Functiones et Approximatio
40.2 (2009), 283-295
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Abstract: We show that, for Q a bounded convex domain of R?, any 2 x 2 symmetric matrix
A(z) with det A(z) =1 for a.e. = € Q satisfying the ellipticity bounds

2
|i <
for a.e. x € Q and for all £ € R? can be approximated, in the sense of G-convergence, by a
sequence of matrices of the type
v 0
O 5®

H—H?—1<~;(x) <H+VH2-1.

(A(2)€,€) < HIE?

with
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1. Introduction

In [16] A. Marino and S. Spagnolo proved the following approximation result with
respect to G-convergence (see Section 3) of the elliptic operator

L =div(A(x)V ) (1.1)
by a sequence of isotropic operators
L; =div(8;(z)IV ). (1.2)
where I = (§;5) is the n x n identity matrix.

Theorem 1.1. Let A = A(x) be a symmetric n X n matriz satisfying the ellipticity
condition (K > 1)

B < (e < Kep (1.3

Mathematics Subject Classification: 35B27, 35F15, 30C62



284 Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone

for a.e. x € Q and all £ € R™, where Q C R" is a bounded domain. Then there
exists a sequence of coefficients B; = B;(x) satisfying the bounds

% < Bj(z) < cK (1.4)
for ¢ =c(n) > 1 such that
B(a)T - Afa)
We notice that the loss of ellipticity in the G-approximation, which is expressed
by the the presence of constants c¢(n) in (1.4) cannot be avoided. This follows

from the sharp result of Piccinini-Spagnolo [19] which attributes Holder continuity
exponent

4 1
a = — arctan —
T

K
to all local solutions u € VVS)C2 (Q) to isotropic equations
div(B(z)IVu) =0 in Q CR"
with % < B(z) < K, while the best Holder continuity exponent pertaining to

solutions u € WI})CQ (Q) of general elliptic equations

div(A(z)Vu) =0 in Q CR"
with + < A(z) < KT and 'A = A, is only
a=—=< éarctani
K K’

A more precise result of isotropic approximation holds for n = 2 ([24], [20]) if we

additionally assume
det A(z) =1 ae 2€Q (1.5)

Theorem 1.2. Let A(x) be a 2 x 2 symmetric matriz satisfying (1.3) and (1.5)
for x € Q C R?. Then there exists 3;(x) satisfying

1
ggﬁj(x)SK a.e. x €

such that

if and only if
L <umea<g (Kt e (16)
:(K+%) 2 K '
In this paper we also restrict ourselves to the case n = 2 and look for a G-dense
class in the family of diagonal anisotropic matrices which satisfy (1.5).
Let us recall that for n = 2 the pointwise condition det A(x) = 1 is preserved
under the G- convergence ([10]).
Our main result is the following
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Theorem 1.3. Let Q C R? be a bounded convexr domain and for x € Q let A(x)
satisfy the same assumption as in Theorem 1.2. Then there exists a sequence v;(x)

verifying

1
% S <K
such that
T 0
(%(g> 1 )&A@)
’YJ(E)

if and only if A(z) satisfies (1.6).
Corollary 1.1. Given a symmetric matriz valued function
A:zeQr Alz) € R?*?
such that (H > 1)
1€ < (A < HIE)?
S < (A€ < HI
det A(z) =1

for a.e. x € Q and all £ € R?. Then there exist v;, 3j: Q — [0,+00) such that
H—-+VH?-1<~(zx)<H++VH?-1

H—VH?-1<8;(z) <H+VH2 -1

and

im0 ) e
o 1| — Al
Bj ()

Let us mention other approximation results of the isotropic case in the more
general setting of degenerate elliptic equations ([8],[21],[12]).

The influence of B. Bojarski on our paper not only goes back to his seminal
work of 1957 ([3]) but also refers to his very recent existence theorem of primary
pairs of quasiconformal mappings ([4]).
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2. Transition from isotropic to anisotropic matrices

Let C(y) be a real matrix satisfying (1.3) for a.e. y € Q, Q C R? a bounded convex

domain, and suppose that s(y) € Wﬁ)f () is a weak solution of the equation

div(C(y)Vs) =0 in Q. (2.1)

Let t(y) € WI})f () be the stream function of s, i.e.

Vi = ((1) 01> Cy)Vs (2.2)

It is well known ([1]) that the mapping G = (s,t): Q@ — G(Q?) is K-quasiregular,
that is
IDG(y)|? < K J(y,G) ae. y€Q.

Recall from [5] that if G is a homeomorphism, it is named a K-quasiconformal
map and that its inverse is also K-quasiconformal.
Then we have

Lemma 2.1. Let the matriz C(y) be isotropic, i.e. for a.e. y € Q

cw) = ("Y.0)) (2.3)
with 1
K <a(y) <K

and let the mapping G = s + /—1t, defined by solutions to (2.1) and (2.2), be
a WH2-homeomorphism with its inverse. If F = G~ = u + +/—1v denotes its
inverse, then the functions u(x) and v(zx) satisfy the following equations

{div(B(:z:)Vu) =0

Vo= (Y3') B(z)Vu @4

where B(x) is the matriz with det B =1 defined by

— 0
2 — (@TE@) ,
2@ = ("7 o) (2

Proof. We take the advantage of the well known transition formulas from the
complex Beltrami coefficients uc and v in the equation

hs = pch. +vch,

to the coefficient matrix C' = (¢;;) of the elliptic equation in the real coordinates
(2], Chapter 10)

Co2 — C11 — 2iC12 1—detC
Vo = T,
1+trC +detC

e = TYwCtdetC’
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where C' is the matrix associated to real part ¢ of the mapping h, i.e.
div(CVp) = 0. If C' = (a;;) is of the special diagonal form like in (2.3) then
a22 — 11 — 2ia12 a—a

- — -0
Ho 1+trC+detC 14+ 2a + a?

since aj2 = 0, tr C = 2a and det C' = a?. Moreover

1—a? 1—a

“1+2a+a®2 1+a

This means that G satisfies the equation

Ve

_l—a
T 1l4a

and, by a well known result on the composition for Beltrami coefficients (|2], p.280)
the inverse F' = G~ satisfies

Gz

z

_aGMw) -1,
= TraG i) ) (26)

If we consider this equation having the form of a homogeneous Beltrami equation,

Fg(w) = pp(w)Fy(w)

Fg(w)

we deduce det B(w) = 1, since vg = % = 0 in our case. Moreover up(w)
is real, hence b1 = 0 and

bag — b ba2 — 52 boy — 1

pp =20 baz — = 22 ) (2.7)

2+trB 2+4byp+ - bntl

Comparing (2.6) and (2.7) we deduce the equality
bas(x) = a(F(z))

and (2.5) follows immediately together with (2.3). |

Next Lemma provides a connection between the second order PDE’s satisfied
by the real part of the Sobolev homeomorphism f = (u,v) and by the real part
of its inverse g = f~% = (s,t), when A is a 2 x 2 constant symmetric matrix with
det A = 1. More precisely, we have

Lemma 2.2. Let A = (a;;) be a constant real matriz and suppose that det A = 1.
Then u(x) and v(x) are V[/lif solutions to

div(A4 =
iv( Véﬁ)_l 0 (2.8)
Vv = (1 o )AVu
if and only if s(y) and t(y) are Wli)cz solutions to
div(A~?! =
(A" Vs) =0 (2.9)
Vi=(17')A'Vs
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Proof. As g is the inverse of f, the differential matrices are related by

tys Syg
ux1 = T ’le = _T
{ T { ) (2.10)

uwz - Jg UIQ - Jg

where J, denotes the Jacobian determinant of g. One can easily check that the
second equality in (2.8) can be written equivalently as

( ai2 az2 ) Vo = Vu

—ail; —ai2
that is
Uy, = A12Vg; + A22Vq, (2.11)
Ugy, = —A11Vg; — A12Vg,
Inserting (2.10) into (2.11) we get
ty, = @125y, — A118y, (2.12)
ty, = a225y, — A12Sy,
which means that
_ -1 _
vio (@2 T g, 0 a2 12 o
azs  —ap2 10 —ai2  an
and the proof is complete. |

3. G-convergence of elliptic equations

Let K; be a sequence of equiintegrable functions K; : @ — [1,400) and let
A; = Aj(z) be a sequence of symmetric matrices with det A; = 1 a.e. satisfying
the ellipticity bounds

€1? )
@ S (4;(2)8,€) < Kj()[¢] (3.1)

Assume u; € Wli)cl(ﬂ) are uniformly finite energy solutions to the equations

divA;(z)Vu; =0 in Q (3.2)

i.e. are very weak solutions which satisfy the conditions

/(Aj(x)Vuj, Vuj)yde <M VjeN (3.3)
Q
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By (3.1) and (3.3), if we choose any Borel subset E of 2, Holder’s inequality
implies

/E|Vuj|dx < (/EKj dx)é (L(Aj(x)Vuj,Vuj>dx>2

<\/M</EKjdx>

2
Hence |Vu,| are equiintegrable as well and there exists a subsequence u;, such
that
—u  weakly in W2 (Q)

Uuj loc

k
The question to see if there exists an elliptic matrix A(x) satisfying bounds of the
type (3.1) such that v is a finite energy solution to

divA(z)Vu =0 1in €

is the interesting departing point of generalized theory of G-convergence ([8], [12],
[21]). Let us consider the following classical definition concerning the special case
K;(x) < K which corresponds to equiuniformly elliptic operators ([9], [22], [24],
[16]).
Definition 3.1. The sequence of symmetric matrices A;(x) satisfying (3.1) with
1 < Kj(z) < K < o0 is said to G-converge to the symmetric matriz A(z), i.e.
A G A, if for any € € R? the (unique) solutions u; € WH2(Q) to the Dirichlet
problems

div(4;(z)Vu;) =0 in Q

uj(z) = (£, ) on 09
converge weakly in W12 to the (unique) solution uw € W12(Q) to the Dirichlet
problem

div(A(z)Vu) =0 in Q
u(z) = (£, z) on O
We recall that G-convergence of A; to A implies the weak convergence of local
solutions v; € Wlif (Q)
div(A4;Vv;) =0
to local solutions v € W,-%(Q)

loc
div(AVv) =0.
The following result will be useful in the sequel

Theorem 3.1 ([10]). Let A;(z) = 4;(z) be a sequence of 2 x 2 matriz valued
functions defined for x € Q C R? satisfying (3.1). Then

A4, @ A

G .
A=A W GG L T dea




290  Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone

Before passing to the proof of Theorem 1.3 let us state the following result
from [7] (Theorem 6.1)

Theorem 3.2. Let fy: x € Q+— x € Q be the identity map on the bounded convex
domain Q C R?. Then every quasiregular map f: Q — R? satisfying the boundary
condition

Re(f — fo) € W% (Q) (3.4)

is a homeomorphism.

Proof of Theorem 1.3. By well known locality properties of G-convergence [1§]
it is not restrictive to prove the Theorem in the special case that A is a constant
matrix, provide we use the approximation theorem from [15], Section II1.5.3 of
any measurable complex function p(z) by sequence of step functions p;(x) with
respect to a.e. convergence, with the property

sup | ()| < sup [u(x)]. (3.5)
e zeQ

More precisely, given the symmetric matrix A(x) such that det A(z) = 1 let us
suppose

€17 1 1
T&+ D) S{A@)E€) < 5 <K+ K) 4 (3.6)

for all £ € R2. Let us introduce the complex coefficient

(x) = ar1(x) — age(z) — 2iaq12(x)
! ar1(z) + age(z) +2
and notice that |u(z)| < % (K + %)

Let us denote by u;(x) the approximation step-coefficients with the property
(3.5) and define the step-functions

G,y 1 —=2Rep;(x) + |pu;(x)?
W)= T R

G), o 1+2Repj(x) + |pu;(x)?
2 ()= T )R

) _ ZIm,uj(x)

W @)= T )P

The matrices A;(z) = (a%)(m)) satisfy uniformly the bounds (3.6). Since

() = pla) ae,

we have also
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Using the fact that G- convergence is derived by a metric we conclude by a diagonal
process.

So let us assume that A is constant. Since the inverse matrix A~! satisfies the
same ellipticity bounds (3.6), we can apply to A~! the isotropic approximation
Theorem 1.2 obtaining a sequence

1
=< <K, yen (37)
such that 5.(0)
i) 0 ) 6 3.8
( 0 ﬂj(y)) 7 (3:8)
Moreover by Theorem 3.1 we have also
7m0 G ,_
T e (3.9)
Bi(y)

Let s;(y) € y1 + Wy *(Q) be the solutions to the Dirichlet problems

s [ Bily) 0 o :
{le( 7 5J(y)>12VSJ =0 in Q (3.10)
si(y) € y1 + Wy (Q)
and let us couple them with their stream functions ¢;(y) defined by ([1])
oy — (O =1 (Bi(y) 4
vim = (1 o) (P 40) T (3.11)
hence
_1 0
div (5-7‘69) 1 )vsj =0 in Q (3.12)
B85 (y)
and the mappings
9i(y) = si(y) + vV=1t;(y) (3.13)
are K-quasiregular mappings ([1]).
By G-convergence (3.8) and (3.9) we have
5i(y) +V=1t;(y) = s(y) + V—-1t(y)
weakly in W12 and s(y), t(y) satisfy the limit equations
(A1 _
div(4 lvs(y)) =0 h o (3.14)
div(A~'Vit(y)) =0

According to Theorem 3.2 we may always assume that g;: Q — @’

95 = s;(y) + vV—1t;(y)
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are homeomorphisms. Hence by Montel’s theorem up to a not relabeled subse-
quence there exists the limit G(y)
9j(y) — G(y) uniformly
and, by a result in [11], defining their inverses
(@) = uj(z) + V=1v;(z) = g; ' (2) (3.15)
f(@) = u(z) +V-1o(x) = g~ (x)

we have also
fi—=1f w — W2 and locally uniformly (3.16)

Applying Lemma 2.1 with
Cly) = <5J‘éy) @-@))  s—s;(y) and t=1t(y) (3.17)

we deduce that the components u;(z), v;(x) of the inverse mapping f;(z) = gj_1 (x)
satisfy the elliptic equations

__1 0
div <ﬁj(fj<w>> ) Vu; =0 (3.18)
0 Bif@))
div (BJ fi (=) 0 ) Vu; =0 (3.19)
0 Bifi@)
On the other hand, since det A = 1 and s(y),t(y) solve (3.14) by Lemma 2.2 we

deduce that u(zx),v ( ) solve

div(AVu(x)) =0 .
{div(AVv(x)) =0 n (3.20)

Let us now observe that for any j € N the diagonal matrix

—r— 0
() = [ Bi(fi(=) .
50 = (5T ) (3:21)

coincides with the Beltrami matrix associated to the K-quasiconformal mapping
fj, i.e. to the symmetric matrix with determinat equal to one

Al o) | PG| (322)

if J(x, f;) > 0, otherwise we set A(f;)(z) = (0;;) = I the identity matrix. It is
immediate that (see [14])

ou; 2
1 (3332)

J(.’L‘,fj) 2 2
_ Ouj Ouy v Ov; (auj) + (%)

Ov; 2 _ Ouj Ouy Ov; Ov;
(9.’1)2 83?1 3’62 (97'1 8’162

A(f) () = (3.23)

dxy Oxy  Oxy Oxa oz oz
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Hence, by (3.18) we deduce

Ou; o %
o B (f; (@)axz
8uj 1 a’l)j

Oy Bj(fi(@)) Oz

and, by simple calculations
Bj(z) = A(f;)(z) a.e. (3.24)

Since f; — f locally uniformly, we deduce by a Theorem of S. Spagnolo ([23]),
that

A(f;) <5 A(f) (3.25)
It remains to prove that
A(f)(z)=A (3.26)

because then (3.21), (3.24), (3.25) and (3.26) will give us the approximation result.
Recall that the components u, v of f = u+ +/—1v satisfy (3.20) and, equivalently,
the system A = (a;;) (det A =1, a12 = as1)

—Ug, = 110z, + A12Vz, (3.27)
Uy, = A12Vz, + A22Vz,

If we set (auk(z)) = A(f), it is worth verifying that the following
_’LLa:2 = auvwl =+ Oélg’l)a:z (328)
Ug;, = Q12Vz; + Q22Vg,

we conclude a;; = «;(x) thanks to (3.27), (3.28) and the following elementary
lemma of linear algebra ([6]). |

Lemma 3.1. For given vectors E = (Ey,F»y), B = (By,Bs) of R? satisfying
(E, B) > 0 there exists a unique symmetric 2 X 2 matrizx A = A[E, B] such that

detA=1

AE =B
If we set

A= (all 0412>
Q12 Q22
we have
B B? + E3 B B3 + E? _ BBy - E\E»
‘T TEB) T EB . "7 T (ED
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Remark. Changing the real into the imaginary part in g;(y) = s;(y) +v—1t;(y)
and working with §;(y) = t;(y) + vV —1s;(y) it is possible to relate the inverse of
G;(y), which we denote by

fi(y) = v;(y) + V—=Tu;(y)
to the matrix

B,(x) = (m(fi(m)) A )
0 Bi(fi(x))

which is similarly seen to G-converge to A.

Remark. [t is possible to show that no approximation of A by diagonal matrices
Bj(x) with det B; = 1 can be performed with B; = B;(x1) depending only on x1,
unless A itself is diagonal
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