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Abstract: We show that, for Ω a bounded convex domain of R2, any 2 × 2 symmetric matrix
A(x) with det A(x) = 1 for a.e. x ∈ Ω satisfying the ellipticity bounds

|ξ|2
H

6 〈A(x)ξ, ξ〉 6 H|ξ|2

for a.e. x ∈ Ω and for all ξ ∈ R2 can be approximated, in the sense of G-convergence, by a
sequence of matrices of the type (

γj(x) 0
0 1

γj(x)

)

with
H −

√
H2 − 1 6 γj(x) 6 H +

√
H2 − 1 .

Keywords: G- convergence, quasiconformal maps.

1. Introduction

In [16] A. Marino and S. Spagnolo proved the following approximation result with
respect to G-convergence (see Section 3) of the elliptic operator

L = div(A(x)∇ ) (1.1)

by a sequence of isotropic operators

Lj = div(βj(x) I∇ ) . (1.2)

where I = (δij) is the n× n identity matrix.

Theorem 1.1. Let A = A(x) be a symmetric n×n matrix satisfying the ellipticity
condition (K > 1)

|ξ|2
K

6 〈A(x)ξ, ξ〉 6 K|ξ|2 (1.3)
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for a.e. x ∈ Ω and all ξ ∈ Rn, where Ω ⊂ Rn is a bounded domain. Then there
exists a sequence of coefficients βj = βj(x) satisfying the bounds

1
cK

6 βj(x) 6 cK (1.4)

for c = c(n) > 1 such that
βj(x) I G−→ A(x)

We notice that the loss of ellipticity in the G-approximation, which is expressed
by the the presence of constants c(n) in (1.4) cannot be avoided. This follows
from the sharp result of Piccinini-Spagnolo [19] which attributes Hölder continuity
exponent

α =
4
π

arctan
1
K

to all local solutions u ∈ W 1,2
loc (Ω) to isotropic equations

div(β(x)I∇u) = 0 in Ω ⊂ Rn

with 1
K 6 β(x) 6 K, while the best Hölder continuity exponent pertaining to

solutions u ∈ W 1,2
loc (Ω) of general elliptic equations

div(A(x)∇u) = 0 in Ω ⊂ Rn

with I
K 6 A(x) 6 KI and tA = A, is only

ᾱ =
1
K

<
4
π

arctan
1
K

.

A more precise result of isotropic approximation holds for n = 2 ([24], [20]) if we
additionally assume

detA(x) = 1 a.e. x ∈ Ω (1.5)

Theorem 1.2. Let A(x) be a 2 × 2 symmetric matrix satisfying (1.3) and (1.5)
for x ∈ Ω ⊂ R2. Then there exists βj(x) satisfying

1
K

6 βj(x) 6 K a.e. x ∈ Ω

such that
βj(x) I G−→ A(x)

if and only if
|ξ|2

1
2

(
K + 1

K

) 6 〈A(x)ξ, ξ〉 6 1
2

(
K +

1
K

)
|ξ|2 (1.6)

In this paper we also restrict ourselves to the case n = 2 and look for a G-dense
class in the family of diagonal anisotropic matrices which satisfy (1.5).

Let us recall that for n = 2 the pointwise condition detA(x) = 1 is preserved
under the G- convergence ([10]).

Our main result is the following
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Theorem 1.3. Let Ω ⊂ R2 be a bounded convex domain and for x ∈ Ω let A(x)
satisfy the same assumption as in Theorem 1.2. Then there exists a sequence γj(x)
verifying

1
K

6 γj(x) 6 K

such that (
γj(x) 0

0 1
γj(x)

)
G−→ A(x)

if and only if A(x) satisfies (1.6).

Corollary 1.1. Given a symmetric matrix valued function

A : x ∈ Ω 7→ A(x) ∈ R2×2

such that (H > 1)
|ξ|2
H

6 〈A(x)ξ, ξ〉 6 H|ξ|2

detA(x) = 1

for a.e. x ∈ Ω and all ξ ∈ R2. Then there exist γj , βj : Ω → [0, +∞) such that

H −
√

H2 − 1 6 γj(x) 6 H +
√

H2 − 1

H −
√

H2 − 1 6 βj(x) 6 H +
√

H2 − 1

and (
γj(x) 0

0 1
γj(x)

)
G−→ A(x)

(
βj(x) 0

0 βj(x)

)
G−→ A(x)

(
1

βj(x) 0
0 1

βj(x)

)
G−→ A(x)

Let us mention other approximation results of the isotropic case in the more
general setting of degenerate elliptic equations ([8],[21],[12]).

The influence of B. Bojarski on our paper not only goes back to his seminal
work of 1957 ([3]) but also refers to his very recent existence theorem of primary
pairs of quasiconformal mappings ([4]).
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2. Transition from isotropic to anisotropic matrices

Let C(y) be a real matrix satisfying (1.3) for a.e. y ∈ Ω, Ω ⊂ R2 a bounded convex
domain, and suppose that s(y) ∈ W 1,2

loc (Ω) is a weak solution of the equation

div(C(y)∇s) = 0 in Ω. (2.1)

Let t(y) ∈ W 1,2
loc (Ω) be the stream function of s, i.e.

∇t =
(

0 −1
1 0

)
C(y)∇s (2.2)

It is well known ([1]) that the mapping G = (s, t) : Ω → G(Ω) is K-quasiregular,
that is

|DG(y)|2 6 K J(y,G) a.e. y ∈ Ω .

Recall from [5] that if G is a homeomorphism, it is named a K-quasiconformal
map and that its inverse is also K-quasiconformal.

Then we have

Lemma 2.1. Let the matrix C(y) be isotropic, i.e. for a.e. y ∈ Ω

C(y) =
(

a(y) 0
0 a(y)

)
(2.3)

with
1
K

6 a(y) 6 K

and let the mapping G = s +
√−1t, defined by solutions to (2.1) and (2.2), be

a W 1,2-homeomorphism with its inverse. If F = G−1 = u +
√−1v denotes its

inverse, then the functions u(x) and v(x) satisfy the following equations
{

div(B(x)∇u) = 0
∇v =

(
0 −1
1 0

)
B(x)∇u

(2.4)

where B(x) is the matrix with detB = 1 defined by

B(x) =
( 1

a(F (x)) 0
0 a(F (x))

)
(2.5)

Proof. We take the advantage of the well known transition formulas from the
complex Beltrami coefficients µC and νC in the equation

hz̄ = µChz + νChz

to the coefficient matrix C = (cij) of the elliptic equation in the real coordinates
([2], Chapter 10)

µC =
c22 − c11 − 2ic12

1 + tr C + det C
, νC =

1− detC

1 + tr C + det C
,
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where C is the matrix associated to real part ϕ of the mapping h, i.e.
div(C∇ϕ) = 0. If C = (aij) is of the special diagonal form like in (2.3) then

µC =
a22 − a11 − 2ia12

1 + tr C + det C
=

a− a

1 + 2a + a2
= 0

since a12 = 0, tr C = 2a and det C = a2. Moreover

νC =
1− a2

1 + 2a + a2
=

1− a

1 + a
.

This means that G satisfies the equation

Gz̄ =
1− a

1 + a
Gz

and, by a well known result on the composition for Beltrami coefficients ([2], p.280)
the inverse F = G−1 satisfies

Fw̄(w) =
a(G−1(w))− 1
1 + a(G−1(w))

Fw(w). (2.6)

If we consider this equation having the form of a homogeneous Beltrami equation,

Fw̄(w) = µB(w)Fw(w)

we deduce detB(w) = 1, since νB = 1−det B
1+tr B+det B = 0 in our case. Moreover µB(w)

is real, hence b12 = 0 and

µB =
b22 − b11

2 + tr B
=

b22 − 1
b22

2 + b22 + 1
b22

=
b22 − 1
b22 + 1

. (2.7)

Comparing (2.6) and (2.7) we deduce the equality

b22(x) = a(F (x))

and (2.5) follows immediately together with (2.3). ¥

Next Lemma provides a connection between the second order PDE’s satisfied
by the real part of the Sobolev homeomorphism f = (u, v) and by the real part
of its inverse g = f−1 = (s, t), when A is a 2× 2 constant symmetric matrix with
detA = 1. More precisely, we have

Lemma 2.2. Let A = (aij) be a constant real matrix and suppose that detA = 1.
Then u(x) and v(x) are W 1,2

loc solutions to
{

div(A∇u) = 0
∇v =

(
0 −1
1 0

)
A∇u

(2.8)

if and only if s(y) and t(y) are W 1,2
loc solutions to

{
div(A−1∇s) = 0
∇t =

(
0 −1
1 0

)
A−1∇s

(2.9)
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Proof. As g is the inverse of f , the differential matrices are related by
{

ux1 = ty2
Jg

ux2 = − ty1
Jg

{
vx1 = − sy2

Jg

vx2 = sy1
Jg

(2.10)

where Jg denotes the Jacobian determinant of g. One can easily check that the
second equality in (2.8) can be written equivalently as

(
a12 a22

−a11 −a12

)
∇v = ∇u

that is {
ux1 = a12vx1 + a22vx2

ux2 = −a11vx1 − a12vx2

(2.11)

Inserting (2.10) into (2.11) we get
{

ty1 = a12sy1 − a11sy2

ty2 = a22sy1 − a12sy2

(2.12)

which means that

∇t =
(

a12 −a11

a22 −a12

)
∇s =

(
0 −1
1 0

) (
a22 −a12

−a12 a11

)
∇s

and the proof is complete. ¥

3. G-convergence of elliptic equations

Let Kj be a sequence of equiintegrable functions Kj : Ω → [1,+∞) and let
Aj = Aj(x) be a sequence of symmetric matrices with detAj = 1 a.e. satisfying
the ellipticity bounds

|ξ|2
Kj(x)

6 〈Aj(x)ξ, ξ〉 6 Kj(x)|ξ|2 (3.1)

Assume uj ∈ W 1,1
loc (Ω) are uniformly finite energy solutions to the equations

div Aj(x)∇uj = 0 in Ω (3.2)

i.e. are very weak solutions which satisfy the conditions
∫

Ω

〈Aj(x)∇uj ,∇uj〉 dx 6 M ∀j ∈ N (3.3)
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By (3.1) and (3.3), if we choose any Borel subset E of Ω, Hölder’s inequality
implies

∫

E

|∇uj | dx 6
(∫

E

Kj dx

) 1
2

(∫

Ω

〈Aj(x)∇uj ,∇uj〉 dx

) 1
2

6
√

M

(∫

E

Kj dx

) 1
2

Hence |∇uj | are equiintegrable as well and there exists a subsequence ujk
such

that
ujk

⇀ u weakly in W 1,1
loc (Ω)

The question to see if there exists an elliptic matrix A(x) satisfying bounds of the
type (3.1) such that u is a finite energy solution to

div A(x)∇u = 0 in Ω

is the interesting departing point of generalized theory of G-convergence ([8], [12],
[21]). Let us consider the following classical definition concerning the special case
Kj(x) 6 K which corresponds to equiuniformly elliptic operators ([9], [22], [24],
[16]).

Definition 3.1. The sequence of symmetric matrices Aj(x) satisfying (3.1) with
1 6 Kj(x) 6 K < ∞ is said to G-converge to the symmetric matrix A(x), i.e.
Aj

G−→ A, if for any ξ ∈ R2 the (unique) solutions uj ∈ W 1,2(Ω) to the Dirichlet
problems {

div(Aj(x)∇uj) = 0 in Ω
uj(x) = 〈ξ, x〉 on ∂Ω

converge weakly in W 1,2 to the (unique) solution u ∈ W 1,2(Ω) to the Dirichlet
problem {

div(A(x)∇u) = 0 in Ω
u(x) = 〈ξ, x〉 on ∂Ω

We recall that G-convergence of Aj to A implies the weak convergence of local
solutions vj ∈ W 1,2

loc (Ω)
div(Aj∇vj) = 0

to local solutions v ∈ W 1,2
loc (Ω)

div(A∇v) = 0 .

The following result will be useful in the sequel

Theorem 3.1 ([10]). Let Aj(x) = tAj(x) be a sequence of 2 × 2 matrix valued
functions defined for x ∈ Ω ⊂ R2 satisfying (3.1). Then

Aj
G−→ A iff

Aj

detAj

G−→ A

detA
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Before passing to the proof of Theorem 1.3 let us state the following result
from [7] (Theorem 6.1)

Theorem 3.2. Let f0 : x ∈ Ω 7→ x ∈ Ω be the identity map on the bounded convex
domain Ω ⊂ R2. Then every quasiregular map f : Ω → R2 satisfying the boundary
condition

Re(f − f0) ∈ W 1,2
0 (Ω) (3.4)

is a homeomorphism.

Proof of Theorem 1.3. By well known locality properties of G-convergence [18]
it is not restrictive to prove the Theorem in the special case that A is a constant
matrix, provide we use the approximation theorem from [15], Section III.5.3 of
any measurable complex function µ(x) by sequence of step functions µj(x) with
respect to a.e. convergence, with the property

sup
x∈Ω

|µj(x)| 6 sup
x∈Ω

|µ(x)| . (3.5)

More precisely, given the symmetric matrix A(x) such that det A(x) = 1 let us
suppose

|ξ|2
1
2

(
K + 1

K

) 6 〈A(x)ξ, ξ〉 6 1
2

(
K +

1
K

)
|ξ|2 (3.6)

for all ξ ∈ R2. Let us introduce the complex coefficient

µ(x) =
a11(x)− a22(x)− 2ia12(x)

a11(x) + a22(x) + 2

and notice that |µ(x)| 6 1
2

(
K + 1

K

)
.

Let us denote by µj(x) the approximation step-coefficients with the property
(3.5) and define the step-functions

a
(j)
11 (x) =

1− 2Re µj(x) + |µj(x)|2
1− |µj(x)|2

a
(j)
22 (x) =

1 + 2Re µj(x) + |µj(x)|2
1− |µj(x)|2

a
(j)
12 (x) = − 2 Im µj(x)

1− |µj(x)|2

The matrices Aj(x) = (a(j)
ik (x)) satisfy uniformly the bounds (3.6). Since

µj(x) → µ(x) a.e.

we have also
a
(j)
ik (x) → aik(x) a.e.

and then (see [2] p.171 and [22])

Aj = (a(j)
ik (x)) G−→ A.
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Using the fact that G- convergence is derived by a metric we conclude by a diagonal
process.

So let us assume that A is constant. Since the inverse matrix A−1 satisfies the
same ellipticity bounds (3.6), we can apply to A−1 the isotropic approximation
Theorem 1.2 obtaining a sequence

1
K

6 βj(y) 6 K, y ∈ Ω (3.7)

such that (
βj(y) 0

0 βj(y)

)
G−→ A−1. (3.8)

Moreover by Theorem 3.1 we have also
(

1
βj(y) 0

0 1
βj(y)

)
G−→ A−1. (3.9)

Let sj(y) ∈ y1 + W 1,2
0 (Ω) be the solutions to the Dirichlet problems

{
div

(
βj(y) 0

0 βj(y)

)
∇sj = 0 in Ω

sj(y) ∈ y1 + W 1,2
0 (Ω)

(3.10)

and let us couple them with their stream functions tj(y) defined by ([1])

∇tj(y) =
(

0 −1
1 0

) (
βj(y) 0

0 βj(y)

)
∇sj(y) (3.11)

hence

div

(
1

βj(y) 0
0 1

βj(y)

)
∇sj = 0 in Ω (3.12)

and the mappings
gj(y) = sj(y) +

√−1tj(y) (3.13)

are K-quasiregular mappings ([1]).
By G-convergence (3.8) and (3.9) we have

sj(y) +
√−1tj(y) ⇀ s(y) +

√−1t(y)

weakly in W 1,2 and s(y), t(y) satisfy the limit equations
{

div(A−1∇s(y)) = 0
div(A−1∇t(y)) = 0

in Ω′. (3.14)

According to Theorem 3.2 we may always assume that gj : Ω → Ω′

gj = sj(y) +
√−1tj(y)
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are homeomorphisms. Hence by Montel’s theorem up to a not relabeled subse-
quence there exists the limit G(y)

gj(y) → G(y) uniformly

and, by a result in [11], defining their inverses

fj(x) = uj(x) +
√−1 vj(x) = g−1

j (x)

f(x) = u(x) +
√−1 v(x) = g−1(x)

(3.15)

we have also
fj → f w − W 1,2 and locally uniformly (3.16)

Applying Lemma 2.1 with

C(y) =
(

βj(y) 0
0 βj(y)

)
, s = sj(y) and t = tj(y) (3.17)

we deduce that the components uj(x), vj(x) of the inverse mapping fj(x) = g−1
j (x)

satisfy the elliptic equations

div
( 1

βj(fj(x)) 0
0 βj(fj(x))

)
∇uj = 0 (3.18)

div
( 1

βj(fj(x)) 0
0 βj(fj(x))

)
∇vj = 0 (3.19)

On the other hand, since detA = 1 and s(y), t(y) solve (3.14) by Lemma 2.2 we
deduce that u(x), v(x) solve

{
div(A∇u(x)) = 0
div(A∇v(x)) = 0

in Ω′ (3.20)

Let us now observe that for any j ∈ N the diagonal matrix

Bj(x) =
( 1

βj(fj(x)) 0
0 βj(fj(x))

)
(3.21)

coincides with the Beltrami matrix associated to the K-quasiconformal mapping
fj , i.e. to the symmetric matrix with determinat equal to one

A(fj)(x) def=
[
Dtfj(x)Dfj(x)

J(x, fj)

]−1

(3.22)

if J(x, fj) > 0, otherwise we set A(fj)(x) = (δi,j) = I the identity matrix. It is
immediate that (see [14])

A(fj)(x) =
1

J(x, fj)




(
∂uj

∂x2

)2

+
(

∂vj

∂x2

)2

−∂uj

∂x1

∂uj

∂x2
− ∂vj

∂x1

∂vj

∂x2

−∂uj

∂x1

∂uj

∂x2
− ∂vj

∂x1

∂vj

∂x2

(
∂uj

∂x1

)2

+
(

∂vj

∂x1

)2


 (3.23)
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Hence, by (3.18) we deduce

∂uj

∂x1
= βj(fj(x))

∂vj

∂x2

∂uj

∂x2
= − 1

βj(fj(x))
∂vj

∂x1

and, by simple calculations

Bj(x) = A(fj)(x) a.e. (3.24)

Since fj → f locally uniformly, we deduce by a Theorem of S. Spagnolo ([23]),
that

A(fj)
G−→ A(f) (3.25)

It remains to prove that
A(f)(x) = A (3.26)

because then (3.21), (3.24), (3.25) and (3.26) will give us the approximation result.
Recall that the components u, v of f = u +

√−1v satisfy (3.20) and, equivalently,
the system A = (aij) (detA = 1, a12 = a21)

{
−ux2 = a11vx1 + a12vx2

ux1 = a12vx1 + a22vx2

(3.27)

If we set (αik(x)) = A(f), it is worth verifying that the following
{
−ux2 = α11vx1 + α12vx2

ux1 = α12vx1 + α22vx2

(3.28)

we conclude aij = αij(x) thanks to (3.27), (3.28) and the following elementary
lemma of linear algebra ([6]). ¥

Lemma 3.1. For given vectors E = (E1, E2), B = (B1, B2) of R2 satisfying
〈E, B〉 > 0 there exists a unique symmetric 2× 2 matrix A = A[E,B] such that

{
detA = 1
AE = B

If we set

A =
(

α11 α12

α12 α22

)

we have

α11 =
B2

1 + E2
2

〈E,B〉 , α22 =
B2

2 + E2
1

〈E, B〉 , α12 =
B1B2 − E1E2

〈E, B〉 .
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Remark. Changing the real into the imaginary part in gj(y) = sj(y) +
√−1tj(y)

and working with g̃j(y) = tj(y) +
√−1sj(y) it is possible to relate the inverse of

g̃j(y), which we denote by

f̃j(y) = vj(y) +
√−1uj(y)

to the matrix

B̃j(x) =

(
1

βj(f̃j(x))
0

0 βj(f̃j(x))

)

which is similarly seen to G-converge to A.

Remark. It is possible to show that no approximation of A by diagonal matrices
Bj(x) with det Bj = 1 can be performed with Bj = Bj(x1) depending only on x1,
unless A itself is diagonal
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