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Abstract: We state an effective version of the abc-conjecture, and assuming it we describe all
solutions of some diophantine equations. Based on this conjecture we give an effective algorithm
for computing an infinite set of primes which are not Wieferich primes.
Keywords: abc-conjecture, equations of Ljunggren-Nagell, Catalan, Fermat, and Brocard-
Ramanujan, Wieferich primes

1. Introduction

It is well known that assuming the abc-conjecture one can prove that some dio-
phantine equations have only a finite number of solutions. In general no bound
for the number of solutions or of their size can be obtained in this way. See, e.g.
[12], and [13].

On the other hand, assuming a weak effective version of the abc-conjecture we
can find all solutions of some diophantine equations. Such an approach has been
discussed e.g. in [5].

In the present paper we propose a weak effective abc-conjecture with some
real parameter r > 1, denoted by abc(r). We prove that assuming abc(r) with
an appropriate r depending on the diophantine equation, all its solutions can be
determined. It is interesting to observe that the minimal value of such r depends
essentially on the equation in question.

2. Weak effective abc-conjecture

For a triple (a, b, c) of relatively prime positive integers satisfying a + b = c define

L = L(a, b, c) :=
log c

log rad(abc)
,

where for m ∈ N the radical rad(m) is the product of distinct prime factors of m.
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The abc-conjecture says that lim sup
(a,b,c)

L(a, b, c) = 1, where (a, b, c) runs over

all triples as above.

It is known that L(a, b, c) > 1 for infinitely many triples (a, b, c). The maximal
known value of L corresponds to the triple (2, 310 ·109, 235) found by E. Reyssat.
It equals

r0 :=
log(235)

log(2 · 3 · 109 · 23)
≈ 1.629912.

Lists of all triples (a, b, c) with L > 1.4 known at different times can be found in
[6], [4], [9].

J. Kanapka [10] computed all triples satisfying L(a, b, c) > 1.2 and c < 230,
next he extended his computations to c < 236.

Recently T. Dokchitser has found many new triples with L > 1.4 and c > 236,
see [9]. One of his examples satisfies L > 1.5.

We give below the table of all triples (a, b, c) satisfying L(a, b, c) > 1.5 known
to the author on April 2007.

No. a b c log10 c L(a, b, c)

1. 2 310 · 109 235 6.8 1.629912
2. 112 32 · 56 · 73 221 · 23 7.7 1.625991
3. 19 · 1307 7 · 292 · 318 28 · 322 · 54 15.7 1.623490
4. 283 511 · 132 28 · 38 · 173 9.9 1.580756
5. 1 2 · 37 54 · 7 3.6 1.567887
6. 73 310 211 · 29 4.8 1.547075
7. 72 · 412 · 3113 1116 · 132 · 79 2 · 33 · 523 · 953 20.8 1.544434
8. 53 29 · 317 · 132 115 · 17 · 313 · 137 13.0 1.536714
9. 13 · 196 230 · 5 313 · 112 · 31 9.8 1.526999

10. 318 · 23 · 2269 173 · 29 · 318 210 · 52 · 715 17.1 1.522160
11. 1310 · 372 37 · 195 · 714 · 233 226 · 512 · 1873 19.5 1.509433
12. 239 58 · 173 210 · 374 9.3 1.502839

Weak effective abc-conjecture abc(r) : Let r ≥ 1.5 be a fixed real number.
Then all triples (a, b, c) satisfying L(a, b, c) > r are in the table.

In particular, if r ≥ r0, where r0 is the constant of Reyssat, then the conjecture
abc(r) says that no triple satisfies L(a, b, c) > r.

Of course, the conjecture abc(1.5) can be disproved by giving a new triple
(a, b, c) with L > 1.5 not appearing in the table. To disprove the conjecture
abc(r0) it is necessary to find a triple (a, b, c) with L > r0, which seems to be much
more difficult.

Thus Conjecture 2 in [5] has been disproved when Dokchitser found a new
example with L > 1.5 (Example no. 11 in the table).
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3. The Nagell-Ljunggren equation

The equation is

xn − 1

x − 1
= yq, where x > 1, y > 1, n > 2, q ≥ 2 . (3.1)

There are known three solutions of the equation:

35 − 1

3 − 1
= 112,

74 − 1

7 − 1
= 202,

183 − 1

18 − 1
= 73 . (3.2)

The survey paper [7] contains the information on results concerning further solu-
tions of (3.1). From theorems 1 and 14 of this paper we get

Proposition 3.1. Let (x, y, n, q) be a solution of (3.1) distinct from (3.2), and
let p be an odd prime divisor of n. Then:

(i) q 6= 2, 4 ∤ n,
(ii) p = q ∈ {17, 19, 23} or p ≥ 29,
(iii) If q = 3, then p ≥ 101.

Theorem 3.1. From the conjecture abc(r) with r = 145
63 ≈ 2.3 it follows that (3.2)

are all solutions of (3.1).

Proof. Assume that (x, y, n, q) is a solution of (3.1) distinct from (3.2). The
equation (3.1) can be written in the form

1 + (x − 1)yq = xn . (3.3)

We consider the triple (a, b, c) = (1, (x − 1)yq, xn), which evidently satisfies the
assumptions of the abc-conjecture.

From (3.1) it follows easily that yq > xn−1, then y > x(n−1)/q. Next (3.3)
implies that (x − 1)yq < xn, hence

x(x − 1)y < xn+1/yq−1 < x(n+1)−(q−1)(n−1)/q = x(2q+n−1)/q < x(2q+n)/q.

Therefore

rad(abc) = rad((x − 1)yx) ≤ x(x − 1)y < x(2q+n)/q .

Consequently

L = L(a, b, c) =
log c

log rad(abc)
>

n log x

((2q + n)/q) · log x
=

qn

2q + n
=

(

2

n
+

1

q

)−1

.

Now, from Proposition 3.1 we get: If q = 3, then n ≥ p ≥ 101; hence

L >

(

2

101
+

1

3

)−1

=
303

107
≈ 2.83.
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If q > 3, then q ≥ 5; hence p = q ∈ {17, 19, 23} or p ≥ 29. Therefore

L >

(

2

17
+

1

17

)−1

=
17

3
≈ 5.67,

respectively,

L >

(

2

5
+

1

29

)−1

=
145

63
≈ 2.3.

In all cases we obtain a contradiction with the abc(r)-conjecture with r = 145
63 ≈

2.3. �

4. Catalan’s equation

The equation is

xn − ym = 1, where min(x, y, m, n) ≥ 2 . (4.1)

There is known only one solution of (4.1):

32 − 23 = 1. (4.2)

By old results of Chao Ko and Nagell (see [16, A6.2 and A7.3]) for every solution
of (4.1) distinct from (4.2) we have min(m, n) ≥ 5.

Theorem 4.1. From the abc(r)-conjecture with r = 35
12 ≈ 2.91 it follows that (4.2)

is the only solution of (4.1).

Proof. Suppose that (x, y, m, n) is a solution of (4.1) distinct from (4.2). We can
assume that m, n are distinct primes. By the above remark we have min(m, n) ≥ 5.
The triple (a, b, c) = (1, ym, xn) satisfies the assumptions of the abc-conjecture.

Since ym < 1 + ym = xn, then y < xn/m. Consequently

rad(abc) = rad(xy) ≤ xy < x1+n/m.

Hence

L(a, b, c) >
n log x

(1 + n/m) log x
=

mn

m + n
=

(

1

m
+

1

n

)−1

≥
(

1

5
+

1

7

)−1

=
35

12
≈ 2.91.

We obtained a contradiction with the abc(r)-conjecture with r = 35
12 . �

Remark. Recently P. Mihăilescu proved [11] that the equation (4.1) has only one
solution (4.2).



A weak effective abc-conjecture 107

5. Fermat’s equation

The equation is

xn + yn = zn, where x, y, z ∈ N, n ≥ 3 . (5.1)

Theorem 5.1. From the abc(n/3)-conjecture, where n ≥ 5, it follows that the
equation (5.1) has no solutions.

Proof. It is well known that (5.1) does not have a solution for n = 3 and n = 4,
see [17]. Assume that there is a solution (x, y, z) of (5.1) in relatively prime
positive integers. The triple (a, b, c) = (xn, yn, zn) satisfies the assumptions of the
abc-conjecture.

We have

rad(abc) = rad(xyz) ≤ xyz < z3.

Then

L(a, b, c) =
log c

log rad(abc)
>

n log z

3 log z
=

n

3
.

We obtained a contradiction with the abc(n/3)-conjecture, since n
3 > r0 for

n ≥ 5. �

Remark. A. Wiles proved unconditionally that (5.1) does not have a solution,
see [21].

6. The Brocard-Ramanujan equation

The following equation has been considered by H. Brocard and later independently
by S. Ramanujan (see [2], [3], [15]):

1 + n! = m2 . (6.1)

Evidently, (m, n) = (5, 4), (11, 5), (71, 7) satisfy (6.1). Ramanujan asked if there
is a solution of (6.1) with n > 7. B. C. Berndt and W. F. Galway [1] proved that
there is no other solution with n ≤ 109.

Theorem 6.1. From the abc(r)-conjecture with r = 1.8 it follows that there is no
solution of (6.1) with n > 7.

Proof. Assume that (m, n) is a solution of (6.1) and n > 7. The triple (a, b, c) =
(1, n!, m2) satisfies the assumptions of the abc-conjecture. We have

rad(abc) = rad(m · n!) ≤ m
∏

p≤n

p <
√

2n!
∏

p≤n

p =
√

2n! exp(ϑ(n)),

where ϑ(n) =
∑

p≤n log p.



108 Jerzy Browkin

Consequently

L(a, b, c) >
log(n!)

1
2 log(2n!) + ϑ(n)

=
2

log 2
log n! + 1 + 2ϑ(n)

log(n!)

.

It is well known that ϑ(n) < 1.01624 n (see [18]), and by the Stirling formula

log(n!) > log(
√

2πn (n/e)n) > n(log n − 1).

Therefore for n > 109 we get

log 2

log(n!)
<

log 2

n(log n − 1)
<

log 2

109(log(109) − 1)
< 0.36 · 10−10,

and
2ϑ(n)

log(n!)
<

2 · 1.01624n

n(log n − 1)
<

2 · 1.01624

log(109) − 1
< 0.10305.

Consequently

L(a, b, c) >
2

0.36 · 10−10 + 1 + 0.10305
>

2

1.10306
> 1.8.

We get a contradiction with the abc(r)-conjecture with r = 1.8. �

Remark. The methods of proof of Theorem 6.1 can be applied to prove an anal-
ogous result for a more general equation n! + A = m2 considered in [8] and [1].

7. Wieferich primes

A. Wieferich [20] proved that if an odd prime number p satisfies

2p−1 6≡ 1 (mod p2),

then there are no solutions of the Fermat equation xp +yp = zp such that p ∤ xyz.
Let g > 1 be a rational number. We say that a prime number p is a Wieferich

prime to the base g, if
gp−1 ≡ 1 (mod p2).

There are known only two Wieferich primes to the base g = 2, namely p = 1093
and p = 3511, see [17, p. 361].

J. H. Silverman [19] proved, assuming the abc-conjecture, that for every base
g there are infinitely many prime numbers which are not Wieferich primes to the
base g. More precisely, he proved that the number of these primes less than X is
at least cg log X , where cg is a positive constant depending on g.

Basing on the ideas of Silverman we prove

Theorem 7.1. From the abc(r)-conjecture with r = 1.75 it follows that for every
g ∈ Q, g > 1, there are infinitely many prime numbers which are not Wieferich
primes to the base g.
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Remark. We have chosen the constant r = 1.75 for simplicity. From the proof it
will follow that 1.75 can be replaced by any number less than 2.

Let g =
r

s
, where r > s > 0, gcd(r, s) = 1, and let q be a prime number. Put

rq − sq

r − s
= Uq · Vq (7.1)

where gcd(Uq, Vq) = 1, Uq is squarefree and Vq is powerfull, i.e. if a prime number
t divides Vq, then t2 |Vq.

First we prove a lemma.

Lemma 7.1 (cf. [19, Lemma 3]). If a prime number p satisfies p ∤ rs(r − s)
and p |Uq, then

gp−1 6≡ 1 (mod p2),

i.e. p is not a Wieferich prime to the base g = r/s.

Proof. By the assumption p |Uq and Uq is squarefree. Hence p2 ∤ Uq. From (7.1)
we get

gq − 1 =
r − s

sq
· UqVq, consequently p | gq − 1 and p2 ∤ gq − 1.

Therefore gq = 1 + up, where p ∤ u. Hence

(gq)
p−1

= (1 + up)p−1 ≡ 1 + (p − 1)up ≡ 1 − up 6≡ 1 (mod p2).

It follows that gp−1 6≡ 1 (mod p2), i.e. p is not a Wieferich prime to the base g. �

Proof of theorem 7.1. The triple (a, b, c) := ((r − s)UqVq, s
q, rq) satisfies the

assumptions of the abc-conjecture. Since Vq is powerfull we get

rad(abc) = rad(rs(r − s)UqVq) ≤ rs(r − s)Uq

√

Vq =
rs(rq − sq)

√

Vq

<
rq+2

√

Vq

.

Consequently

L = L(a, b, c) =
log c

log rad(abc)
>

q log r

(q + 2) log r − 1
2 log Vq

.

If Vq > r8q/9, then log Vq >
8q

9
log r, hence

L >
q

(q + 2) − 4q/9
=

9q

5q + 18
> 1.75 for q > 126,

and we get a contradiction with the abc(1.75)-conjecture, provided q > 126. This
last inequality we can assume from the beginning.
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If Vq ≤ r8q/9, then by (7.1) we get

Uq =
rq − sq

r − s
· 1

Vq
≥ rq−1

r8q/9
= rq/9−1.

Therefore Uq is not bounded from above as q → ∞.
It follows that for any fixed set of prime numbers q1, . . . , qk there is a prime

number q satisfying
rq/9−1 > rs(r − s) · q1 · · · qk.

Then Uq > q1 · · · qk, and since Uq is squarefree it has such a prime factor p that
p ∤ rs(r − s)q1 · · · qk. It follows that p 6= qj for j = 1, . . . , k, and by Lemma 7.1 p
is not a Wieferich prime to the base g = r/s.

Therefore there are infinitely many prime numbers which are not Wieferich
primes to the base g. �

Remark. The proof of Theorem 7.1 gives an effective algorithm for determining
infinitely many prime numbers which are not Wieferich primes to the base g, under
the assumption of the abc(1.75)-conjecture.
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