on solvability of the equation (2). Once we prove Theorem 1, The Reader will notice that Theorem 3 is an almost immediate consequence of Theorem 2. This is why we intend to present the proof of Theorem 1 only.

The division problem for holomorphic functions was studied extensively by many Authors. Among the manuscripts, which influenced our approach most, apart from [8], are also [1] and [2].

2. Proof of Theorem 1

There exists a proper, holomorphic surjection $\pi: \tilde{X} \rightarrow X$ with the following properties:
(i) \tilde{X} is an n-dimensional complex manifold.
(ii) $\tilde{A}=\pi^{-1}(A)$ is a hypersurface in $\tilde{\Omega}$ with only normal crossing singularities.
(iii) $\pi: \tilde{X} \backslash \tilde{A} \rightarrow X \backslash A$ is a biholomorphism.

This follows from results proved in [3] and [6] - we refer the Reader to [4] for the corresponding argument.

Denote $\tilde{\Omega}:=\pi^{-1}(\Omega)$. Following [4] we equip the complex manifold \tilde{X} with a real analytic metric σ. The symbol $d \tilde{V}_{x, \sigma}$ (or $d \tilde{V}_{\sigma}$, or even $d \tilde{V}$) stands for the volume form for the metric σ at $x \in \tilde{X}$, while $d_{\tilde{A}}$ denotes the distance to the submanifold \tilde{A}, which corresponds to the metric σ. The choice of the metric σ induces also a norm on $\Lambda \mathbb{C} T_{z}^{*} \tilde{\Omega}, z \in \tilde{\Omega}$, which will be denoted by $|\cdot|_{z, \sigma}$, or simply $|\cdot|_{z},|\cdot|_{\sigma}$.

We will use standard sheaf theoretical notation. Namely, let $\mathfrak{L}_{p, q}^{\text {loc }}$ stand for the sheaf of locally square integrable measurable forms on \tilde{X}. Since, for each open set $U \subset \tilde{X}$ it holds $\mathfrak{L}_{p, q}^{\text {loc }}(U) \subset \mathcal{D}_{p, q}^{\prime}$, the operator $\bar{\partial}$ is well-defined on $\mathfrak{L}_{p, q}^{\text {loc }}(U)$ in the sense of currents. Hence, we may consider its (maximal) domain

$$
\operatorname{Dom}_{\bar{\partial}}(U):=\left\{u \in \mathfrak{L}_{p, q}^{\mathrm{loc}}(U): \bar{\partial} u \in \mathfrak{L}_{p, q}^{\mathrm{loc}}(U)\right\}
$$

The symbol $\mathcal{L}_{p, q}$ stands for the sheaf $\left(\operatorname{Dom}_{\bar{d}}(U), r_{V}^{U}\right)$, where for any open $V \subset U$ the operator $r_{V}^{U}: \mathfrak{L}_{p, q}^{\text {loc }}(U) \rightarrow \mathfrak{L}_{p, q}^{\text {loc }}(V)$ is induced by restriction of forms defined on U to the set V. Let J stand for the ideal sheaf of \tilde{A} in \tilde{X} and Ω^{p} for the sheaf of holomorphic $(p, 0)$-forms. We will consider the sheaf $J^{k} \cdot \mathcal{L}_{p, q}$. Recall that a germ of a differential form u belongs to $\left(J^{k} \cdot \mathcal{L}_{p, q}\right)_{x}$, if it is locally of the form $h^{k} u_{0}$, where h generates J_{x} and $u_{0} \in\left(\mathcal{L}_{p, q}\right)_{x}$. The fact that $\tilde{A}=\pi^{-1}(A)$ is a hypersurface with only normal crossing singularities means that around each point $z \in \tilde{A}$ there are local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ in terms of which \tilde{A} is given by $h(z)=z_{1} \ldots z_{m}=0$, where $1 \leqslant m \leqslant n$. This explains why J_{x} is a principal ideal.

We will repeatedly invoke the following fact, which was also used in [4] (cf. proof of Theorem 1.1 [4]). Namely, assume that u is a $\bar{\partial}$-closed differential form in $\tilde{\Omega} \backslash \tilde{A}$, which is locally square-integrable around each point $z \in \tilde{A}$. Then u extends to a $\bar{\partial}$-closed differential form in $\tilde{\Omega}$. Naturally, the extension is also locally square-integrable, since int $\tilde{A}=\emptyset$. Also, the statement that u is $\bar{\partial}$-closed means that $\bar{\partial} u=0$ in the sense of currents. When u is a holomorphic function, this is the first Riemann extension theorem.

The following Lemma was proved in [4].
Lemma 1 (Lemma 3.1 in [4]). We have for $x \in \tilde{\Omega} \backslash \tilde{A}$ and $v \in \Lambda^{r} T_{x}(\tilde{\Omega})$

$$
\begin{aligned}
c^{\prime} d_{\tilde{A}}^{t}(x) & \leqslant d_{A}(\pi(x)) \\
c d_{\tilde{A}}^{M}|v|_{x, \sigma} & \leqslant\left|\pi_{*} v\right|_{\tilde{\pi}(x)} \leqslant C|v|_{x, \sigma}(x),
\end{aligned}
$$

for some positive constants $c^{\prime}, c, C^{\prime}, C, t, M$, where c, C, M may depend on r.
For an r-form a in Ω^{*} set

$$
\left|\pi^{*} a\right|:=\max \left\{\left|\left\langle a_{\pi(x)}, \pi_{*} v\right\rangle\right|:|v|_{x, \sigma} \leqslant 1, v \in \Lambda^{r} T_{x}(\tilde{\Omega} \backslash \tilde{A})\right\}
$$

where $\langle\cdot, \cdot\rangle$ stands for the pairing between an r-forms and a r-tangent vectors.

This implies

$$
c d_{\tilde{A}}^{M}(x)|a|_{\pi(x)} \leqslant\left|\pi^{*} a\right|_{x, \sigma} \leqslant C|a|_{\pi(x)}
$$

on $\tilde{\Omega}$, for some constant M.
The following estimates, or rather their versions for $(0, q)$-forms with $q>0$, were used in [4].

Lemma 2. Let $\Omega, \tilde{\Omega}, A, \tilde{A}$ be as above.
(i) Assume that F is a function in Ω^{*}. There exist constants $M_{1}, c>0$ such that

$$
\int_{\tilde{\Omega} \backslash \tilde{A}}|F \circ \pi|^{2} d_{\tilde{A}}^{M_{1}-N} d \tilde{V} \leqslant c\|F\|_{N, \Omega}^{2} .
$$

(ii) Assume that g is a $\bar{\partial}$-closed (p, q)-form on $\tilde{\Omega}$. There exists a natural number $M_{2} \in \mathbb{N}$ such that if for some $N_{1} \geqslant 0$

$$
\int_{\tilde{\Omega}}|g|_{\sigma}^{2} d_{\tilde{A}}^{-N_{1}} d \tilde{V}_{\sigma}<\infty
$$

then $g \in J^{l} \mathcal{L}_{p, q}(\tilde{\Omega})$ provided $l \leqslant \frac{N_{1}}{2 M_{2}}$.
(iii) For any N_{0} there exists $M_{3} \in \mathbb{N}$ such that for any $\Omega^{\prime} \subset \subset \Omega$ there is a constant $c>0$ such that for any function h on $\tilde{\Omega}$

$$
\int_{\Omega^{\prime}}\left|h \circ \pi^{-1}\right|^{2} d_{A}^{-N_{0}} d V \leqslant c \int_{\tilde{\Omega}^{\prime} \backslash \tilde{A}}|h|^{2} d_{\tilde{A}}^{-M_{3}} d \tilde{V}_{\sigma},
$$

where $\tilde{\Omega}^{\prime}:=\pi^{-1}\left(\Omega^{\prime}\right)$.
(iv) If $v \in J^{k} \cdot \mathcal{L}_{p, q}(\tilde{\Omega})$, then for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}|v|_{\sigma}^{2} d_{\tilde{A}}^{-2 k} d \tilde{V}_{\sigma}<\infty
$$

Proof. In particular Lemma 1 implies that there exist c, C, M such that for $x \in$ $\Omega \backslash A$

$$
c d_{\tilde{A}}^{M} d \tilde{V}_{x, \sigma} \leqslant\left(\pi^{*} d V\right)_{x} \leqslant C_{1} d \tilde{V}_{x, \sigma}
$$

This is the key fact, which suffices to prove (i) and (iii). Property (iv) is obvious. We sketch part ($i i$), which is not proved in [4]. Recall first the Łojasiewicz inequalities (cf. [9]). Assume that ϕ is a real valued, real analytic function defined in an open set $V \subset \mathbb{R}^{d}$ and let $Z_{\phi}=\{x \in V: \phi(x)=0\}$. Then, for every compact set $K \subset V$, there exist positive constants c, m such that

$$
\begin{equation*}
|f(x)| \geqslant c d\left(x, Z_{\phi}\right)^{m} \tag{5}
\end{equation*}
$$

where $d\left(\cdot, Z_{\phi}\right)$ stands for the distance to Z_{ϕ}.

Recall that the fact that $\tilde{A}=\pi^{-1}(A)$ is a hypersurface with only normal crossing singularities means that around each point $z \in \tilde{A}$ there are local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ in terms of which \tilde{A} is given by $h(z)=z_{1} \ldots z_{m}=0$, where $1 \leqslant m \leqslant n$. Choose a cover $\left(V_{\alpha}\right)$ of \tilde{A} consisting of such charts and let h_{α} be the corresponding functions, which locally define \tilde{A}. Since $\bar{\Omega}$ is a compact subset of X and π is proper, the set $\pi^{-1}(\bar{\Omega})$ is compact. Since an analytic set is closed, the intersection $\tilde{A} \cap \overline{\tilde{\Omega}}$ is compact as a closed subset of a compact set.

Therefore, among $\left(V_{\alpha}\right)$ there exist charts $V_{\alpha_{1}}, \ldots, V_{\alpha_{\nu}}$ such that

$$
\tilde{A} \cap \tilde{\Omega} \subset V_{\alpha_{1}} \cup \cdots \cup V_{\alpha_{\nu}}
$$

Furthermore, we may assume that there exist sets $K_{\alpha_{i}}, i=1, \ldots, \nu$ compactly contained in $V_{\alpha_{i}}$ such that

$$
\tilde{A} \cap \tilde{\Omega} \subset \operatorname{int} K_{\alpha_{1}} \cup \cdots \cup \operatorname{int} K_{\alpha_{\nu}}
$$

In view of the Łojasiewicz inequality (5), there exist positive numbers m_{i}, c_{i}, $i=1, \ldots, \nu$ such that $\left|h_{\alpha_{i}}(z)\right| \geqslant c_{i} d\left(z, Z_{h_{\alpha_{i}}}\right)^{m_{i}}$ for $z \in K_{\alpha_{i}}, i=1, \ldots, \nu$.

In order to complete the proof that $g \in J^{l} \cdot \mathcal{L}_{p, q}(\tilde{\Omega})$, it suffices to show that around each point $z \in \tilde{A}$ the form g may be represented as $h^{l} u_{0}$, where h generates J_{z} and $u_{0} \in\left(\mathcal{L}_{p, q}\right)_{z}$. This follows from the fact that in $K_{\alpha_{i}} \backslash \tilde{A}$ we may simply write

$$
g=h_{\alpha_{i}}^{l} \frac{g}{h_{\alpha_{i}}^{l}}
$$

Indeed, if we set $c:=\max \left\{c_{i}^{-1}: i=1, \ldots, \nu\right\}$ and $M_{1}:=\max \left\{m_{i}: i=1, \ldots, \nu\right\}$, then

$$
\begin{align*}
\int_{K_{\alpha_{i}}}\left|\frac{g}{h_{\alpha_{i}}^{l}}\right|_{\sigma}^{2} d \tilde{V}_{\sigma} & \leqslant c_{i}^{-1} \int_{K_{\alpha_{i}}}|g|_{\sigma}^{2} d_{\tilde{A}}^{-2 l m_{i}} d \tilde{V}_{\sigma} \\
& \lesssim c \int_{\tilde{\Omega}}|g|_{\sigma}^{2} d_{\tilde{A}}^{-N_{1}} d \tilde{V}_{\sigma} \tag{6}
\end{align*}
$$

provided $2 l M_{1} \leqslant N_{1}$. Hence, $g / h_{\alpha_{i}}^{l}$ is well-defined as a square integrable form on $\operatorname{int} K_{\alpha_{i}}$, not only on $\operatorname{int} K_{\alpha_{i}} \backslash \tilde{A}$, since int \tilde{A} has empty interior. This argument implies also that $g / h_{\alpha_{i}}^{l}$, a priori defined on int $K_{\alpha_{i}} \backslash \tilde{A}$, extends to a $\bar{\partial}$-closed form in int $K_{\alpha_{i}}$. Hence, it belongs to $\mathcal{L}_{p, q}\left(\right.$ int $\left.K_{\alpha_{i}}\right)$ but this means precisely that $g \in J^{l} \cdot \mathcal{L}_{p, q}(\tilde{\Omega})$.

Denote by Λ the exterior algebra over \mathbb{C} generated by e_{1}, \ldots, e_{m} and by Λ_{l} its subspace spanned by $e^{I}:=e_{i_{1}} \wedge \cdots \wedge e_{i_{l}}$ with $I=\left(i_{1}, \ldots, i_{l}\right)$. The assumption that e^{I} with $I=\left\{e_{i_{1}}<\cdots<e_{i_{|I|}}\right\} \subset\{1, \ldots, m\}$ are orthonormal turns Λ into 2^{m}-dimensional Hilbert space. For any given $\mathbf{e} \in \Lambda$ we use the symbol $\mathbf{e} \vee \bullet: \Lambda \rightarrow$ Λ in order to denote the adjoint operator, in the Hilbert space sense, of right multiplication in Λ by \mathbf{e}.

For each $k \in \mathbb{N}_{0}$ we consider now the sheaf $\left(J^{k} \cdot \mathcal{L}\right) \otimes_{\mathbb{C}} \Lambda$ of $\mathcal{E}_{\tilde{X}} \otimes_{\mathbb{C}} \Lambda$-modules and for each (p, q) and $0 \leqslant l \leqslant m$ its subsheaf of linear spaces $\left(J^{k} \cdot \mathcal{L}_{p, q}\right) \otimes_{\mathbb{C}} \Lambda_{l}$.

The operator $\bar{\partial}$ is extended in a canonical way to a $\mathcal{O}_{\tilde{X}} \otimes_{\mathbb{C}} \Lambda$-sheaf homomorphism between $\mathcal{L}_{p, q} \otimes_{\mathbb{C}} \Lambda_{l}$ and $\mathcal{L}_{p, q+1} \otimes_{\mathbb{C}} \Lambda_{l}$. The latter statement means that for each open set $V \subset \tilde{X}$, section $u_{V} \in \mathcal{L}_{p, q}(V)$ and $e \in \Lambda$

$$
\bar{\partial}\left(u_{V} \otimes e\right):=\left(\bar{\partial} u_{V}\right) \otimes e .
$$

Similarly, we extend the operation \vee to $\left(J^{k} \cdot \mathcal{L}\right) \otimes_{\mathbb{C}} \Lambda$. Namely, let \mathfrak{s} be a global section of $\mathfrak{L} \otimes \Lambda$, i.e.

$$
\mathfrak{s}=\sum_{I} s_{I} \otimes e^{I},
$$

with $s^{I} \in \mathfrak{L}(\tilde{X})$. Furthermore, assume that for any open set $U \subset \tilde{X}$ and $s \in \mathfrak{L}(U)$ it holds $s_{I} \wedge s \in \mathfrak{L}(U)$. Then the adjoint of $s \wedge \bullet: \mathfrak{L}(U) \rightarrow \mathfrak{L}(U)$ is well-defined. As a consequence, we obtain the sheaf morphism $\mathfrak{s V} \bullet: \mathfrak{L} \otimes_{\mathbb{C}} \Lambda \rightarrow \mathfrak{L} \otimes_{\mathbb{C}} \Lambda$ once we set

$$
\begin{aligned}
\mathfrak{s} \vee\left(s_{U} \otimes e\right) & =\left(\sum_{I} s_{I} \otimes e^{I}\right) \vee\left(s_{U} \otimes e\right) \\
& :=\sum_{I}\left(s_{I} \vee s_{U}\right) \otimes\left(e^{I} \vee e\right) .
\end{aligned}
$$

For any such \mathfrak{s} the sheaf map $(\mathfrak{s} \vee \bullet): \mathfrak{L} \otimes \Lambda \rightarrow \mathfrak{L} \otimes \Lambda$ is a $\mathcal{E} \otimes_{\mathbb{C}}$ 1-morphism of sheaves. Let δ stand for sheaf morphism

$$
\left(\sum_{j=1}^{m} \tilde{f}_{j} \otimes e_{j}\right) \vee \bullet,
$$

where $\tilde{f}_{j}:=f_{j} \circ \pi$. It follows from the definition that $\delta^{2}=0$ and the sheaf morphisms $\bar{\partial}$ and δ commute. Also, it is a consequence of the assumption that

$$
\delta: J^{k} \cdot \mathcal{L}_{p, q} \otimes_{\mathbb{C}} \Lambda_{l} \rightarrow J^{k} \cdot \mathcal{L}_{p, q} \otimes_{\mathbb{C}} \Lambda_{l-1}
$$

if $l \geqslant 1$ and $\left.\delta\right|_{J^{k} \cdot \mathcal{L}_{p, q} \otimes_{\mathrm{C}} \Lambda_{0}}=0$. Hence, we have for each $k \in \mathbb{N}_{0}$ the following commuting diagram of sheaf morphisms

with exact rows. The latter statement is a consequence of the Poincaré lemma. If we denote this diagram by \mathfrak{J}^{k}, then the following inclusions hold

$$
\mathfrak{J}^{0} \hookleftarrow \mathfrak{J}^{1} \hookleftarrow \ldots \hookleftarrow \mathfrak{J}^{k} \hookleftarrow \ldots
$$

Furthermore, the corresponding row in the diagram is a fine resolution of $J^{k} \Omega^{p} \otimes \Lambda_{l}$. Therefore,

$$
\begin{equation*}
H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p} \otimes \Lambda_{l}\right) \cong \frac{\operatorname{ker}\left(\bar{\partial}: J^{k} \cdot \mathcal{L}_{p, q}(\tilde{\Omega}) \otimes \Lambda_{l} \rightarrow J^{k} \cdot \mathcal{L}_{p, q+1}(\tilde{\Omega}) \otimes \Lambda_{l}\right)}{\bar{\partial}\left(J^{k} \cdot \mathcal{L}_{p, q-1}(\tilde{\Omega}) \otimes \Lambda_{l}\right)} \tag{7}
\end{equation*}
$$

The key fact proved in [4], which we shall refer to, is the next Proposition. The case $q=n$ was proved by Y. T. Siu in [10].

Proposition 1 (Proposition 1.3 [4]). For $q>0$ and $k \geqslant 0$ given, there exists a natural number $l, l \geqslant k$ such that the map

$$
i_{*}: H^{q}\left(\tilde{\Omega}, J^{l} \cdot \Omega^{p}\right) \rightarrow H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p}\right)
$$

induced by the inclusion $i: J^{l} \cdot \Omega^{p} \rightarrow J^{k} \cdot \Omega^{p}$, is the zero map.
Since

$$
H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p} \otimes \Lambda_{l}\right) \cong H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p}\right) \otimes \Lambda_{l}
$$

we have also that for each k and q there exists l such that the map

$$
\begin{equation*}
(i \otimes \mathrm{id})_{*}: H^{q}\left(\tilde{\Omega}, J^{l} \cdot \Omega^{p} \otimes \Lambda\right) \rightarrow H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p} \otimes \Lambda\right) \tag{8}
\end{equation*}
$$

induced on the sheaf cohomology by $i \otimes \mathrm{id}$, is the zero map. Naturally, we will be concerned with the case $p=0$, when Ω^{p} is just equal to $\mathcal{O}_{\tilde{\Omega}}$ - the sheaf of holomorphic functions on $\tilde{\Omega}$.

Define

$$
\gamma=\sum_{j=1}^{m} \gamma_{j} e_{j}:=\sum_{j=1}^{m} \frac{\overline{\tilde{f}}_{j}}{\sum_{i=1}^{m}\left|\tilde{f}_{i}\right|^{2}} e_{j},
$$

where as before $\tilde{f}_{j}:=f_{j} \circ \pi$. Naturally, it follows from the assumptions that $\gamma \in \mathcal{E}(\tilde{\Omega} \backslash \tilde{A}) \otimes \Lambda_{1}$.

Naturally, the norm $|\cdot|_{z, \sigma}$ on $\Lambda \mathbb{C} T_{z}^{*} \tilde{\Omega}$ can be extended in a canonical way to a norm on $\Lambda \mathbb{C} T_{z}^{*} \tilde{\Omega} \otimes \Lambda \cong\left(\Lambda \mathbb{C} T^{*} \tilde{\Omega} \otimes \Lambda\right)_{z}$. Namely, one sets

$$
\left|\sum_{I} u_{I} e^{I}\right|_{z, \sigma}^{2}:=\sum_{I}\left|u_{I}\right|_{z, \sigma}^{2} .
$$

Lemma 3. Denote $\tilde{F}:=F \circ \pi$. Under assumption (1) for each $M \in \mathbb{N}_{0}$ and $\tilde{k} \in \mathbb{N}$ there exists k such that if for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}|\tilde{F}|^{2} d_{\tilde{A}}^{-k} d \tilde{V}_{\sigma}<\infty
$$

then for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\begin{equation*}
\int_{\tilde{\Omega}^{\prime}}\left|\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)\right|_{\sigma}^{2} d_{\tilde{A}}^{\tilde{-}} d \tilde{V}_{\sigma}<\infty \tag{9}
\end{equation*}
$$

Before we prove this fact notice that in (9) we may integrate over $\tilde{\Omega}^{\prime}$ since \tilde{A} has empty interior.

Proof. Functions $\tilde{f}_{1}, \ldots, \tilde{f}_{m}$ are holomorphic in $\tilde{\Omega}$ as composition of holomorphic maps. A holomorphic function is continuous and, hence, locally bounded and locally square integrable. Also, it follows from (1) that there exists $t \in \mathbb{R}_{>0}$ such that for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$ there exists $C_{\tilde{\Omega}^{\prime}}$ such that for $z \in \tilde{\Omega}^{\prime}$

$$
\left(\sum_{j=1}^{m}\left|\tilde{f}_{j}(z)\right|^{2}\right)^{-1}=\left(\sum_{j=1}^{m}\left|f_{j}(\pi(z))\right|^{2}\right)^{-1} \leqslant C_{\tilde{\Omega}^{\prime}} d_{A}^{-\tilde{N}}(\pi(z)) \leqslant C^{\prime} C_{\tilde{\Omega}^{\prime}} d_{\tilde{A}}^{-t \tilde{N}}(z) .
$$

The last estimate is proved as Lemma 3.1 in [4] and is a consequence of the Łojasiewicz inequality (we recalled it above as Lemma 1). This implies that there exists $n_{M} \in \mathbb{N}$ such that for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$ there exists a constant $C_{\tilde{\Omega}^{\prime}}$ such that for each $z \in \tilde{\Omega}^{\prime} \backslash \tilde{A}$

$$
\left|\gamma \wedge(\bar{\partial} \gamma)^{M}\right|_{z, \sigma}^{2} \leqslant C_{\tilde{\Omega}^{\prime}} d_{\tilde{A}}^{-n_{M}}(z) .
$$

Observe that $n_{M} \leqslant n_{M+1}$. Naturally,

$$
\int_{\tilde{\Omega}^{\prime}}\left|\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)\right|_{\sigma}^{2} d_{\tilde{A}}^{-\tilde{k}} d \tilde{V} \leqslant C_{\tilde{\Omega}^{\prime}} \int_{\tilde{\Omega}^{\prime}}|\tilde{F}|^{2} d_{\tilde{A}}^{-\tilde{k}-n_{M}} d \tilde{V}
$$

which completes the proof if we simply put $k=n_{M}+\tilde{k}$.

Fix N_{0} and define $\tilde{F}:=F \circ \pi$, where $F \in H(\Omega)$ is the function on the righthand side of (2). There exists $M \in \mathbb{N}$ such that $\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)$ is $\bar{\partial}$-closed in $\pi^{-1}\left(\Omega^{*}\right)$. Notice that

$$
\bar{\partial}\left(\sum_{I} u_{I} e^{I}\right)=0 \Longleftrightarrow \forall_{I} \bar{\partial} u_{I}=0 .
$$

Hence, if for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}\left|\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)\right|_{\sigma} d \tilde{V}<\infty
$$

then we may treat $\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)$ as $\bar{\partial}$-closed in the sense of currents in $\tilde{\Omega}$, not only in $\pi^{-1}\left(\Omega^{*}\right)$. Since F is a function it holds $M \leqslant n$ and $M+1 \leqslant m$. We recall the Reader at this moment that n is the dimension of the manifold and m is the number of functions in (2). The fact that $M \leqslant n$ is obvious, while the second inequality follows from the fact $\tilde{f}_{1} \gamma_{1}+\cdots+\tilde{f}_{m} \gamma_{m}=1$ in $\pi^{-1}\left(\Omega^{*}\right)$. This means that in $\tilde{\Omega} \backslash \tilde{A}$

$$
\tilde{f}_{1} \bar{\partial} \gamma_{1}+\cdots+f_{m} \bar{\partial} \gamma_{m}=0
$$

and, consequently, in this set $\bar{\partial} \gamma_{1} \wedge \cdots \wedge \bar{\partial} \gamma_{m}=0$. This implies, under a suitable assumption concerning order of vanishing of F, that $\bar{\partial} \gamma_{1} \wedge \cdots \wedge \bar{\partial} \gamma_{m}=0$ in $\tilde{\Omega}$. We may, therefore, assume that $M=\min \{n, m-1\}$.

Assume that we managed to solve the equation

$$
\begin{equation*}
\bar{\partial} v_{M}=\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1) \tag{10}
\end{equation*}
$$

Then, for a fixed $k \in \mathbb{N}$

$$
\begin{align*}
\int_{\tilde{\Omega}^{\prime}} \mid \gamma \wedge(\bar{\partial} \gamma)^{M-1} & \wedge(\tilde{F} \otimes 1)-\left.\delta v_{M}\right|_{\sigma} d_{\tilde{A}}^{-2 M_{2} k} \tilde{V}_{\sigma} \tag{11}\\
& \leqslant C_{\tilde{\Omega}^{\prime}} \int_{\tilde{\Omega}^{\prime}}|F|^{2} d_{\tilde{A}}^{-2 M_{2} k-n_{M-1}} d \tilde{V}_{\sigma}+C_{\tilde{\Omega}^{\prime}} \int_{\tilde{\Omega}^{\prime}}\left|v_{M}\right|_{\sigma}^{2} d_{\tilde{A}}^{-2 M_{2} k} d \tilde{V}_{\sigma}
\end{align*}
$$

It is a consequence of Proposition 1 that for $\tilde{k}:=2 M_{2} k$ there exists $l=l(n, \tilde{k})$ such that

$$
\begin{equation*}
(i \otimes \mathrm{id})_{*}: H^{n}\left(\tilde{\Omega}, J^{l} \cdot \Omega^{p} \otimes \Lambda_{n+1}\right) \rightarrow H^{n}\left(\tilde{\Omega}, J^{\tilde{k}} \cdot \Omega^{p} \otimes \Lambda_{n+1}\right) \tag{12}
\end{equation*}
$$

is the zero map. Furthermore, as we have already noticed

$$
H^{q}\left(\tilde{\Omega}, J^{k} \cdot \Omega^{p} \otimes \Lambda_{l}\right) \cong \frac{\operatorname{ker}\left(\bar{\partial}: J^{k} \cdot \mathcal{L}_{p, q}(\tilde{\Omega}) \otimes \Lambda_{l} \rightarrow J^{k} \cdot \mathcal{L}_{p, q+1}(\tilde{\Omega}) \otimes \Lambda_{l}\right)}{\bar{\partial}\left(J^{k} \cdot \mathcal{L}_{p, q-1}(\tilde{\Omega}) \otimes \Lambda_{l}\right)}
$$

From Lemma 2 it follows that there exists $\kappa_{1}=\kappa_{1}(M, \tilde{k})$ such that if for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\begin{equation*}
\int_{\tilde{\Omega}^{\prime}}|\tilde{F}|^{2} d_{\tilde{A}}^{-\kappa_{1}} d \tilde{V}<\infty \tag{13}
\end{equation*}
$$

then for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}\left|\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)\right|_{\sigma}^{2} d_{\tilde{A}}^{-2 M_{2} l(n, \tilde{k})} d \tilde{V}<\infty
$$

Lemma 2 implies now that $\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge(\tilde{F} \otimes 1)$ is a $\bar{\partial}$-closed element of $J^{l(n, \tilde{k})}$. $\mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ and, as a consequence in view of Proposition 1 in concert with (7) and (8), there exists $v_{M} \in J^{\tilde{k}} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ such that equation (10) is, indeed, satisfied in $\tilde{\Omega}$.

Consider now the expression $\gamma \wedge(\bar{\partial} \gamma)^{M-1} \wedge \tilde{F}-\delta v_{M}$ and observe that

$$
\begin{equation*}
\bar{\partial}\left[\gamma \wedge(\bar{\partial} \gamma)^{M-1} \wedge \tilde{F}-\delta v_{M}\right]=(\bar{\partial} \gamma)^{M} \wedge \tilde{F}-\delta \bar{\partial} v_{M}=0 \tag{14}
\end{equation*}
$$

since $\delta\left[\gamma \wedge(\bar{\partial} \gamma)^{M} \wedge F\right]=(\bar{\partial} \gamma)^{M} \wedge F$.
In order to sum up the argument set

$$
\tilde{\kappa}_{2}(M, k):=\max \left\{2 M_{2} k, \kappa_{1}\left(M, 2 M_{2} k\right)\right\} .
$$

We have shown so far that if for any $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}|\tilde{F}|^{2} d_{\tilde{A}}^{-\tilde{\tilde{N}}_{2}(M, k)} d \tilde{V}_{\sigma}<\infty
$$

then for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}\left|\gamma \wedge(\bar{\partial} \gamma)^{M-1} \wedge(\tilde{F} \otimes 1)-\delta v_{M}\right|_{\sigma} d_{\tilde{A}}^{-2 M_{2} k} \tilde{V}_{\sigma}<\infty
$$

Lemma 2 implies now, in view of (14), that

$$
\gamma \wedge(\bar{\partial} \gamma)^{M-1} \wedge(\tilde{F} \otimes 1)-\delta v_{M} \in J^{k} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda
$$

Lemma 4. For each $k \in \mathbb{N}$ there exists $\kappa_{2}(k) \in \mathbb{N}$ such that if F is a holomorphic function in Ω with

$$
\int_{\Omega^{*}}|F|^{2} d_{A}^{-\kappa_{2}} d V<\infty
$$

then, there exist $v_{M}, \ldots, v_{1} \in \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ such that
(i) $\gamma \wedge(\tilde{F} \otimes 1)-\delta v_{1} \in J^{k} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$
(ii) $\bar{\partial} v_{M-j}=\gamma \wedge(\bar{\partial} \gamma)^{M-j} \wedge(\tilde{F} \otimes 1)-\delta v_{M-j+1}, j=0, \ldots, M-1$, where $\tilde{F}=F \circ \pi$ and we put $v_{M+1}=0$.
Furthermore,

$$
\begin{align*}
\delta\left[\gamma \wedge(\tilde{F} \otimes 1)-\delta v_{1}\right] & =\tilde{F}, \tag{15}\\
\bar{\partial}\left[\gamma \wedge(\tilde{F} \otimes 1)-\delta v_{1}\right] & =0 .
\end{align*}
$$

Proof. Set $v_{M+1}=0$ and consider the following property:
For a fixed $k \in \mathbb{N}$ and $i=0, \ldots, M-1$ there exists $\kappa_{3}=\kappa_{3}(k, i)$ such that if for each $\tilde{\Omega}^{\prime} \subset \subset \tilde{\Omega}$

$$
\int_{\tilde{\Omega}^{\prime}}|\tilde{F}|^{2} d_{\tilde{A}}^{-\kappa_{3}} d \tilde{V}<\infty
$$

then there exist $v_{M}, \ldots, v_{M-j} \in \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ such that
(i) $\gamma \wedge(\bar{\partial} \gamma)^{M-i-1} \wedge(\tilde{F} \otimes 1)-\delta v_{M-i} \in J^{k} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$,
(ii) $\bar{\partial} v_{M-j}=\gamma \wedge(\bar{\partial} \gamma)^{M-j} \wedge(\tilde{F} \otimes 1)-\delta v_{M-j+1}$, where $j=0, \ldots, i$.

Denote this property by $\mathfrak{S}(k, i)$. We have already proved that the property $\mathfrak{S}(k, 0)$ holds for each $k \in \mathbb{N}$.

Fix $\hat{k} \in \mathbb{N}$. Notice that $\gamma \wedge(\bar{\partial} \gamma)^{M-i} \wedge(\tilde{F} \otimes 1)-\delta v_{M-i+1}$ is $\bar{\partial}$-closed in $\tilde{\Omega}$. Therefore, it is a consequence of Proposition 1, (7) and (8), that there exists $l=l(\hat{k})$ such that a solution to the equation

$$
\bar{\partial} v_{M-i}=\gamma \wedge(\bar{\partial} \gamma)^{M-i} \wedge(\tilde{F} \otimes 1)-\delta v_{M-i+1}
$$

exists in $J^{\hat{k}} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ if $\gamma \wedge(\bar{\partial} \gamma)^{M-i} \wedge(\tilde{F} \otimes 1)-\delta v_{M-i+1} \in J^{l(\hat{k})} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$. Hence, for the fixed $\hat{k} \in \mathbb{N}$ if $\mathfrak{S}(k, i)$ folds for each $k \in \mathbb{N}$, then the property $\mathfrak{S}(\hat{k}, i+1)$ holds true as well. This completes the induction argument, which allows us to infer that the property $\mathfrak{S}(k, i)$ holds for each $k \in \mathbb{N}$ and $i=0, \ldots, M-1$.

In particular, property $\mathfrak{S}(k, M-1)$ holds true. According to Lemma 2, there exists $M_{1} \in \mathbb{N}$ and $c>0$ such that for each $N \in \mathbb{N}$

$$
\int_{\tilde{\Omega}}|\tilde{F}|^{2} d_{\tilde{A}}^{M_{1}-N} d \tilde{V} \leqslant c \int_{\Omega}|F|^{2} d_{A}^{-N} d V .
$$

Therefore, it suffices to define $\kappa_{2}(k):=\kappa_{3}(k, M-1)+M_{1}$. One easily checks that equations (15) are also satisfied.

Proof of Theorem 1. Fix N_{0} as in Theorem 1. We intend to show that there exists a natural number N and functions $g_{1}, \ldots, g_{m} \in H\left(\Omega^{*}\right)$ with $\left\|g_{j}\right\|_{\Omega^{\prime}, N_{0}} \leqslant$ $C\|F\|_{\Omega, N}$ for any $\Omega^{\prime} \subset \subset \Omega$ such that

$$
\sum_{j=1}^{m} f_{j} g_{j}=F
$$

in Ω^{*}. First choose M_{3} for N_{0} according to (iii) of Lemma 2 and let $k=\left\lceil\frac{M_{3}}{2}\right\rceil$. It follows from Lemma 4 that if

$$
\int_{\Omega^{*}}|F|^{2} d_{A}^{-\kappa_{2}(k)} d V<\infty
$$

then there exists v_{1} such that

$$
\sum_{j=1}^{m} \tilde{g}_{j} e_{j}:=\gamma \wedge(\tilde{F} \otimes 1)-\delta v_{1}
$$

belongs to $J^{k} \cdot \mathcal{L}(\tilde{\Omega}) \otimes \Lambda$ and satisfies (15). Set $g_{j}:=\tilde{g}_{j} \circ \pi^{-1}$ and notice that Lemma 2 implies that for any $\Omega^{\prime} \subset \subset \Omega$ it holds

$$
\begin{equation*}
\int_{\Omega^{\prime}}\left|g_{j}\right|^{2} d_{A}^{-N_{0}} d V<\infty \tag{16}
\end{equation*}
$$

for $j=1, \ldots, m$. Obviously, functions g_{j} are holomorphic in Ω^{*} and in Ω^{*} satisfy the condition

$$
\sum_{j=1}^{m} g_{j} f_{j}=\left(\sum_{j=1}^{m} \tilde{g}_{j} \tilde{f}_{j}\right) \circ \pi^{-1}=\tilde{F} \circ \pi^{-1}=F .
$$

This completes the proof with $N:=\kappa_{2}\left(\left\lceil\frac{M_{3}\left(N_{0}\right)}{2}\right\rceil\right)$.

References

[1] M. Andersson, Estimates of solutions of the H^{p} and BMOA corona problem, Math. Ann. 316 (2000), 83-102.
[2] M. Andersson, Integral representation with weights. II. Division and interpolation, Math. Z. 254 (2006), 315-332.
[3] E. Bierstone, P. Milman, Canonical desingularization in characteristic zero by blowing-up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.
[4] J. E. Fornaess, N. Øvrelid, S. Vasiliadou, Semiglobal results for $\bar{\partial}$ on a complex space with arbitrary singularities, Proc. Amer. Math. Soc. 133 (2005), 23772386.
[5] H. Grauert, R. Remmert, Theory of Stein spaces, Translated from the German by Alan Huckleberry. Reprint of the 1979 translation. Classics in Mathematics. Springer-Verlag, Berlin, 2004.
[6] H. Grauert, Über Modificationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.
[7] G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics. Springer, Berlin, 2007.
[8] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
[9] S. Łojasiewicz, Sur le probléme de la division, Studia Math. 8 (1959), 87-136.
[10] Y. T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional non-compact complex manifolds, Pacific J. Math. 28 (1969), 407-411.

Address: M. Jasiczak: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland;

E-mail: mjk@amu.edu.pl
Received: 11 January 2009; revised: 27 March 2009

[^0]: 2000 Mathematics Subject Classification: Primary 32B10, secondary: 32J25, 32W05, 14C30.

 The author was supported in years 2007-2010 by The Ministry of Science and Higher Education, Poland, grant no. N N 201274033 and in 2008 by the Foundation for Polish Science. The Author was supported in years 2008-2009 by the Foundation for Polish Science.

