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Abstract: Let H be a Krull monoid such that every class contains a prime (this includes
the multiplicative monoids of rings of integers of algebraic number fields). For k ∈ N let Vk(H)
denote the set of all m ∈ N with the following property : There exist atoms (irreducible elements)
u1, . . . , uk, v1, . . . , vm ∈ H with u1 · . . . · uk = v1 · . . . · vm. We show that the sets Vk(H) are
intervals for all k ∈ N. This solves Problem 37 in [4].
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1. Introduction

The theory of non-unique factorizations has its origin in the theory of algebraic
numbers, and it was W. Narkiewicz, starting in the 1960s, who did pioneering
work. The main objective of factorization theory is to describe and classify the
various phenomena of non-unique factorizations in (non-factorial) domains and
monoids by arithmetical invariants. The reader may want to consult recent survey
articles [11], [15], [18] or the monographs [17, Chapter 9], [12].

Let H be a monoid. If an element a ∈ H has a factorization of the form
a = u1 · . . . · uk, where k ∈ N and u1, . . . , uk ∈ H are atoms, then k is called the
length of the factorization, and the set L(a) of all possible lengths is called the
set of lengths of a. Sets of lengths (and all invariants derived from them, as the
elasticity or the set of distances) are among the most investigated invariants in
factorization theory. Suppose that H is v-noetherian. Then all sets of lengths are
finite, and it is easy to observe that either all sets of lengths are singletons or that
for every N ∈ N there is an element a ∈ H such that |L(a)| ≥ N . The Structure
Theorem for Sets of Lengths states that all sets of lengths in a given monoid are
almost arithmetical multiprogressions with universal bounds for all parameters
(roughly speaking, these are finite unions of arithmetical progressions having the
same difference). This Structure Theorem holds true for a great variety of monoids
satisfying suitable finiteness conditions (which, among others, are satisfied for
orders in algebraic number fields, see [12, Section 4.7] for an overview).
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Suppose that H is a Krull monoid with finite class group G such that every
class contains a prime. It is easy to see that if |G| > 3 then there are sets of
lengths which are not arithmetical progressions. Moreover, W.A. Schmid recently
proved a realization theorem showing that the Structure Theorem is sharp for
Krull monoids with finite class group (see [19]).

In 1990 S. T. Chapman and W. W. Smith ([5]) introduced, for every k ∈ N, the
unions Vk(H) of all sets of lengths containing k (see Definition 3.1), and these
unions were further investigated, among others in [6], [7], [3], [2]. Clearly, unions
of sets of lengths should have a simpler structure than sets of lengths themselves,
and in [4, Problem 37] it was asked whether the sets Vk(H), for Krull monoids H
as above, are all intervals. Theorem 4.1 gives a positive answer to this question. In
Section 3 we study unions of sets of lengths in atomic monoids with finite accepted
elasticity. We derive a condition implying that all unions of sets of lengths are
arithmetical progressions and give a formula for their asymptotic behavior.

2. Preliminaries

Our notation and terminology is consistent with [12]. We briefly gather some key
notions. Let N denote the set of positive integers, and put N0 = N ∪ {0}. For
integers a, b ∈ Z we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let A, B ⊂ Z be non-empty
subsets. Then A + B = {a + b | a ∈ A, b ∈ B} is their sumset. We denote by
∆(A) the set of (successive) distances of A, that is the set of all d ∈ N for which
there exists l ∈ A such that A ∩ [l, l + d] = {l, l + d}. Clearly, ∆(A) ⊂ {d} if and
only if A is an arithmetical progression with difference d. The set A is called an
interval if it is an arithmetical progression with difference 1. If A ⊂ N, we call

ρ(A) = sup
{m

n

∣∣∣ m, n ∈ L
}

=
sup A

min A
∈ Q≥1 ∪ {∞}

the elasticity of A, and we set ρ({0}) = 1.

By a monoid we mean a commutative cancellative semigroup with unit element
which satisfies the cancellation laws. Let H be a monoid. We denote by A(H) the
set of atoms (irreducible elements) of H , by H× the group of invertible elements
and by Hred = {aH× | a ∈ H} the associated reduced monoid of H . We say that
H is reduced if H× = {1}. We denote by q(H) a quotient group of H , and for a
prime element p ∈ H let vp: q(H) → Z be the p-adic valuation.

For a set P we denote by F(P ) the free (abelian) monoid with basis P . Then
every a ∈ F(P ) has a unique representation in the form

a =
∏

p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P ,

and we call

|a| =
∑

p∈P

vp(a) the length of a .
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The free monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid of H ,

and the unique homomorphism

π: Z(H) → Hred satisfying π(u) = u for all u ∈ A(Hred)

is called the factorization homomorphism of H . For a ∈ H , the set

Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a, and

L(a) =
{
|z|

∣∣ z ∈ Z(a)
}
⊂ N0 the set of lengths of a .

By definition, we have Z(a) = {1} for all a ∈ H×. The monoid H is atomic if and
only if Z(a) 6= ∅ for all a ∈ H , and H is half-factorial if and only if |L(a)| = 1 for
all a ∈ H .

The system of sets of lengths and the set of distances of H are defined by

L(H) =
{
L(a)

∣∣ a ∈ H
}

and ∆(H) =
⋃

a∈H

∆
(
L(a)

)
⊂ N .

By definition, H is half-factorial if and only if ∆(H) = ∅, and |∆(H)| = 1 if and
only if all sets of lengths are arithmetical progressions with the same difference.
Moreover, we have min ∆(H) = gcd∆(H) (see [12, Proposition 1.4.5]).

For a ∈ H , ρ(a) = ρ(L(a)) is called the elasticity of a, and

ρ(H) = sup{ρ(a) | a ∈ H} = sup{ρ(L) | L ∈ L(H)} ∈ R≥1 ∪ {∞}

the elasticity of H . We say that H has accepted elasticity if ρ(H) = ρ(a) for some
a ∈ H .

We recall the definition of the block monoid over an abelian group which was
introduced by W. Narkiewicz in [16]. The block monoid establishes the relationship
between arithmetical problems in a Krull monoid and combinatorial problems on
zero-sum sequences over its class group. In modern language this was the first
application of a transfer principle (for more information on transfer principles
the reader is referred to [12, Section 3.2]). It connects the theory of non-unique
factorizations with additive group theory and combinatorial number theory.

Let G be an additive abelian group, G0 ⊂ G a subset and F(G0) the free
monoid with basis G0. According to the tradition of combinatorial number theory,
the elements of F(G0) are called sequences over G0. If S ∈ F(G0), then

S = g1 · . . . · gl =
∏

g∈G0

gvg(S) ,

where vg(S) is the g-adic value of S (also called the multiplicity of g in S), and
vg(S) = 0 for all g ∈ G0 \ {g1, . . . , gl}. Then |S| = l is the length of S, and we
set −S = (−g1) · . . . · (−gl). We call supp(S) = {g1, . . . , gl} the support and
σ(S) = g1 + . . . + gl the sum of S. The monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0} = B(G) ∩ F(G0)
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is called the block monoid over G0. It is a Krull monoid, its elements are called
zero-sum sequences over G0, and its atoms are the minimal zero-sum sequences
(that is, zero-sum sequences without a proper zero-sum subsequence).

For every arithmetical invariant ∗(H) defined for a monoid H , we write ∗(G0)
instead of ∗(B(G0)). In particular, we set A(G0) = A(B(G0)), ρ(G0) = ρ(B(G0))
and ∆(G0) = ∆(B(G0)). We define the Davenport constant of G0 by

D(G0) = sup
{
|U |

∣∣ U ∈ A(G0)
}
∈ N0 ∪ {∞} ,

which is a central invariant in zero-sum theory (see [9]). If G0 is finite, then A(G0)
is finite, and hence D(G0) < ∞. We shall tacitly use that for a non-trivial group
G we have ρ(G) = D(G)/2 (see [12, Theorem 3.4.11]).

3. The Vk(H) sets in monoids with accepted elasticity

The main result in this section is Theorem 3.1. It provides a sufficient condition
which forces unions of sets of lengths to be arithmetical progressions, and it gives a
formula for their asymptotic behavior. Under much milder finiteness assumptions
unions of sets of lengths are almost arithmetical progressions ([8, Theorem 4.2]),
and in Example 3.1 we discuss a simple monoid, which fails the condition in 3.1,
and whose Vk(H) sets are not arithmetical progressions.

Definition 3.1. Let H be an atomic monoid and k ∈ N.

1. Let Vk(H) denote the set of all m ∈ N for which there exist
u1, . . . , uk, v1, . . . , vm ∈ A(H) with u1 · . . . · uk = v1 · . . . · vm.

2. If H = H×, we set ρk(H) = λk(H) = k, and if H 6= H×, then we define

ρk(H) = supVk(H) ∈ N ∪ {∞} and λk(H) = minVk(H) ∈ [1, k] .

The sets Vk(H) were first studied in [5]. The invariants ρk(H) were introduced
in [14], and, for Krull monoids with finite class group, the state of knowledge is
presented in [12, Section 6.3]. It was proved only recently that a v-noetherian
monoid with ρk(H) < ∞ for all k ∈ N is locally tame (see [13, Corollary 4.3]).
Apart from the case of Krull monoids with cyclic class group (see Corollary 4.1),
little is known about the invariants λk(H), and only in very special cases have
the sets Vk(H) been written down explicitly. In [1, Theorem 2.6] this is done for
numerical monoids generated by an arithmetical progression. In [12, Section 7.3],
the systems of sets of lengths L(G) are explicitly determined for some small groups
G, from which it is easy to obtain the Vk(G) sets.

The following lemma gathers some straightforward properties of the Vk(H) sets
which will be used throughout the paper without further mentioning.
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Lemma 3.1. Let H be an atomic monoid with H 6= H× and k, l ∈ N.

1. V1(H) = {1}, k ∈ Vk(H) and

Vk(H) =
⋃

k∈L,L∈L(H)

L .

2. Vk(H) + Vl(H) ⊂ Vk+l(H) and

λk+l(H) ≤ λk(H) + λl(H) ≤ k + l ≤ ρk(H) + ρl(H) ≤ ρk+l(H) .

3. We have l ∈ Vk(H) if and only if k ∈ Vl(H).

Proof. Obvious. �

Lemma 3.2. Let H be an atomic monoid with H 6= H× and finite accepted
elasticity.

1. We have ρk(H) ≤ kρ(H) for all k ∈ N.
2. We have

ρ(H) = sup
{ρk(H)

k

∣∣∣ k ∈ N
}

= lim
k→∞

ρk(H)

k
,

and there is some N ∈ N such that

ρ(H) =
ρkN (H)

kN
for all k ∈ N .

Proof. See [12, Proposition 1.4.2]. �

Lemma 3.3. Let H be an atomic monoid with H 6= H× and finite accepted
elasticity. Suppose that N ∈ N has the property of Lemma 3.2.2.

1. Let j ∈ [0, N − 1] and k ∈ N. Then

0 ≤ ρkN+j(H) − kNρ(H) ≤ (N − 1)ρ(H) .

2. Let j ∈ [0, N − 1] and m ∈ N with

ρmN+j(H) − mNρ(H) = max{ρkN+j(H) − kNρ(H) | k ∈ N} .

Then ρ(m+i)N+j(H) = ρmN+j(H) + iNρ(H) for all i ∈ N0.

Proof. 1. By Lemma 3.2.1 we have

ρkN+j(H) ≤ (kN + j)ρ(H) ≤ kNρ(H) + (N − 1)ρ(H) .

2. If i ∈ N0, then

ρ(m+i)N+j(H) − (m + i)Nρ(H) ≤ ρmN+j(H) − mNρ(H)

= ρmN+j(H) + ρiN (H) − (m + i)Nρ(H)

≤ ρ(m+i)N+j(H) − (m + i)Nρ(H) . �
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Lemma 3.4. Let H be an atomic monoid with H 6= H× and finite accepted
elasticity. Suppose that N ∈ N has the property of Lemma 3.2.2.

1. For all k ∈ N we have λk(H) ≥ ρ(H)−1k, and if k is a multiple of Nρ(H),
then equality holds.

2. Let j ∈ [0, Nρ(H) − 1] and k ∈ N. Then

0 ≤ λkNρ(H)+j(H) − kN ≤ Nρ(H) − 1 .

Moreover, we have

lim
l→∞

λl(H)

l
=

1

ρ(H)
.

3. Let j ∈ [0, Nρ(H) − 1] and m ∈ N with λmNρ(H)+j(H) − mN =
min{λkNρ(H)+j(H) − kN | k ∈ N}. Then

λ(m+i)Nρ(H)+j(H) = λmNρ(H)+j(H) + iN for all i ∈ N0 .

Proof. 1. Let k ∈ N. There is some L ∈ L(H) with k, λk(H) ∈ L, and hence it
follows that

k ≤ maxL ≤ ρ(H)min L = ρ(H)λk(H) .

Let i ∈ N and k = iNρ(H). Since there is some L ∈ L(H) with {iN, ρiN (H)} ⊂ L
and ρiN (H) = iNρ(H), it follows that

λiNρ(H)(H) ≤ iN =
iNρ(H)

ρ(H)
.

2. By 1. we have λkNρ(H)+j(H) ≥ kN . Since Vj(H) + VkNρ(H)(H) ⊂
VkNρ(H)+j(H), it follows that

λkNρ(H)+j(H) ≤ λj(H) + λkNρ(H)(H) ≤ j + kN ≤ Nρ(H) − 1 + kN .

Since, for every m ∈ N,

0 ≤ λmNρ(H)+j(H)

mNρ(H) + j
− mN

mNρ(H) + j
≤ Nρ(H) − 1

mNρ(H) + j
,

we infer that

lim
m→∞

λmNρ(H)+j(H)

mNρ(H) + j
=

1

ρ(H)
,

and hence the assertion follows.
3. Let i ∈ N0. Since VmNρ(H)+j(H) + ViNρ(H)(H) ⊂ V(m+i)Nρ(H)+j(H), it

follows that

λ(m+i)Nρ(H)+j(H) ≤ λmNρ(H)+j(H) + λiNρ(H)(H) .

Thus by definition of m, we infer that

λ(m+i)Nρ(H)+j(H) − (m + i)N ≥ λmNρ(H)+j(H) − mN

= λmNρ(H)+j(H) + λiNρ(H)(H) − (m + i)N

≥ λ(m+i)Nρ(H)+j(H) − (m + i)N . �
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Lemma 3.5. Let H be an atomic monoid with ∆(H) 6= ∅ and d = min ∆(H).

1. ∆
(
Vk(H)

)
⊂ dN, and there exists k∗ ∈ N such that min ∆

(
Vk(H)

)
= d for

all k ≥ k∗.
2. sup∆

(
Vk(H)

)
≤ sup ∆(H) for all k ∈ N.

3. If k ∈ N and Vm(H) ∩ N≥m is an arithmetical progression with difference d
for all m ∈ [λk(H), k], then Vk(H)∩ [0, k] is an arithmetical progression with
difference d.

4. The following statements are equivalent :

(a) Vk(H) ∩ N≥k is an arithmetical progression with difference d for all
k ∈ N.

(b) Vk(H) is an arithmetical progression with difference d for all k ∈ N.

Proof. 1. Since d = gcd∆(H) (see [13, Proposition 1.4.5]), it follows that

Vk(H) =
⋃

k∈L,L∈L(H)

L ⊂ k + dZ ,

whence ∆
(
Vk(H)

)
⊂ dN. Let k∗ ∈ N and u1, . . . , uk∗ , v1, . . . , vk∗+d ∈ A(H)

such that u1 · . . . · uk∗ = v1 · . . . · vk∗+d, and let k ∈ N with k ≥ k∗. Since
uk−k∗

1 u1 · . . . · uk∗ = uk−k∗

1 v1 · . . . · vk∗+d, it follows that d ∈ ∆
(
Vk(H)

)
, and thus

d = min ∆
(
Vk(H)

)
.

2. If ∆(H) is infinite, then the assertion is obvious. Suppose that ∆(H) is
finite. Let k ∈ N and d ∈ ∆

(
Vk(H)

)
be given. Then there are l, m ∈ N such that

d = m − l and [l, m] ∩ Vk(H) = {l, m}. By Lemma 3.1 there are a, b ∈ H with
k, l ∈ L(a) and k, m ∈ L(b). We distinguish two cases.
CASE 1: min L(b) < m.

Then there is m′ ∈ L(b) with m′ < m and [m′, m] ∩ L(b) = {m′, m}. Since
L(b) ⊂ Vk(H), we get m′ ≤ l and hence d = m − l ≤ m − m′ ∈ ∆

(
L(b)

)
⊂ ∆(H).

CASE 2: min L(b) = m.
Then we have l < m ≤ k. Since l, k ∈ L(a), there is some l′ ∈ L(a) with

l < l′ and [l, l′] ∩ L(a) = {l, l′}. Since L(a) ⊂ Vk(H), we get m ≤ l′ and hence
d = m − l ≤ l′ − l ∈ ∆

(
L(a)

)
⊂ ∆(H).

3. Let k ∈ N and l = λk(H). We have to show that Vk(H) ∩ [l, k] is an
arithmetical progression with difference d. Let m ∈ [l, k] such that k − m is a
multiple of d. In order to show that m ∈ Vk(H), we verify that k ∈ Vm(H).
We have m ≤ k ≤ ρl(H) ≤ ρm(H). Since k ∈ m + dN0 with k ≤ ρm(H) and
Vm(H) ∩ N≥m is an arithmetical progression with difference d, it follows that
k ∈ Vm(H).

4. This follows immediately from 3. �

Theorem 3.1. Let H be an atomic monoid with finite non-empty set of distances
∆(H) and d = min ∆(H). Suppose that there is some a∗ ∈ H with ρ(a∗) = ρ(H) <
∞ and L(a∗) is an arithmetical progression with difference d.

1. There exists k∗ ∈ N such that Vk(H) is an arithmetical progression with
difference d for all k ≥ k∗.
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2. We have

lim
k→∞

|Vk(H)|
k

=
1

d

(
ρ(H) − 1

ρ(H)

)
,

and there is some N ∈ N such that

|VrNρ(H)(H)| − 1

rNρ(H)
=

1

d

(
ρ(H) − 1

ρ(H)

)
for all sufficiently large r ∈ N .

Proof. Since ρ(H) < ∞, Lemma 3.2.1 implies that ρk(H) < ∞ for all k ∈ N, and
all sets of lengths are finite. We proceed in four steps.

i) Let N = min L(a∗), k ∈ N and Lk = L(a∗) + . . . + L(a∗) the k-fold sumset.
Then min Lk = kN , max Lk = k max L(a∗) and Lk is an arithmetical progression
with difference d. Then Lk ⊂ L(a∗k),

ρkN (H)

kN
≥ max L(a∗k)

kN
≥ maxLk

min Lk

≥ k max L(a∗)

kN
= ρ(a∗) = ρ(H) ≥ ρkN (H)

kN
,

and hence ρ(H) ≥ ρ(a∗k) ≥ ρ(Lk) = ρ(H) and Lk = L(a∗k). Moreover, N has the
property of Lemma 3.2.2.

ii) Suppose that

a∗ = u1 · . . . · uN = v1 · . . . · vNρ(H)

with atoms u1, . . . , uN , v1, . . . , vNρ(H). Let r ∈ N such that

rρ(H) ∈ N and rN(ρ(H)2 − 1) ≥ d−1 max ∆(H) . (∗)

Then
a∗r = (u1 · . . . · uN)r = (v1 · . . . · vNρ(H))

r

and
(a∗)rρ(H) = (u1 · . . . · uN )rρ(H) = (v1 · . . . · vNρ(H))

rρ(H) .

These two equations and i) imply that VrNρ(H)(H) is an arithmetical progression
with difference d, minVrNρ(H)(H) = rN and maxVrNρ(H)(H) = rNρ(H)2. In
particular, it follows that

|VrNρ(H)(H)| − 1

rNρ(H)
=

1

d

maxVrNρ(H)(H) − minVrNρ(H)(H)

rNρ(H)
=

=
1

d

rNρ(H)2 − rN

rNρ(H)
=

1

d

(
ρ(H) − 1

ρ(H)

)
.

iii) Let r ∈ N minimal such that (∗) holds, and let k∗ ∈ N be minimal such
that every k ≥ k∗ has the following two properties :

• If k − rNρ(H) = mN + j with j ∈ [0, N − 1], then m has the property
described in Lemma 3.3.2.
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• If k − rNρ(H) = mNρ(H) + j with j ∈ [0, Nρ(H) − 1], then m has the
property described in Lemma 3.4.3.

Let k ≥ k∗. We set V = VrNρ(H)(H) and have

V + Vk−rNρ(H)(H) ⊂ Vk(H) .

Since by ii), V is an arithmetical progression with difference d, max V − min V ≥
d−1 max ∆(H) and since, by Lemma 3.5, max∆

(
Vk−rNρ(H)(H)) ≤ max ∆(H), it

follows that the sumset V + Vk−rNρ(H)(H) is an arithmetical progression with
difference d. We show that the minima and maxima of this sumset and of Vk(H)
coincide. Then obviously Vk(H) is an arithmetical progression with difference d.

Since k ≥ k∗, Lemma 3.3.2 implies that

maxVk(H) = ρk(H) = ρk−rNρ(H)(H) + rNρ(H)2 = max(Vk−rNρ(H)(H) + V ) .

Similarly, Lemma 3.4.3 implies that

minVk(H) = λk(H) = λk−rNρ(H)(H) + rN = min(Vk−rNρ(H)(H) + V ) .

iv) Let k ≥ k∗. Since Vk(H) is an arithmetical progression with difference d,
we get

|Vk(H)|
k

=
1

d

(ρk(H) − λk(H) + d

k

)
.

Now the assertion follows from Lemmas 3.2.2 and 3.4.2. �

The asymptotic formula in Theorem 3.1.2 was first proved for Dedekind do-
mains with finite class group such that every class contains a prime ideal (see [6,
Theorem 6]), and then for atomic monoids with |∆(H)| = 1 (see [2, Corollary 7]).

If Hred is a finitely generated monoid or a Krull monoid with finite class group,
then there exists some a∗ ∈ H such that ρ(a∗) = ρ(H) < ∞ (see [12, Theorems
3.1.4, 3.4.2 and 3.4.10]). Let p be an odd prime, G a cyclic group of order p,
H = B(G) and

a∗ =
∏

g∈G\{0}

gp ∈ B(G) .

Then obviously ρ(a∗) = p/2 = ρ(H), and by Example on page 517 in [10], L(a∗)
is an arithmetical progression with difference 1. Next we provide an example
of a finitely generated monoid for which the statement of Theorem 3.1 fails (this
shows that the additional assumption of Theorem 3.1, that L(a∗) is an arithmetical
progression with difference d, is crucial). However, in monoids of the above type
unions of sets of lengths are almost arithmetical progressions (see [8, Theorem
4.2]).

Example 3.1. Let d1, d2 ∈ N and d = gcd(d1, d2) such that 2d < d2 − d1. For
i ∈ {1, 2} let Hi be a reduced atomic monoid with min ∆(Hi) = di, ρ(Hi) = 1+di/2
and ai ∈ Hi with L(ai) = {2, 2 + di}. Then H = H1 × H2 is an atomic monoid
with d = min ∆(H).



158 Michael Freeze, Alfred Geroldinger

Note, if i ∈ {1, 2}, ni = 2 + di and Gi = {1 + niZ,−1 + niZ} ⊂ Z/niZ, then
Hi = B(Gi) has the above properties, and H is a finitely generated Krull monoid.

Let c = c1c2 ∈ H where c1 ∈ H1 and c2 ∈ H2. Then

ρ(c) =
maxL(c1) + max L(c2)

min L(c1) + min L(c2)
≤ max{ρ(c1), ρ(c2)} ≤ ρ(H2) .

This shows that ρ(H) = ρ(H2).
Let s ∈ N and k = s(2 + d2). Then both 2s and k are in L(as

2) whence
k ∈ V2s(H). Assume to the contrary that V2s(H) is an arithmetical progression
with difference d. Then k − d ∈ V2s(H), and hence there are c1 ∈ H1, c2 ∈ H2

such that for c = c1c2 we have 2s, k − d ∈ L(c). Since k − 2s − d = sd2 − d, it
follows that |L(c1)| 6= 1 and |L(c2)| 6= 1. If min L(c) < 2s, then min L(c) ≤ 2s − d
and

ρ(c) =
max L(c)

min L(c)
≥ k − d

2s − d
>

k

2s
= ρ(H2) = ρ(H) ,

a contradiction. Thus min L(c) = 2s and

ρ(c) ≥ k − d

2s
=

2s + sd2 − d

2s
= 1 + d2/2 − d/(2s) .

If i ∈ N such that min L(c2) = 2s − i, then min L(c1) = i and

ρ(c) ≤ (2s − i)ρ(c2) + iρ(c1)

2s
≤ (2s − i)(1 + d2/2) + i(1 + d1/2)

2s

=1 + d2/2 − i(d2/2 − d1/2)

2s
< 1 + d2/2 − d/(2s) ,

a contradiction.

4. The Vk(H) sets in Krull monoids

In this section we study Krull monoids with class group G such that every class
contains a prime. The class of these Krull monoids includes the multiplicative
monoids of rings of integers of algebraic number fields and of holomorphy rings in
algebraic function fields over finite fields (see [12, Theorems 2.10.14 and 8.9.5] and
[12, Examples 7.4.2] for further examples).

We start with a lemma. Its first item was already observed in [6] (in the setting
of Dedekind domains). For convenience we provide a short proof. Recall that
according to our conventions we set Vk(G) = Vk(B(G)) for an abelian group G.

Lemma 4.1. Let G be a finite abelian group with |G| ≥ 3 and k ∈ N.

1. V2k(G) ∩ [2k, kD(G)] is an interval.
2. Vk(G) ∩ [0, k] is an interval.
3. Vk(G) ∩ N≥k is an interval.
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Proof. 1. We first show that V2(G) = [2, D(G)].
Let j ∈ [2, D(G)] and U = g1 · . . . · gl ∈ A(G) with |U | = l = D(G). If hj =

gj + . . .+ gl, then Uj = g1 · . . . · gj−1hj ∈ A(G) and {2, j} ⊂ L
(
(−Uj)Uj

)
⊂ V2(G).

Thus [2, D(G)] ⊂ V2(G), and since ρ(G) = D(G)/2, equality follows.
Now suppose that k ≥ 2. Then

2k ∈ V2(G) + V2(k−1)(G) ⊂ V2k(G) .

Since V2(G) = [2, D(G)] and, by Lemma 3.5.2, max∆
(
V2(k−1)(G)

)
≤ max∆(G) ≤

D(G) − 2, it follows that V2(G) + V2(k−1)(G) is an interval. Since the maxima of
V2(G) +V2(k−1)(G) and of V2k(G) coincide, it follows that V2k(G)∩ [2k, kD(G)] is
an interval.

2. We set l = λk(G) and have to show that Vk(G) ∩ [l, k] is an interval. Pick
m ∈ [l, k]. In order to show that m ∈ Vk(G), we verify that k ∈ Vm(G).
CASE 1: m is even.

Since l ≤ m ≤ k ≤ ρl(G) ≤ ρm(G), we get that k ∈ [m, ρm(G)], and thus 1.
implies that k ∈ Vm(G).
CASE 2: m is odd.

If m = l, then there is nothing to show. Suppose that l + 1 ≤ m. Since
l ≤ m − 1 ≤ k − 1 ≤ ρl(G) ≤ ρm−1(G), it follows that k − 1 ∈ [m − 1, ρm−1(G)].
Since m − 1 is even, 1. implies that k − 1 ∈ Vm−1(G) and hence k ∈ Vm(G).

3. For l ∈ [k, ρk(G)] let

ml(G) = min{|B| | B ∈ B(G) with k, l ∈ L(B)} .

We assert that every l ∈ [k + 1, ρk(G)] lies in Vk(G) and that

ml(G) < ml+1(G) < . . . < mρk(G)(G) .

We proceed by induction on l. For l = ρk(G) the assertion is clear. Suppose that
l ≤ ρk(G) and that the assertions hold for all s ∈ [l, ρk(G)].

Let B ∈ B(G) such that k, l ∈ L(B) and |B| = ml(G). Then there are
U1, . . . , Uk, V1, . . . , Vl ∈ A(G) such that

B = U1 · . . . · Uk = V1 · . . . · Vl .

After renumbering if necessary there is some i ∈ [0, k − 1] such that U1 = V1, . . . ,
Ui = Vi and {Ui+1, . . . , Uk} ∩ {Vi+1, . . . , Vl} = ∅. Since |B| = ml(G), it follows
that |U1| = . . . = |Ui| = 1 and that |Ur| ≥ 2 and |Vs| ≥ 2 for all r ∈ [i + 1, k] and
all s ∈ [i + 1, l].

Since Uk ∤ Vj for any j ∈ [i + 1, l] and |Uk| ≥ 2 there are g1, g2 ∈ G such that
g1g2 |Uk and, after renumbering Vi+1, . . . , Vl if necessary, g1 |Vl−1 and g2 |Vl. We
set

Ũk = (g1 + g2)(g1g2)
−1Uk and Ṽl−1 = (g1 + g2)(g1g2)

−1Vl−1Vl .

Then Ũk ∈ A(G), Ṽl−1 ∈ B(G) and

U1 · . . . · Uk−1Ũk = V1 · . . . · Vl−2Ṽl−1 .

Suppose that Ṽl−1 is a product of t atoms. Then t ∈ [1, ρk(G) − (l − 2)].
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Assume to the contrary that t ≥ 2. Then

ml(G) = |B| > |U1 · . . . · Uk−1Ũk| ≥ ml−2+t(G) ≥ ml(G) ,

a contradiction.
Thus it follows that t = 1, Ṽl−1 ∈ A(G), l − 1 ∈ Vk(G) and

ml−1(G) ≤ |U1 · . . . · Uk−1Ũk| < |U1 · . . . · Uk| = ml(G) . �

Theorem 4.1. Let H be a Krull monoid with class group G such that every class
contains a prime. Then for every k ∈ N the set Vk(H) is an interval.

Proof. By [12, Theorem 3.4.10], we have Vk(H) = Vk(G) and hence λk(H) =
λk(G) and ρk(H) = ρk(G) for all k ∈ N. Thus it suffices to prove the assertion for
the block monoid B(G).

Suppose that G is infinite. By Kainrath’s Theorem every set L ⊂ N≥2 is a set
of lengths (see [12, Theorem 7.4.1]). This implies that Vk(H) = N≥2 for all k ≥ 2.

If |G| ≤ 2, then B(G) is half-factorial whence the sets Vk(G) are singletons for
all k ∈ N. If 3 ≤ |G| < ∞, then the assertion follows from Lemma 4.1. �

Corollary 4.1. Let H be a Krull monoid with cyclic class group G of order
n ≥ 2 such that every class contains a prime. Then for every k ∈ N we have
Vk(H) = [λk(H), ρk(H)] and

λkn+j(H) =

{
2k + j for j ∈ [0, 1]

2k + 2 for j ∈ [2, n − 1]
and

ρ2k+j(H) = kn + j for j ∈ [0, 1] .

Proof. As in the proof of Theorem 4.1 it suffices to consider the block monoid
B(G). If n = 2, then B(G) is half-factorial whence for all k ∈ N we have λk(G) =
k = ρk(G). Suppose that n ≥ 3, and let k ∈ N. By Theorem 4.1 we obtain that
Vk(H) = [λk(G), ρk(G)]. The assertion on ρ2k+j(G) follows from [8, Theorem 5.3],
and it remains to verify the assertion concerning λkn+j(G). For every j ∈ [0, n−1],
Lemma 3.4.1 implies that

λkn+j(G) ≥ ρ(G)−1(kn + j) =
2

n
(kn + j) = 2k +

2j

n
.

If j ∈ {0, 1}, then ρ2k+j(G) = kn + j, hence λkn+j(G) ≤ 2k + j and thus
λkn+j(G) = 2k + j. Let j ∈ [2, n − 1]. By [12, Proposition 6.6.1] there is some
L ∈ L(G) with {2, j} ⊂ L. Thus 2k + 2 ∈ Vkn(G) + Vj(G) ⊂ Vkn+j(G) and thus
λkn+j ≤ 2k + 2. Since ρ2k+1(G) = kn + 1, it follows that λkn+j(G) = 2k + 2. �

As already pointed out, Theorem 4.1 includes the multiplicative monoids of
rings of integers of algebraic number fields. The question arises whether the same
result is true for a non-principal order R of an algebraic number field. Since
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the Structure Theorem for Sets of Lengths holds for R and since every class of
the Picard group Pic(R) contains a prime ideal (see [12, Corollary 2.11.16]), it is
tempting to speculate that the Vk(R) sets are intervals too. But no work has been
done yet into this direction. We end with a simple example showing that unions
of sets of lengths in Z[

√
−7] are intervals.

Example 4.1. Let K be an algebraic number field, R ⊂ K a non-principal order
of K, R• = R \ {0} its multiplicative monoid and R the integral closure of R in
K. Then ρ(R) < ∞ if and only if for every non-zero prime ideal p ⊂ R, there is
precisely one prime ideal p ⊂ R such that p ∩ R = p (see [12, Corollary 3.7.2]).

Suppose that R = Z[
√
−7], k ∈ N≥2 and B = (N × N ∪ {(0, 0)}, +) ⊂ (N2

0, +).
By [12, Example 3.7.3, Special case1], there is a monoid B(R) such that L(R•) =
L(B(R)) and hence Vk(R•) = Vk(B(R)). Furthermore, there is an isomorphism
Φ: N0×B → B(R). Since every non-zero element of B has a factorization of length
2 (see [12, Example 3.1.8]), it follows that Vk(B) = N≥2 and thus Vk(R•) = N≥2.
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