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Abstract: This paper surveys on some recent results concerning certain finiteness properties for
subfields K of Q: first, the so-called Northcott property of finiteness of elements in K of bounded
Weil height and then the Property (P) of finiteness of possible subsets of K sent onto themselves
by some polynomial of degree > 1. The first was established by Northcott for the union of the
fields of given degree over Q; the second one was introduced by Narkiewicz; it is also related to
preperiodic points for polynomial maps. It is known that the first implies the second, so they
both hold for number fields. As to fields of infinite degree over Q, we shall see some criteria for
the first property, and hence for the second, but we shall also see that the second property does
not imply the first. Some of these constructions provide answers, both in the positive and in the
negative as the case may be, to questions explicitly formulated by Narkiewicz.
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1. Introduction

This paper surveys on some recent results concerning certain finiteness properties
in the context of fields K of algebraic numbers. We shall first consider the so-called
Northcott property of finiteness of elements in K of bounded Weil height and then
the Property (P) of finiteness of possible subsets of K sent onto themselves by
some polynomial of degree > 1. The first property was established by Northcott
for number fields and actually for the union of the fields of given degree over Q; the
second one was introduced and first investigated by Narkiewicz; it is also related
to the structure and fields of definition of the preperiodic points for polynomial
maps.

As we shall recall with proof, these properties are linked, since the first implies
the second. In particular, they both hold for number fields. Therefore we shall
usually consider fields of infinite degree over Q; we shall see some criteria which
guarantee the first property, and hence the second, but we shall also see examples
which show that the second property does not imply the first.
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It turns out that some of these constructions provide answers, both in the
positive and in the negative as the case may be, to questions explicitly formulated
by Narkiewicz.

Although we shall not give full details of the arguments, we shall try to present
the main points of the methods and to give occasionally partial proofs or illustra-
tion of special cases.

2. The Northcott property

To introduce this property we first briefly recall the definition and a few important
facts about the Weil (logarithmic) height on Q, referring to [1] for proofs. Let k be a
number field and let Mk be the set of places of k, i.e., equivalence classes of absolute
values, normalized so to extend the usual absolute values of Q. (Namely, for x ∈ Q,
|x|v equals the usual absolute value if v is archimedean whereas |p|v = p−1 if v
lies above p.) For v ∈ Mk let kv be a completion of k with respect to v; it is a
finite extension of the completion Qv of Q with respect to the induced place of Q.
Then, letting log+ t := log max(1, t), for an x ∈ k we set

h(x) = [k : Q]−1
∑

v∈Mk

[kv : Qv] log+ |x|v.

It turns out that this does not depend on k, so it defines a real function on Q.1

For a rational fraction x = p/q in lowest terms we have h(x) = log max(|p|, |q|).
Also, we have the properties

(Hi) h(x) ≥ 0 with equality if and only if x is 0,∞ or a root of unity.
(Hii) h(xσ) = h(x) for any automorphism σ of Q.
(Hiii) h(xm) = |m|h(x) for m ∈ Q.
(Hiv) h(x1 + . . . + xr) ≤ h(x1) + . . . + h(xr) + log r.
(Hv) h(xy) ≤ h(x) + h(y).
These properties express in particular a ‘good’ behavior of h with respect to

algebraic operations. For future reference we add a further important property in
this respect:

(Hvi) Let R ∈ Q(X) be a rational function. For x ∈ Q we have h(R(x)) =
deg(R) h(x) + O(1), where the implied constant depends only on R.

Definition 2.1. We say that a subset F ⊂ Q has the Northcott property or the
Property (N) if for any B the set of x ∈ F with h(x) ≤ B is finite.

This terminology comes from the paper [3]. We shall usually consider only
the case when F is a field. Note that Q has trivially the Property (N), because
h(p/q) = log max(|p|, |q|) for p, q coprime integers. The well-known Northcott
Theorem, which has many useful diophantine applications, asserts that the union
of the fields of degree ≤ d over Q has the Property (N), for every integer d. The
proof is easy and actually yields the following more general statement:

1There is also a natural extension to P1(Q) by setting h(∞) = 0.
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Theorem 2.1. Let F ⊂ Q be a field with the Property (N) and let d be a positive
integer. Then the set of algebraic numbers of degree at most d over F has the
Property (N). In particular, every finite extension of F has the Property (N).

Proof. Let B be a real number and let x be an algebraic number with h(x) ≤ B
and [F (x) : F ] ≤ d. If y is any conjugate of x over F we have h(y) = h(x) ≤ B,
in view of property (Hii) above. There are at most d such conjugates, hence
if s is any elementary symmetric function of them we easily derive from (Hiii)
and (Hiv) that h(s) ≤ d2dB + d. Therefore the heights of the coefficients of the
minimal polynomial of x over F are bounded. Since F has the Property (N),
such coefficients have only finitely many possibilities, and since the number of
coefficients is bounded by d, the minimal polynomial lies in a finite set. Hence the
same holds for x, proving the theorem. �

Corollary 2.1 (Northcott Theorem). There are only finitely many algebraic
numbers of bounded height and degree. In other words, the union of the number
fields of degree ≤ d has the Property (N). In particular, every number field has the
Property (N).

Note that of course the field of all algebraic numbers has not the Property (N);
and for instance the maximal cyclotomic extension Qc of Q already has not the
Property (N), since every root of unity ζ has h(ζ) = 0. This big cyclotomic field
and certain of its subfields will be an important source for many of the examples
below.

It may be of interest, both for its own sake and also in view of the many
applications of the Northcott property, to produce examples of fields of algebraic
numbers other than number fields possessing it; a priori there might be no such
field, i.e., with the Property (N) and infinite degree over Q. In this direction, for
instance, a question which Corollary 2.1 suggests naturally is whether the Property
(N) holds for the composite of the fields of degree ≤ d, rather that for the union
of such fields. In other words, we ask whether any field generated by elements
of bounded degree has the Northcott property. For general d we do not know
the answer to this question. However, in the paper [3] the following result was
established:

Theorem BZ. Let k be a number field and let k
(d)
ab be the composite of all abelian

extensions of k of degree ≤ d. Then k
(d)
ab has the Property (N).

Note that every quadratic extension is abelian, so in particular this answers
affirmatively the above question for d = 2. We now give in detail the simple proof
of the special case k = Q, d = 2 of this theorem. The general proof relies on
similar principles but is more complicated; for it, we refer to the paper [3] or to
the book [1].

Proof of the special case k = Q, d = 2 of Theorem BZ. We have to prove that
the field K obtained by adding to Q the square roots

√
p of prime numbers has

the Property (N). For a set R of primes we denote by KR the field obtained by
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adding to Q the square roots
√

p for p ∈ R. So, K is the union of the KR for finite
sets R of primes.

Let l > 2 be a prime which does not lie in the finite set R and put S = R∪{l}.
Every element x ∈ KS may be written uniquely as x = t + u

√
l, t, u ∈ KR.

Denoting with an accent conjugation over KR, we have x′ = t − u
√

l. Hence, by
(Hii), (Hiv) above we have

h(2u
√

l) = h(x − x′) ≤ h(x) + h(x′) + log 2 ≤ 2h(x) + log 2. (2.1)

Let w run through the places of KS above l (normalized so to extend those on
Q). Suppose u 6= 0, i.e., x 6∈ KR. Then, since l ramifies in KS but not in KR, we
have that w(2u) is an integer, whereas w(

√
l) = 1/2. Hence, |w(2u

√
l)| ≥ 1/2 and

therefore | log |2u
√

l|w| ≥ (log l)/2. Now, for any y ∈ KS we have

h(y) ≥ [KS : Q]−1
∑

w|l

[(KS)w : Ql] log+ |y|w,

h(y) = h(y−1) ≥ [KS : Q]−1
∑

w|l

[(KS)w : Ql] log+ |y−1|w.

Hence on summing and using | log ξ| = log+ ξ + log+ ξ−1 for ξ > 0, we obtain

2h(y) ≥ [KS : Q]−1
∑

w|l

[(KS)w : Ql]| log |y|w|.

We apply this inequality with y = 2u
√

l. Recalling | log |2u
√

l|w| ≥ (log l)/2,∑
w|l[(KS)w : Ql] = [KS : Q] and recalling (2.1) we get

8h(x) + 4 log 2 ≥ log l.

Suppose now that h(x) ≤ B. Then log l ≤ 8B + 4 log 2. We deduce that if x ∈ KS

then either l ≤ 16e8B or x must lie in KR. We conclude that x lies in KT , where
T = TB is the finite set of primes l ≤ 16e8B. Hence if x ∈ K and h(x) ≤ B, then
x lies in the number field KT which depends only on B. By Northcott Theorem,
x has only finitely many possibilities, concluding the argument. �

3. The Property (P)

In [7] Narkiewicz introduced the following definition.

Definition 3.1. We say that a field F has the Property (P) if for every infinite
subset Γ ⊂ F the condition f(Γ) = Γ for a polynomial f ∈ F [X ] implies deg f = 1.

Note that, like for the Property (N), we could formulate the property for subsets
F of a field; Narkiewicz also introduced a similar property (denoted (SP)) involving
polynomials in several variables satisfying suitable assumptions. We shall not be
concerned here with these more general concepts and also we shall mostly work
with subfields F of Q.
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Note that letting f in Definition 3.1 have coefficients in any field F ′ ⊃ F would
plainly lead to an equivalent notion, since the condition f(R) ⊂ F for a set R ⊂ F
with #R > deg f implies f ∈ F [X ]. Further, note that a polynomial of degree 1
over F induces a bijective map f : F → F , so the implication deg f = 1 is the best
that we can generally expect from the assumption f(Γ) = Γ.

In this paper, sets Γ with f(Γ) = Γ will be said invariant for f .2 We can obtain
some invariant sets by means of periodic points, widely studied in the context of
dynamical systems (see [6]); we recall here the definition:

Definition 3.2. We say that a point x ∈ F is periodic for a map ϕ : F → F if
for some integer n > 0 we have ϕ(n)(x) = x, where ϕ(n) denotes the n-th iterate.
We say that x is preperiodic if ϕ(m)(x) is periodic for some m ≥ 0.

Note that if x is periodic for a map ϕ, then the set {ϕ(r)(x) : r ∈ N} is invariant
for ϕ. Then we have the following simple observation:

Proposition 3.1. If a field F has the Property (P), every polynomial f of degree
> 1 has only finitely many preperiodic points in F .

Proof. Let Ω be the set of preperiodic points in F for the polynomial f ∈ F [X ],
of degree > 1. If x ∈ Ω the sequence of forward images f (r)(x), r = 0, 1, . . .,
eventually consists of a full period of a periodic point y for f ; we then say that ‘x
belongs to y’.

Now, let Ω be infinite; then, either the set of periodic points for f is infinite or
there exist infinitely many points x ∈ Ω belonging to a same periodic point y.

In the first case we let Γ be the infinite set of periodic points in Ω; it plainly sat-
isfies f(Γ) = Γ because if z is periodic for f of period n we have z = f(f (n−1)(z)) ∈
f(Γ) and f(z) ∈ Γ. Hence F has not the Property (P).

In the second case, let Ωy be the infinite set of preperiodic points belonging
to y. Let us consider finite sequences y0, y1, . . . , yh of elements yj ∈ Ωy such that
y0 is in the period of y, y1 is not periodic and f(yj) = yj−1 for j > 0; we call
such a sequence a path; observe that in a path we have yi 6= yj for i 6= j. Note
that the sequence of forward images of any element z ∈ Ωy yields a subsequence
that is a path: it suffices to omit all periodic elements in it except the first. Then,
since Ωy is infinite we may find infinitely many paths with the same y0. And since
the equation f(X) = y0 has at most deg f solutions, there exists an infinite set of
paths with the same y0, y1; and then by repeating the argument with y1 in place
of y0 we see that there exist infinitely many paths with the same y0, y1, y2. And
so on, iterating this argument we can construct an infinite path y0, y1, . . .. Plainly
the set Γ = {y0, y1, . . .} ∪ {f (n)(y0) : n ∈ N} is infinite and violates the Property
(P). This proves the proposition. �

Some examples. The idea beyond the Property (P) is that if Γ is an invariant
set and γ ∈ Γ, not only we must have f(γ) ∈ Γ but also there must exist γ′ ∈ Γ such
that f(γ′) = γ. It is this last requirement which gives a more severe restriction,

2For other authors, sometimes ‘invariant’ means just f(Γ) ⊂ Γ.
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because if deg f > 1 we may expect that solving the equation f(X) = γ brings
us actually out not just of Γ but of the whole field we are working with. Needless
to say, this rough expectation can possibly apply only for fields with somewhat
strong ‘rationality restrictions’. Indeed, let us see some examples of fields without
Property (P).

Neither Q nor its maximal real subfield Q∩R have the Property (P): it suffices
to observe that this whole real field is invariant for every polynomial of odd degree
with coefficients in it. For a prime p > 2, it is easily seen that Z∗

p is invariant

for every polynomial X l for l coprime to p(p− 1); hence Qp has not the Property
(P). The maps x 7→ xl also show that the maximal cyclotomic field Qc has not
the Property (P).3 Note that the roots of unity are preperiodic for any of these
maps. An example related to but less evident than this last one is the maximal
real subfield ℜQc of Qc. To see it does not have the Property (P), consider for
instance the set Γ := {2ℜζ = ζ + ζ−1} for ζ running through the roots of unity, so
Γ is an infinite subset of ℜQc. Let now Td be the Chebishev polynomial of degree
d: it is the unique polynomial such that Td(X + X−1) = Xd + X−d. Note that Γ
is invariant for any Td, which proves the previous claim. We shall see that inside
Qc essentially (i.e., up to suitable normalization) these are the only examples of
infinite invariant sets for polynomials of degree > 1.

As to fields with the Property (P), a source of examples comes from fields with
the Property (N). In fact we have the following

Theorem 3.1. For a subfield F of Q the Property (N) implies the Property (P).

Proof. Let F be a field of algebraic numbers with the Property (N), let f ∈ F [X ]
have degree d > 1 and let Γ ⊂ F be invariant for f . Our task is to prove that Γ
cannot be infinite.

By property (Hvi) of the Weil height, there exists a number B = Bf > 0
such that h(f(x)) > dh(x) − B for every algebraic number x. We deduce that if
h(x) ≥ 2B then h(f(x)) > gh(x) ≥ 2B, where g := d − (1/2) ≥ 3/2. By iteration
we see that if h(x) ≥ 2B then h(f (m)(x)) > gmh(x) for any integer m > 0.

Now, let y ∈ Γ. Since f(Γ) = Γ we can form an infinite sequence y0 = y, y1, . . .,
such that f(yj) = yj−1. We contend that h(ym) < 2B for all large enough m.
In fact, if h(ym) ≥ 2B we deduce from the above (taking x = ym) that h(y) >
gmh(ym) ≥ 2gmB, which cannot hold for large m. Hence, since F has the Property
(N), there are only finitely many yj . Hence there exist r < s arbitrarily large and
such that yr = ys. This means that y = y0 belongs to the period {ys, ys−1, . . . , yr}
and in particular h(y) < 2B. Hence Γ consists of elements in F with Weil height
bounded by 2B and is therefore a finite set, as asserted. �

This result also follows from the general properties proved in [8, Chap. IX].
As we shall point out later, there is no general converse implication (as shown

in [4]).

3Note that Qc is Hilbertian, as shown by Weissauer – see also [4]. This may be considered a
‘rationality restriction’, yet not sufficient for the Property (P).
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Combining this result with Corollary 2.1 we obtain the well-known fact that
every number field has the Property (P) (see [8]). Moreover, Theorem BZ gives
some fields of infinite degree over Q having the Property (P). In particular, the
special case k = Q, d = 2 of Theorem BZ yields:

Theorem 3.2. The field Q(
√

2,
√

3, . . .) has the Property (P).

This answers in the affirmative the Open Question XVII in [8, p. 69].
As Proposition 3.1 shows, there is a link between the validity of Property (P) for

a field k and the existence of infinitely many preperiodic points defined over k for
a polynomial map f(x) ∈ k[x] of degree > 1. More generally, one can investigate
the field of definition of such preperiodic points. For instance, it is well-known
that there can be only finitely many preperiodic points for f of bounded degree
over Q (see for instance [8]). However, for a field of algebraic numbers of infinite
degree not much seems to be known, and the following vague question seems to
be widely open:

Question. Let F be a subfield of Q and f(x) ∈ F [x] be a polynomial map of
degree > 1. Denote by Πf (F ) the set of preperiodic points for f contained in F .
Can one decide whether Πf (F ) is finite or infinite?

For the case when F = kc, the cyclotomic closure of a number field k in k̄, in
[4] we have developed a method for explicitly answering this question. As we shall
see, this throws more light on the possibility that Property (P) may hold for fields
of infinite degree over Q and allows us to answer a couple of more questions raised
by Narkiewicz.

To start with, as observed above, Πf (kc) may in fact be infinite, in view of the
monomial maps x 7→ ζxd, where ζ is any root of unity and d is any integer ≥ 2.
On the other hand, using some equidistribution results (see [2]), one can prove
that if a polynomial map f contains infinitely preperiodic points that are roots
of unity, then f must be a monomial. In fact, the quoted results imply that the
set of Galois conjugates of a preperiodic point “tends to be” uniformly distributed
in C “around” the whole Julia set of f , as the degree of the point tends to ∞.
Therefore, if there were infinitely many preperiodic roots of unity, the unit circle
would be f -invariant. But it is an easy exercise to show that a polynomial leaving
the unit circle invariant is necessarily a monomial.

It turns out, however, that there exist polynomial maps with infinitely many
preperiodic points other than the roots of unity; more than this, in [4] we are
in fact able to classify all polynomial maps f of degree > 1 for which Πf (kc) is
infinite. We show that there are essentially two cases:

Theorem DZ. (For a proof we refer to [4].) Let f ∈ k[x] be a polynomial of
degree d ≥ 2. Then Πf (kc) is finite unless for some polynomial L ∈ Q[x] of degree
1 and for some ǫ = ±1, (L ◦ f ◦ L−1)(x) is either (ǫx)d or Td(ǫx).

Here Td(x) denotes, as usual, the d-th Chebishev polynomial: it is the unique
polynomial satisfying the identity Td(x + x−1) = xd + x−d. We recall that both
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xd and Td(x) have the same parity of d; this fact allows to remove the “ǫ” except
when d is odd and we are in the “Chebishev case”.

It is to be remarked that the linear polynomial L need not be defined over k;
however, it can be proved that it may be chosen over a certain radical extension
of k (actually a quadratic one in the “Chebishev case”).

We also note that the exceptional cases of the theorem are genuine exceptions
to finiteness. In fact, the finiteness property is preserved under conjugation by
polynomials of degree 1, so it suffices to check that (ǫx)d and Td(ǫx) have infinitely
many preperiodic points in Qc, which is straightforward. (The nonzero preperiodic
points are just roots of unity in the first case and numbers of the form ζ + ζ−1, ζ
a root of unity, in the second case.)

We now come back to the study of Property (P). First of all note that Propo-
sition 3.1 immediately implies the following well-known result:

Corollary 3.1. The cyclotomic extension K = kc does not have the property (P).

Next, consider the Open Question XV in [8]: Is the Property (P) preserved
under finite extensions?

With the methods developed in [4] for the proof of Theorem DZ above, we can
answer this question in the negative, by producing an explicit example of a field
K of algebraic numbers, of infinite degree over Q, having the Property (P), and a
finite extension K ′ of K not having the Property (P).

Hence, in view of Theorem 2.1, this example settles at the same time, again in
the negative, the question of whether Property (N) and Property (P) are equiva-
lent.

Our results can be collected in the following statement:

Theorem 3.3. Let p be a prime such that p − 1 has an odd prime factor l. Let
K ′ be the field generated over Q by the roots of unity of p-power order and let K
be the unique subfield of K ′ such that [K ′ : K] = l. Then:

(i) K has the Property (P);
(ii) K ′ has not the Property (P);
(iii) K has not the Property (N).

We remark that Gal(K ′/Q) ∼= Z∗
p
∼= Zp × F

∗
p, so that this Galois group has in

fact a unique subgroup of order l, corresponding to K.
Another feature of the field K is that it cannot be generated over Q by elements

of bounded degree. This follows from the structure of the Galois group. (The mere
existence of a such a field with Property (P) was established in a less direct way
by K. Kubota and P. Liardet; see [8, p. 85].) As for the Property (N), it would be
interesting to know whether there exists such a field without the Property (P).

Theorem 3.3 is just an instance of what can be said and it could be easily
generalized or varied in many ways. In fact, Theorem 3.3 results from a complete
classification of polynomials f ∈ kc[x] of degree d ≥ 2 and infinite invariant sets Γ
for f , Γ ⊂ kc. This classification in turn can be obtained by using the same meth-
ods used in proving Theorem DZ, and in practice gives the precise obstructions
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for kc to have the property (P). With reference to Theorem 2∗ and Proposition 1
of [4], we restate without proof this classification as follows:

Proposition 3.2. Let f(x) ∈ k[x] be a polynomial map of degree ≥ 2 and Γ ⊂ kc

be an infinite set such that f(Γ) = Γ. Then f is of one of the two types described
in Theorem DZ. Corresponding to these two cases, we have, denoting by U the set
of roots of unity in Q:

(a) if f = L−1 ◦ (ǫx)d ◦ L ∈ k[x], then L(Γ) is contained in {0} ∪ U ;
(b) if f = L−1 ◦ Td(ǫx) ◦ L ∈ k[x], then L(Γ) is contained in {u + u−1|u ∈ U}.

Proof of Theorem 3.3 (assuming Prop. 3.2). Preliminary to the proof we
note that the only roots of unity contained in K are ±1: in fact, it is standard
that the possible order of roots of unity in K ′ divides 2pr for some r. Hence if K
contains a root of unity of order > 2 it contains a primitive p-th root of unity. But
this is not fixed by the Galois subgroup of order l.

We start by proving (i), namely that K has the Property (P).
We argue by contradiction and suppose that f ∈ K[x] has degree d ≥ 2 and

that Γ is an infinite subset of K such that f(Γ) = Γ. Since K ⊂ Qc, Proposition 3.2
says that we only have two cases two consider.

(a) L(Γ) ⊂ {0} ∪ U , where L(x) = ax + b for some algebraic numbers a, b,
a 6= 0. Therefore, for some algebraic numbers A, B, A 6= 0, we have Aζ + B ∈ K
for infinitely many ζ ∈ U .

Choose now any σ ∈ GK := Gal(K/K); conjugating we obtain

Aζ − Aσζσ + (B − Bσ) = 0. (3.1)

For fixed σ we view this as a linear relation among roots of unity, using the
results and the terminology of [5].

Suppose first that B 6∈ K, so B − Bσ 6= 0 for a suitable σ. Then (3.1) is a
normalized relation (in the sense that there is a nonzero constant term B − Bσ

and that there is no proper vanishing subsum). Hence [5] implies that there are
only finitely many solutions, a contradiction. Hence we may assume that B ∈ K,
so (3.1) becomes

Aζ = Aσζσ for all σ.

Let ζ0 be a given solution; dividing term by term we obtain (ζ/ζ0) = (ζ/ζ0)
σ for

all σ, whence ζ/ζ0 ∈ K. However K contains only finitely many roots of unity (in
fact only ±1), as remarked above; this gives a contradiction.

(b) L(Γ) ⊂ V := {u + u−1|u ∈ U}. Again, this implies, for some algebraic
numbers A, B, A 6= 0, and infinitely many roots of unity ζ, that A(ζ+ζ−1)+B ∈ K.

We argue as before and conjugate by a σ ∈ GK , obtaining

Aζ + Aζ−1 − Aσζσ − Aσζ−σ + (B − Bσ) = 0. (3.2)

Again, suppose first that B 6∈ K and pick σ so that B 6= Bσ. Now, (3.2) may
not be normalized since there may be some vanishing subsum. We then consider
a vanishing minimal subsum containing the term B −Bσ. This subsum may vary
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with ζ, but only in finitely many ways. In each case we obtain a finite number of
solutions by [5], getting a contradiction. So we may assume as before that B ∈ K.

We multiply (3.2) by ζ, obtaining for all σ

A + Aζ2 − Aσζ1+σ − Aσζ1−σ = 0. (3.3)

The coefficients of the linear relation among roots of unity given by (3.3) involve
only A, Aσ, hence we have only a finite number of possible coefficients in the
relations for varying σ.

The indecomposable relations (i.e., those with no proper vanishing subsum)
give rise by [4] only to finitely many roots of unity ζ. Therefore we may assume
that for each σ, (3.3) is decomposable. In turn there are three possibilities:

(bi) 1 + ζ2 = 0: now there are at most two solutions.

(bii) ζ1+σ = A1−σ and ζ1+σ = Aσ−1, which implies in particular A2 = A2σ.

(biii) ζ1−σ = A1−σ and ζ1−σ = Aσ−1, which again implies A2 = A2σ.

In both (bii) and (biii), squaring both sides of the equation A(ζ + ζ−1) =
Aσ(ζ + ζ−1)σ we obtain (taking into account all σ) that ζ2 + ζ−2 ∈ K, and that
this holds for infinitely many roots of unity ζ.

Hence ζ2 has degree ≤ 2 over K and, by standard theory of cyclotomic fields,
this implies that ξ = ξζ := ζ24 is a root of unity of p-power order (and hence lies
in K ′), such that ξ + ξ−1 = T12(ζ

2 + ζ−2) ∈ K.

In particular, ξ ∈ K ′ has degree ≤ 2 over K; but K ′ has odd degree l over K,
which implies that ξ ∈ K. However, as remarked at the beginning, the only roots
of unity contained in K are ±1, so ξ has only finitely many possibilities and we
have a contradiction. This proves part (i).

To prove part (ii), namely that K ′ has not the Property (P) it suffices to note
that any polynomial f(x) = xd, d ≥ 2, satisfies f(Γ) = Γ, where Γ is the set of
roots of unity of p-th power order, which is contained in K ′.

Finally, we prove (iii), namely that K has not the Property (N).

Let T = TrK′

K be the trace and let σ be a generator for Gal(K ′/K). We first
prove the following claim: For every α ∈ Q the equation α = T (ζ) has only finitely
many solutions ζ which are roots of unity of p-th power order.

In fact, an equation T (ζ) = T (ξ), where ζ, ξ are roots of unity of orders resp.

pr, ps, r < s, amounts to the linear relation ζ+ζσ + . . .+ζσl−1

= ξ+ξσ+ . . .+ξσl−1

among 2l roots of unity; the results of [5] (or even a simpler result by Mann quoted
therein) immediately imply that this is impossible: in fact any vanishing subsum
must have at least p > 2l terms.

The claim now immediately implies that K contains infinitely many elements
of bounded height: it suffices to take the traces T (ζpn) for n = 1, 2, . . .; since ζ is
an algebraic integer, the height h(T (ζ)) is plainly ≤ log l.

This concludes the proof of Theorem 3.3. �
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