A NOTE ON ALGEBRAIC INTEGERS WITH PRESCRIBED FACTORIZATION PROPERTIES IN SHORT INTERVALS

Jerzy Kaczorowski
Dedicated to Professor Bogdan Bojarski on the occasion of his 75-th birthday.

Abstract

We study the distribution of algebraic integers with prescribed factorization properties in short intervals and prove that for a large class of such numbers from a fixed algebraic number field K with a non-trivial class group, every interval of the form $\left(x, x+x^{\theta}\right)$ with a fixed $\theta>1 / 2$ contains absolute value of the norm of such algebraic integer provided $x \geqslant x_{0}$. The constant x_{0} effectively depends on K and θ.

Keywords: Factorization in algebraic number fields, short intervals, unique factorization.

1. Introduction and statement of results.

In a recent paper [2] we proved the following theorem.
Theorem 1.1. Let K be an algebraic number field with the class number $h \geqslant 3$ and let $\theta>1 / 2$ be a real number. Then there exists an effectively computable constant $x_{0}(K, \theta)$ such that for all $x \geqslant x_{0}(K, \theta)$ there exists an irreducible algebraic integer α in K satisfying

$$
x<\left|N_{K / \mathbb{Q}}(\alpha)\right|<x+x^{\theta} .
$$

This result admits the following generalization. Let us denote by $H(K), \mathcal{O}_{K}$, \mathfrak{a} and \mathfrak{p} the classgroup of K, its ring of integers, a generic ideal of \mathcal{O}_{K} and a generic prime ideal of \mathcal{O}_{K} respectively. Moreover, let us call a set \mathcal{A} of ideals regular if there exist distinct ideal classes $X_{1}, \ldots, X_{m} \in H(K)$ and non-negative integers c_{1}, \ldots, c_{m} such that

$$
\left\{\mathfrak{a} \subset \mathcal{O}_{K}: \Omega_{X_{j}}(\mathfrak{a})=c_{j}, j=1, \ldots, m\right\} \subset \mathcal{A}
$$

where as usual for every $X \in H(K)$ we write

$$
\Omega_{X}(\mathfrak{a})=\sum_{\substack{\mathfrak{p}^{k} \| \mathfrak{a} \\ \mathfrak{p} \in X}} k
$$

2000 Mathematics Subject Classification: primary 11R27, secondary 11R42, 11R45, 11N25.

The author was supported in part by the grant no. N N201 148233 from the Polish Ministry of Science and Higher Education.

The least upper bound for the sums $\sum_{j=1}^{m} c_{j}$, with c_{j} 's as above is called the size of \mathcal{A} and denoted by $s(A)$. The size of a regular set of ideals is always an integer or infinity. The latter holds for instance for the set of all ideals or for the set of all ideals from a fixed ideal class.

Theorem 1.2. Let \mathcal{A} be a regular set of ideals of size at least 3. Then for every $\theta>1 / 2$ there exists an effectively computable constant $x_{0}(K, \theta)$ such that for all $x \geqslant x_{0}(K, \theta)$ there exists an ideal $\mathfrak{a} \in \mathcal{A}$ whose norm belongs to the interval $\left(x, x+x^{\theta}\right)$.

Observe that the set of principal ideals generated by irreducible integers is a regular set of size $D(K)$, the Davenport constant of K, see [3], Chapter 9. Since $D(K) \geqslant 3$ if $h \geqslant 3$, Theorem 1.1 is a consequence of Theorem 1.2. Observe moreover that in this case the set of ideals under consideration is of a finite size, and hence the size of its complement is infinite. Therefore every interval of the form $\left(x, x+x^{\theta}\right), \theta>1 / 2, x \geqslant x_{0}(\theta, K)$ contains also an absolute value of the norm of an algebraic integer from K which is not irreducible.

In a similar way we can prove analogous results for other sets of algebraic integers with prescribed factorization properties such as elements with a unique factorization into irreducible factors, elements without the unique factorization property, but with all factorizations into irreducibles of the same length, elements having exactly k different lengths of factorizations, and many similar. As a sample we formulate a result concerning the unique factorization case.

Theorem 1.3. For every algebraic number field K and every real number $\theta>1 / 2$ there exists an effectively computable constant $x_{0}(K, \theta)$ such that every interval of the form $\left(x, x+x^{\theta}\right), x \geqslant x_{0}(K, \theta)$, contains an absolute value of the norm of an algebraic integer from K having unique factorization into irreducible factors. If $h \geqslant 5, h \neq 8$, every such interval, possibly with a larger $x_{0}(K, \theta)$, contains an absolute value of the norm of an algebraic integer from K which has a unique factorization and is neither irreducible nor has a prime element divisor.

Acknowledgments. The author thanks Dr. Maciej Radziejewski who read the first version of this paper and made a number of valuable remarks.

2. Proof of Theorem 1.2.

We shall be very brief as the proof follows that of [2] closely. For an ideal class $X \in H(K)$, a real number N, and complex $s=\sigma+$ it we set

$$
S_{N}(s, X)=\sum_{\substack{\mathfrak{p} \in X \\ N \leqslant N(\mathfrak{p}) \leqslant 2 N}} \frac{1}{N(\mathfrak{p})^{s}}
$$

Moreover for $\sigma>1$ let

$$
F(s, X)=\sum_{\mathfrak{p} \in X} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^{s}}
$$

Suppose that distinct ideal classes $X_{1}, \ldots, X_{m} \in H(K)$ and positive integers c_{1}, \ldots, c_{m} are such that

$$
\left\{\mathfrak{a} \subset \mathcal{O}_{K}: \Omega_{X_{j}}(\mathfrak{a})=c_{j}, j=1, \ldots, m\right\} \subset \mathcal{A}
$$

and

$$
\lambda:=\sum_{j=1}^{m} c_{j} \geqslant 3
$$

We define numbers $d_{j}, j=1, \ldots, m$ as follows. If $m=1$ we put $d_{1}=c_{1}-2$. Otherwise we define

$$
d_{j}= \begin{cases}c_{j} & \text { if } j \leqslant m-2 \\ c_{j}-1 & \text { if } j=m-1 \text { or } j=m\end{cases}
$$

Let a real number x be sufficiently large, and let a be fixed in such a way that $1 / 2-\varepsilon<a<1 / 2(0<\varepsilon<(\theta-(1 / 2)) / 3)$. We set

$$
N=x^{a /(\lambda-2)} \quad \text { and } \quad M=x^{a}
$$

and consider the following subsidiary function

$$
H_{\mathcal{A}}(s)=S_{1}(s) S_{2}(s) F\left(s, X_{m}\right)
$$

where

$$
S_{1}(s)=\prod_{j=1}^{m} S_{N}^{d_{j}}\left(s, X_{j}\right) \quad \text { and } \quad S_{2}(s)=S_{M}\left(s, X_{m_{1}}\right)
$$

where $m_{1}=\max (1, m-1)$. For $\sigma>1$ we have

$$
H_{\mathcal{A}}(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

where $a(n) \geqslant 0$ and $a(n)=0$ if there is no ideal $\mathfrak{a} \in \mathcal{A}$ with $N(\mathfrak{a})=n$. Hence to conclude the proof it suffices to show that

$$
\begin{equation*}
\sum_{x<n<x+y} a(n)>0 \tag{2.1}
\end{equation*}
$$

if $y \geqslant x^{(1 / 2)+3 \varepsilon}$. This is done exactly in the same way as in [2]. We use the well known technique of detecting primes in a short interval, but instead of the zero density estimates we apply the following inequalities:

$$
\begin{equation*}
\sum_{\substack{\rho=\beta+i \gamma \\ \beta \geqslant \sigma,|\gamma| \leqslant T}}\left|S_{j}(\rho)\right|^{2} \ll M^{2(1-\sigma)} L^{3} \quad(j=1,2) \tag{2.2}
\end{equation*}
$$

where $0<T \leqslant M$, derived from the classical mean value estimates for Dirichlet polynomials. The summation in (2.2) is over appropriate non-trivial zeros $\rho=\beta+i \gamma$ of all the Hecke L-functions associated to characters of the ideal class group of K. These estimates substitute the Density Hypothesis, and hence (2.1) follows if $y \geqslant x^{(1 / 2)+3 \varepsilon}$, see the proof of Theorem 1.1 in [2] for details. The proof is complete.

3. Proof of Theorem 1.3.

Denote by E the unit class in $H(K)$ and observe that all numbers $\alpha \in \mathcal{O}_{K}$ with $\Omega_{E}(\alpha)=3$ and $\Omega_{X}(\alpha)=0$ for all other $X \in H(K)$, have unique factorization into irreducible factors. Therefore the set of principal ideals generated by such numbers is a regular set of size $\geqslant 3$. Hence the first assertion of Theorem 1.3 follows from Theorem 1.2.

The proof of the remaining part is slightly more involved. Let $\mathcal{A}(K)$ denote the set of principal ideals generated by integers having unique factorization but being neither irreducible nor products of prime elements. Moreover, let $\mathfrak{B}(K)$ denote the block semigroup of $H(K)$. We refer to [3], Chapter 9 for the definition of $\mathfrak{B}(K)$ and its principal properties as well as for the explanation of its role in factorization theory. If the class group $H(K)$ contains an element X of order $m \geqslant 5$ then $\left(X, X^{2}, X^{m-2}, X^{m-1}\right)$ is an element of $\mathfrak{B}(K)$ with a unique factorization. Hence the set of ideals \mathfrak{a} with $\Omega_{X^{j}}(\mathfrak{a})=1$ for $j=1,2, m-2, m-1$ and $\Omega_{Y}(\mathfrak{a})=0$ for all other $Y \in H(K)$ is a subset of $\mathcal{A}(K)$. If all ideal classes in $H(K)$ have order 2, then recalling that $h \geqslant 5, h \neq 8$, we see that $H(K)$ contains a subgroup of 16 elements of the form $\left\langle X_{1}\right\rangle \oplus\left\langle X_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle \oplus\left\langle X_{4}\right\rangle$. Hence $\left(X_{1}, X_{1} X_{2}, X_{2}, X_{3}, X_{3} X_{4}, X_{4}\right)$ is an element of $\mathfrak{B}(K)$ with a unique factorization. Consequently the set of ideals \mathfrak{a} with $\Omega_{C}(\mathfrak{a})=1$ for $C=X_{1}, X_{1} X_{2}, X_{2}, X_{3}, X_{3} X_{4}, X_{4}$ and $\Omega_{C}(\mathfrak{a})=0$ for all other $C \in H(K)$ is a subset of $\mathcal{A}(K)$. Finally, if all ideal classes in $H(K)$ have orders at most 4 and there exists a class X of order 3 or 4 then, since $h \geqslant 5, H(K)$ contains a subgroup of the form $\langle X\rangle \oplus\langle Y\rangle$, where $Y \in H(K) \backslash\{E\}$. Consequently $\left(X, X^{-1}, X Y, X^{-1} Y^{-1}\right)$ is an element of $\mathfrak{B}(K)$ with a unique factorization. We see that the set of ideals \mathfrak{a} with $\Omega_{C}(\mathfrak{a})=1$ for $C=X, X^{-1}, X Y, X^{-1} Y^{-1}$ and $\Omega_{C}(\mathfrak{a})=0$ for all other $C \in H(K)$ is a subset of $\mathcal{A}(K)$. Hence in all cases $\mathcal{A}(K)$ is a regular set of size $\geqslant 4$, and an application of Theorem 1.2 ends the proof.

References

[1] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics (Boca Raton), 278. Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[2] J. Kaczorowski, Irreducible algebraic integers in short intervals, to appear in Math. Ann.
[3] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer-Verlag, Berlin, Heidelberg, 2004.

Address: Adam Mickiewicz University, Faculty of Mathematics and Computer Science, ul. Umultowska 87, 61-614 Poznań, Poland.
E-mail: kjerzy@amu.edu.pl
Received: 12 January 2009

