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ON EXPRESSIBLE SETS OF GEOMETRIC SEQUENCES
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Abstract: We prove that the expressible sets of geometric sequences are Borel measurable and
give lower and upper bounds for their Lebesgue measure.
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1. Introduction

For a given sequence of real numbers {a,}32, we say that X{a,};2, = {z € R ‘
Je, € N such that z = >°7 ;} is its expressible set!). Erdss [1] proved that

n=1 ancn
the set X{2%" }20:1 does not contain any rational numbers. In [2] it is shown that
if limy,—s 00 %logQ logy a, < 1 and a, € R for all n € N then X{a,}2°, contains

an interval. In [4] the authors show that )\(X{ZB"}ZO:l) = 0. Here A denotes the

Lebesgue measure. In [3] it is proved that if lim,_, a}/ 3" — 5 and a, € N for

all n € N then A(X{a,}32,) = 0. (The case of arbitrary reals is left open.) In [2]
it is shown that if

1 =1

— < — 1.1

2a, — Z aj (1.1)
Jj=n+1

and a, € RT for all n € N then X{a,}32, = (0, Z]Oil %} Professor Zbigniew
Ciesielski observed that the expressible sets are analytic and hence Lebesgue mea-
surable. It seems that evaluating the Lebesgue measure of the set X{a,}22 is
not easy if (1.1) does not hold. In this paper we estimate the Lebesgue measure

of the set X{A"}22, for a real number A > 3. We prove the following.

Theorem 1.1. We have (0,2] C X{4"}22, and A\(X{4"}22,) = 1.
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Let us note that for a real number A with 0 < A < 3 the sequence {A"}52
satisfies the condition (1.1) hence X{A"}52, = (0,00) for 0 < A < 1 and
X{A"}22 ) = (0, 7] for 1 < A < 3.

Other expressions of real numbers can be found in [5], [6], [8], [7]-

2. Main results

Theorem 1.1 follows from Theorems 2.1-2.4. In the sequel, for a real number z we
use |x] to denote the greatest integer less than or equal to x and [z] to denote
the least integer greater than or equal to z. The following theorem estimates the
length of the largest interval with left end point at zero contained in the expressible
set of a geometric sequence.

Theorem 2.1. For A > 3, X{A"}2°, contains the interval

1
<0 A4 -2

Theorem 2.2. The set X{A"}22, is Borel measurable.

The next theorem deals with a lower bound for the Lebesgue measure of the
expressible sets of a geometric sequence.

Theorem 2.3. Let A > 3. Putw; :=1 and for j > 2

Then

AX{A™2,) =

The following theorem presents an upper bound for the Lebesgue measure of
the expressible sets of geometric sequences.

Theorem 2.4. Let A > 3. Put

1 3 1 7
B::max{{E—F\/A—ZJ,{—i—I- 2A—ZJ}7
u(u—1)

A-1
B if wlu+1)<A-1,

Pui= min{B, {u(ufgja—u” i ufu+1)>A—1, @1

ar =1 and au:—{ —‘foru>2,
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Oy = min{ﬁu -1, ’7_; + \/A— Z—‘ }a

- '_i_ 1 _(5u—ozu+1
YTy G+l A-1 7
Oy = min{u,ﬁu} —ay,+1,
A A—o,+1
C() 3:07 Cl :A—l and Cu :_Ai—ig'i_CU71 fO’f"LLZ2. (22)

Then

B
n 0o 1 1
/\(X{A n:l) S H - Z ;Eu(gu - C’u—l) .

Corollary 2.1. Denote by L(A) and U(A) the lower and upper bounds given by
Theorem 2.3 and Theorem 2.4, respectively. For A € (3,9) the values L(A) and
U(A) are shown in the following table.

A L(A) U(4)
A€ (3,4) m ﬁ
A€ [5,6) H ﬁ
Ael6,7) 5((1414;_12);

ac ) st s

Example 2.1. Set A = 7. Then from Theorems 2.1-2.4 we obtain that (0

C X{n"}2; and —2(;72) < )\(X{w” Zo:l) < —2(:‘5)2.

’ 2(71'171)]

Theorem 2.5. For A — oo the lower bound L(A) for the Lebesque measure
satisfies
exp 2= 3350

A2 A2

L(A) ~
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Theorem 2.6. For A — oo the upper bound U(A) for the Lebesque measure
satisfies

0929&(7\/6 1) 1 +o(i2)gU(A)

A3/2 12 "9/ A3/2
13 1 1 1 . 0.942
<(5 28 mr+olm) = 5m

Open Problem. It is unknown to the authors how to determine the order of
AX{A™}2 ) for A large.

Remark. For a particular A the result of Theorem 2.1 can be improved. For
A =7 Theorem 2.1 implies that (0, 55| € X{7"}22,. Let Z(s) be defined by (3.6).
It follows that Z(s) C X{7"}52, for every s. Thus

E:= (0, 3—10] UZ((12,1,3)) UZ((5,11,1))

UZ((11,1)) UZ((6,2)) UZ((10,1)) UI((5,3))
(o i U 137 229 U 629 757
U730 4116’ 6860 18865° 22638
18 551 5 17 17 26 26 53
Ul U= = | U=, = | U [ ==, —
5397 16170 1477490 490" 735 735" 1470
53
= — | CX{7" .
(07 1470:| = {7 }n—l

Thus (0, %] € (0, 235] € X{7"}32,. Put

111 1 1\ 1 1
= . < | = - - — — - C nyjoo

It follows that

°° 1
EU L,=(0,— ) CX{T}>2,.
nL:JI ( ’24) - { }n—l

We have 2—14 =>, 4%7”, so the result of Theorem 2.1 can be improved to (0, 2—14} -
X{7" oz

Remark. For A = 4 Theorem 2.1 gives (0, 1] € X{4"}22,. The value § is best
possible. The system 7 from the proof of Theorem 2.4 can be simplified to the
form

T={(s,1)|s=(c1,...,cn), n>0, ¢; €{1,2}}

since for A = 4 we have B =2, a3 = as = 1 = 0o = 1 and 81 = B2 = 2. Thus
((2,...,2,1),1) € T and

1 1
j((277271)a1)_ +_<ﬂvﬂ

13 14
—— 6 4qn ’



On Expressible Sets of Geometric Sequences 75

The proof of Theorem 2.4 implies that this set is disjoint with X{4"}>2 ;. On the
other hand, the proof of Theorem 2.3 implies that for every n

1 1 /8 12

==+ —=,—| C oo
I((2a a2a1)) 6+4n<24724:| 7X{4 }n=1

n—1

3. Proofs

Let us define a sum and a product of a real number a and a set B C R in an usual
way a+ B :={a+b|be B} and aB := {ab| b € B}. As usually g(z) = O(f(z))
if there exists positive real K such that |g(x)| < K f(x) for all sufficiently large
positive real x.

Suppose that A > 3. Set S := X{A4"}>2,. Then

= 1
X{A"}o o = {a: €R ‘ Hen}nrs € Nsuch that o = Z T }
n

n=2

x — 1 1
= —_ oo C = = — .
{A ‘ Hentory € Nsuch that ngzl A”cn} AS

The definition of the expressible set implies that
X{A"}2 = - 1 X{A"}e2
{A"} o2, 7CU1 Al—c1+ {A"} 2, ) -
=

Hence for the set S we have the identity
oo
1 1
= —+ — . 1
s gKM+A® (3.1)

Lemma 3.1. For every x € (0, W] there exists a positive integer ¢ such
that

0<x—1< L
¢S A-D(AT-2)

Proof. Let c be the least integer such that 1 < z. If ¢ < [A] — 2 then

1 A N 1
c ™ (A-1)([A]-2) T[A]-2 (A-1)([A]-2)°
If ¢ > [A] — 1 then since % <z < ﬁ we obtain
PRI S S ! < = . (32
¢ cle=1) 7 (JA]=D(A]=2) = (A-D([A] -2) n
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Proof of Theorem 2.1. It suffices to show that for every k there exists an integer
¢ such that
k
1 1
O0<ax-— — < .
; Ate; = ARF(A—-1)([A] - 2)

We proceed by induction on k. For k = 1 we obtain the statement from Lemma 3.1
on division by A.
Assume now that for k > 2

=1 1
0<x— — < .
; Ate; = ARF1(A-1)(TA] -2)

Hence
k —

°<Ak(x‘ZA3ci) < (A—2>§A1 =3

i=1

and by Lemma 3.1 there exists an integer ¢ such that
k-1

) 1 1 1
0<4 ($‘2M>‘a< A-D)([A]-2)"

i=1

It follows that

oo 1
O0<z— — <
; Ate; — AR(A—-1)([A] —2)

and the inductive proof is complete. |

In the next lemma we use the symbol X{a,}_; for the set

N
1
X{a, N, = {x eR ‘ de,, € N such that z = Z } .

a1 9nn
We put X{a,}"_; :={0}.

Lemma 3.2. The set X{A"}>°, U |J X{A"}Y_, is closed.
N=0

Proof. With the convention é = 0 we can write every element of

7= X{A"pe, v | X(am,
N=0

as Yy oo, A+Cn, where ¢, € NU {oo}. Conversely,

o0
if ¢, € NU {oo} then Z €Z. (3.3)
n=1

Are,
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Indeed, if ¢, < oo for all n < N, ¢y = 00 and ¢, < oo for some n > N then by
Theorem 2.1

oo 1 N-1 1 1
€ 0,
% e < X e+ (0 o)
N-1

| e xtamyz,.

hence Y07 | — € Z.

Let @ € Z, iMoo T = T, Ty = Y0y ﬁmn, dpm.n € NU {o0}. We set
My := N and if M,,_; is already defined and infinite then put

M: = {m € Moy ‘ dyn = liminf d;m}

k€M, 1
and M,, := M if M is infinite and M,, := M,,_; otherwise. We have My 2O M; D

---. Let ¢, :=liminfreps, _, di,n. Now consider two cases.

1. Suppose that all sets M are infinite. Then for every N and infinitely many
me Mny_q

Moo 1
< — <
0= om ;Ancn*AN(A—l)’

hence passing to the limit with m

Moo 1
< x-— <
02 ;A”cn = AN(A—1)

and passing to the limit with N

|

T = ,
Z Ancn
n=1

hence, by (3.3), z € Z.
2. Let N be the least positive integer such that the set My is finite. This

means that lim,emy_, dm,ny = 00 and for m > myg, dp, v < 00. Therefore, for
m e My_1

= 1 1
0< — — <
= om n; Ancn,  dmnAN = AN(A—1)
and passing to the limit with m we obtain

| 1
<zx-— < .
0= ;A"cn_AN(A—l)
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Let N7 be the least integer less than NV such that ¢y, = oo if such integers exist
and N7 := N otherwise. In any case

Ni—1

1 1
< r— < .
0= ;Ancn—ANl(A—l)

n=1 A"c,

o= then x € X{A"}N' 1 C Z, otherwise = € X{A"}22, C Z by
Theorem 2.1. |

Proof of Theorem 2.2. Since the set Jy_, X{A"}\_, is countable, Lemma 3.2
implies that the set X{A"}2° ; is Borel measurable. |

Lemma 3.3. (Cauchy) Let {fn}52, and {gn}5>, be sequences of real numbers
such that for every x with |x| < R the series F(x) := Y " faz" and G(z) =
>0 o gnx™ converge. Let {hy,}52 be a sequence defined by hy, ==Y p_o fegn—k for
every n. Then for every x with |z| < R the series H(z) :== > o~ h,a™ converges
and H(z) = F(2)G(z).

Proof. The result follows from direct computation and from the fact that the
series for F'(z) and G(z) are absolutely convergent for |z| < R.

SN g™t (3.4)

F(z)G(x) =
m=0n=0
= Z Z fmGp—maP = Z hpa? = H(z) . |
p=0 m=0 p=0

Lemma 3.4. Let {f,}52, be a sequence of real numbers such that for every x with
|z| < R the series F(z) :== > " fnx™ converges. Let w > 0 and let the sequence
{hn}52 be defined by

n
I o= fot Y froaw™ "
k=1
Then for every x with |z| < min{R, 2} the series H(x) := Y 0"  hna™ converges

" H(x)—(w;l—i—w(liwx))F(x).

Proof. We have
1l L w—1 1< B
hn=font+ =3 o F=——fut = frw" "
w k=0 w w k=0

Then Lemma 3.3 yields

w—1

H@) = “22F@) + P Yot = (U b e ). (39)

w w w(l —wz)

n=0
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Proof of Theorem 2.3. Let S := X{A"}22,. Consider the system of finite se-
quences

Rim {5 = (10

n>0, N, 1<¢ <[4] -1,

(e — 1
.- [M]qk
k—1

IN

- <k<nby.
i=1,... A-1 LA] 172kn}

By Theorem 2.1 we have (0, M] C S, thus by (3.1) for every s = (cy, ...
¢n) € R we obtain
1

<
:;Ac F(O’ ([A] - 14

hence (Jsc Z(s) € S. For every s = (c1,...,¢,) € Rand 1 <k < £ <n we have

} cs, (3.6)

enler —1) < (A — 1)[%} <(A-Deg < (A—1)(|A] —1).

The intervals Z(s), s € R, are pairwise disjoint. In order to prove this fact
consider two cases.

1. Suppose that s = (¢1,...,¢m) € R, 8* = (¢f,...,c) ER, m>1,n > 1,
c; =c; for i <k and ¢, < ¢j;. Then

=1 =1
1 < 1 1 ) 1 - 1
_ LI Z _
k * *
AF \ e, o S Aig; S Atcs
N 1 i 1
- Afe(e — 1) i=ht1 A [‘CZS—EI)—‘
- 1 1 N 1
A =1 aka -1 | E ] ana -1 [
1 1 1 1

S D[] AL A (A -4

so infZ(s) > supZ(s*) and Z(s) NZ(s*) =
2. Suppose that s = (¢1,...,¢p) € R = (cf,...,¢) €ER, 0 < m < mn,
¢; = ¢} for i <m. Then

. 1 1 1
infZ(s) — infZ (s Z Al Am+1c — > A—mm,

i=m-+1



80  Jaroslav Hanél, Andrzej Schinzel, Jan Sustek

so infZ(s) > sup Z(s*) and I(s)NZ(s*)=0.
Now we find A(U, (s)). For 1 <u < [A] — 1 and n > 0 denote by M,(n)
the number of Sequences (cl, ...y Cn) € R with ¢; < u,

) :#{(Cla-uacn)eR}Ciﬁu,lﬁign}.

Obviously, Mi(n) = 1 for every n. For u > 2 the number M,(n) counts 1. se-
quences with ¢; < u — 1 for every ¢ and 2. sequences such that there exists k with
Cp = Uu.

1. The number of sequences with ¢; < wu — 1 is My_1(n).

2. Suppose that ¢; <u—1fori < k—1and ¢y = u. Then (c1,...,¢,) € R

if {%] < ¢; <ufor every j > k+ 1. So the total number of sequences such
that there exists k& with ¢, = u is

SIS EITEL YRS

Thus we have for u > 2

Recall that w; =1 and for j > 2

From Lemma 3.4 we obtain that for x with || < minj—1,__, wi
J

i My(n)e" = ﬁ <ij? = wj(1 iWﬂ?)> '

n=0 j=1

We have w; < |A| — 1 for every j. Then

CCERVEDLDS MLAJJM =

sER n=0

—1A H ( j(AA—wj)>
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Proof of Theorem 2.4. Let S := X{A"}52,. Assume for a moment that we do
not know the constants B, au,, 3, and §,. Consider the system

s=(c1,...,¢n), n>0, ¢, EN, LeN,

T = {(s,e)

1 S C1 S Bv
max o <c, < min S, 2<k<n,
i=1,...,k—1 i=1,... k—1
n< < ifn =0,
max v, < £ < min 4., ifn>1 }
i=1,....,n i=1,....,n

such that for every (s,¢) € 7 and for ay, By, Yu and &, withu=1,...,B

(A=1—-u(u+1))Bu+ulu+1) >0, (3.7)
(Bu =AY+ A(B, —1) >0, (3.8)

Al > (A—1ay, (3.9)
(A-Day, >ulu—1). (3.10)

The constants a,, By, Yu and &, are chosen so that they are positive integers and
that «, and =, are minimal and 3, and §,, are maximal. The constant B is chosen
so that a, < (3, for u < B. (In some cases we may obtain that ~, > §, or that
d, = 0 but these facts do not make problems.)

Inequality (3.10) and the fact that «,, € N immediately give

s 21}

A-1
> =
€= { 1
If u(u+1) < A—1 then (3.7) is satisfied. Otherwise it implies that
u(u+1)
< .
Pus {u(u—f— 1)—(A- 1)J
From the condition 3, < B we obtain (2.1). Inequality (3.8) implies that
- A— 511,

Another condition on J, comes from (3.11). It follows that

el 2] [T
ol [T}

From (3.9) we obtain

au—‘ = Q.
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Now we find B. Suppose that «, > 3. Then

1 7

and 3, = 1. This is in contradiction with o, < ,. Hence «, € {1,2} for every .
This fact and the fact that G, > 1 for every u imply that o, < (3, is equivalent
with

(a, =1) or (a, =2 and B, > 2),

e [ B

It follows that 2 < B < A for every A > 3.

Now the system 7 is completely determined.

For a positive integer n put T}, := ﬁ + (O, m}. From (3.1) we obtain that
S CU,. T, For ¢ €N put

hence with

. 1 1 1
Hy = (supTgH, med = (A(E—i—l) + AA—1) A_E]

This set is nonempty if sup Ty41 < inf7y. This holds if

1 3
I O
< 2+ 1
3 3
< |—-= A——|. 11
es[-34yfa-d] (.11)

Moreover, Hy NS = () for every such /.
For every (s,¢) € T, s = (¢1,...,¢n), n > 0, put

hence if

We have

1 1
infJ(s,f) = ZAz A”+1(£+1+A—1)’

sup J (s, f) = ZAZ A”+1£
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and

1 1 1
MT(s,0) = Ant1 (g(g-f— 1) A-— 1) .

We will now prove that for every (s,¢) € T the set J (s, {) is disjoint with S.

Let z € S and (s,f) € T, s = (c1,...,¢,). There exist positive integers c;,
i € N, such that z = Y2, ﬁ Now consider three cases.

1. Suppose that ¢; = ¢ for i« < n. From ) 7, ﬁ € S we obtain
S ~ ¢ Hy and

i=1 A”C:+
n

X iz::l AZC’T + An = Ach_i_n ¢ Z A'LC;F + A’ﬂ ¢ j(s, 6)

i=1

2. Suppose that ¢; = ¢} for ¢ < k and ¢; < ¢j,. From the definition of the
system 7 we obtain that ¢; < ., for i > k, that

(A=1—=cpler +1))Be, + clcr +1) >0

and that
(ﬂck - A)Z—’_A(ﬂm - 1) 2 0.
Then
infJ(s,f) —x
1 /1 1 "1 1 1 1 =1
- E<a B Q) +i:k+1 Aic, A <e+ 1Az 1> _gk;l Aict
1 1 " 1 1 1 1 1 1
> A -
= Aol + 1) +i:§1 A, T A <£+1 * A—1> AT
_(A-1—ala+ D)o +ala+1) | (B — D+ AP —1)
AFcg(er +1)(A—1)4,, AtH A -1+ 1)B,, —

hence z & J (s, ?).
3. Suppose that ¢; = ¢j for i < k and ¢ > c¢j,. From the definition of the
system 7 we obtain that ¢; > a., for ¢ > k and that

Al > (A=1)ae, > cpler—1).
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Then

1 /1 1 <1 "1 1
w0 = (=) + 3 wg - 2 g

B ﬁ (ck(ckl— ) (A —11)%)
1

hence z & J (s, {).

Now we will prove that for (s,f) # (s*,¢*) the sets J(s,¢) and J(s*,£*) are
disjoint. Again, consider three cases.

1. If s = s* then this fact follows from H, N Hyp« = (.

2. Suppose that s = (¢1,...,¢m), m > 1,8 = (cf,...,c), n > 1, ¢; = ¢ for
i < k and ¢, < ¢f. From the definition of the system 7 we obtain that ¢ > Qe
for ¢ > k and that ¢* > Qe We use the fact that

(A—Dae: > cile, —1).
Then
infJ (s, ¢) —sup J(s*, £%)

(L1, N1 L Lo,
AR\ ¢ cr 4 Aic;  AmtI\/4+1 A-1

1/ 1 L1 R S
ARG -1 (A-Dag A\ (A=Dae:  Aae: ) —

3. Suppose that s = (c1,...,¢p), 8" = (c],...,¢,), n>m >0 and ¢; = ¢ for
i < m.
3a. If ¢jpq1 < £ then

infJ (s, ¢) —sup J(s*, £%)
"1 1 1 1 1 1
_; Aie; T AnT (£+1 Az 1) _; Ay Amtips
1 1
> — >
- AerlCerl Am+1lpx —

0.
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3b. If ¢jpqp1 > €* + 1 then

inf7(s*, £*) —sup J (s, £)

1 n
_ZAz Am+1<€*+1 —1> z:: A A"+1€

1 1 1 >
> A (z* 1A 1) Am+1cm+1 12

Hence the sets J (s, ¥), (s,£) € T, are pairwise disjoint.
Now we find /\(U(S’Z)eT j(s,é)). For 1 < u < B and n > 0 denote by M,(n)
the number of sequences s = (cy, ..., ¢,) with ¢; < u, so M,(n) := #L,(n), where

Ly(n) = {(cl,...,cn)‘CiGN, 1<c¢ <u,

i:f}.@,}iﬁqac"' < < . mln {u Be,}, 2<k< n}
Obviously, Mi(n) = 1 for every n. For u > 2 the number M, (n) counts 1. se-
quences with ¢; < u — 1 for every i and 2. sequences such that there exists k with
Cr = Uu.

1. The number of sequences with ¢; < wu — 1 is My_1(n).

2. Suppose that ¢; <u—1fori < k—1and ¢y = u. Then (c1,...,¢,) € Ly(n)
if o, < ¢; < min{u, 8, } for every j > k + 1. From the fact that o, < min{u,3,}
for 2 < u < B we obtain that the total number of sequences such that there
exists k with ¢, = u is

zn:Mu,l(k' - 1)<min{u, 6u} — oy + 1)n_k = z”: My_1(k— 1)03*19.
k=1 k=1

Thus we have for u > 2

Since o, < A, Lemma 3.4 implies that for u > 1

A—O’i—Fl
cu-—Z An =l

i=1

(Notice that one can use (2.2) to compute ¢, for u > 1.)
For1 <wu < Bandn > 1 denote by M (n) the number of sequences (c1, . .., ¢,)
with max;—1,... n ¢ = u,

M (n) = #{(cl,...,cn) € Ly(n)| max ¢ = u}

i=1,...,n
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If we set Mp(n) := 0 then we have

M (n) = My(n) — My—1(n)

u

for every w > 1. From the fact that M, (0) = 1 for every u > 1 we obtain that
M (0) =0 for u > 2.

Now for every so € U, ,, Lu(n) evaluate )\(U(SM)ET J(s0,0)). If sg is an empty
sequence then put v := 1, else if sg = (c1,...,¢,) put v := max;=1__,¢;. Then
(s0,¢) € T if a, <€ < 4,. From «,, — 1 < §,, we obtain

U J6 é))—A(ijJ(s e))—i 1 < LI )
(s0,0)ET e tma, 0 7€:avA"+1 e+1) A-1

1 1 1 0y —ay +1\ &
T anti\a, 6, +1 A-1 oAt
Notice that this formula is correct even in the case that d, = a, — 1.
Then

U 76.0)= Zl ZZ An+ ZZ An+

(s,0)eT u=1n=1 u=1n=0
:izB:E o~ Mu(n) G~ Mu—i(n)
A u=1 ’ n=0 An n=0 An

From the facts that J(s,¢) C (0, w45 ] and J(s,£) NS = () we obtain

AXIAY) € 1o - SUAT(s,0) (3.12)
(s,0)eT
1 B
Dy Eu Cu - Cu— . ||
A ; ( 1)

Lemma 3.5. Suppose that a function f(x) is twice differentiable on the interval
(k,m) and that |f"(x)| < M; for every j and every x € (j —1,j). Then

Zf]—— /f )dz| <

j=k+1

LISV
> 5

j=k+1

Proof. Taylor’s Theorem implies that for € (j — 1, j)

i —1(i-3)~ G- 3)r 3] <
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Then
m 1 m
6 [ st
) k
j=k+1
R o1 A |
=2 /_1(f<°’“>‘f(ﬂ‘§)—(x‘”a)f(f‘a))dx
j=k+1"J
<2 5 .
j=k+1
Proof of Theorem 2.5. Let
A-1
J(@): 22— (A-1z+ (A2-34+ 1)
Then ) A_1
f(j_ﬁ):jz_Aj+(A2—A)'

We use Lemma 3.5 and the fact that if |c — d| < 1 then

Aic:%—i—d(1+o(%))'

iG=1
A-1

Replacing w; by j — we obtain

[A]—1

A—w;+1 1 1
11 ﬁze’q’(z T O ))

j=1 j=1

42 A 2 iar_a A

The result follows from m ~ A72, [ |
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Proof of Theorem 2.6. Let A be a sufficiently large positive real number. The
symbol u will always be used for a positive integer not exceeding B. Set

Bllzt\/ZJ,
1 3
By:i= |=+4/A-"
2 _2+ 4J,
1 1 1
By:= |5+ 1+<1+—‘>(A_1)J7
L —3+4/A-3
1 3, 5
Byi=|—=44/24-21.
RS 4J

Notice that B1 < By < Bg < By + 1. We have

1 ifUSBQ,
Oy, =
2 ifu>By+1

and
B ifung—l,

e PRI

From v < B and from the fact that v < % if u < L\/ZJ we obtain for
u>|3+/A-3]
. . u(u—+1)
mln{u,ﬁu} = mm{u,B, {u(u T (A 1)J }

= min u(u+1)

- “luur1) - (A-1)

= |min ulu+1)

- Cuur ) —A-D [

n ifu< By,

min{u, Byt = o -
e} {LMJ if u>B+1.

SO

We modify the definition of §,:

5 = min{(ﬁu ), {_% + MJ }

This modification will not change the result, since if we replace d,, by d;; then ¢,
and hence U(A) does not change. We use the fact that |- +,/A— 3| < B—1.

For u < By — 1 we have
1 3
0f=|—= A——1.
i= 5 ya-i]
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For uw > By we use the fact that

G 2T e [geyi ()]

We have

This implies that

s dlmsryA—3] ifu<Bs—1,
u

A-1 .
s ez Bs.

From the earlier facts we get

1- ! A ifu<Bs;—1
1 A—3 A-1 = 3 )
[3+vA-3]
A—1
_ 1- u(u1+1) - L1L(1:,+114):(1A—1)J if B2 = B3 and u = B2 s
Cu= | ettt
1 1 |t |1 .
27 [__wwin T A1 if Bo+1<u<By
Lu(u,-%—l)—(A—l)J
and
u if u S Bl s
_ u(u+1) . - -
Ou = LWJ if Bo=B; +1and u= By,

A—1 .
) fu> B+l

For v < By we have
CTA-j+1 A

Cu= A—j  A—-u’

j=1
If BQ = B1 then

e A Ay

IfBQZBl+1 then

¢ <1 F— )c
By — - _
A=0\ a1 Lval

1 A
=1+ A1 ) :
< A-1- LL\/XJ2+3L\/ZJ—A+3J A - L‘/ZJ

89



90  Jaroslav Hanél, Andrzej Schinzel, Jan Sustek

In any case,

(o, =1+ 0

5
N—

For uw > B + 1 we have

u

1
= (s, 14 _ .
=l ( A== 1>J>

j=Ba+1 3G+ - (A=

Notice that ¢
o u—1
Cu Cufl — A_ Ou .

Now consider three cases.
1. Suppose that By = Bo = B3. Then

[VA]+2 By

€uCu EuCu
Zeu u Cu 1 *51<L\/7J 1+ Z uQO—l_’_ Z 1Cu 1~
u=|VA] Y u=|VAl+3

We have
1 -3 +y/A- 1] 2 1
=1— _ 1= -
c1 |L+,/A—2] A-1 \/Z+O(A)
and
¢ T S
VAL 4 VA +17
SO

el a1 =1- ﬁ +o(%) .

For [VA| < u < |VA]| +2 we have g, = O(1), ¢,—1 = O(1) and o, = O(VA),

hence

VA]+2 cuCuct O(i)
A—o, A
u=[VA]
and
[VA|+2

uCu 1 1 1
el ya ot D —1-—=+0(7).
U—I_\FJ Oy VA A

2. Suppose that By = By < B3 = B; + 1. Then

B L\/ZJ+2 c C By € C
D oeulu—G) =l ya + Y Au_u;l + Au—u;l '
u=1 u=|VA|+1 Y u=|VA+3
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We have
1 -3 +y/A-1] 2 1
=1— _ 1= -
c1 |L+,/A—2] A-1 \/Z+O(A)
and
¢ B A
VA A Ay
SO

€1,y :1—%+o(%).

Again, for [VA| +1 < u < [VA] 4+ 2 we have e, = O(1), {1 = O(1) and
o = O(V/A), hence

VA|+2
: i 5uCu71 _ O(i)
A—oy A
u=|[VA|+1
and
LVA]+2
5u<u71 1 1
u=|vVA]+1 Tu VA

3. Suppose that By < By = B3 = By + 1. Although the definition of CL\/ZHI
is different from that in Case 2, the result is the same.
Hence, in all three cases we obtain

5 1 Ba €ulu_1 (1)
§ 5u(€u - (:u—l) =1-—+ E L +0(=).
u=1 VA u=|vVAJ+3 A-ou A

For j > By + 1 we have

1 3\ /3 3 / 3
(4 > — _ — _ j— — —
](j+1)_<2—|— A 4><2+ A 4>_A+2 A 1

hence

Since u < B < v2A we obtain

X 1 2
Z A—1 <2 A

=B A~ TGFD-(a-D
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and

A(+o3))

/N

ﬁ <1+A_L 1,4_1 )J)—exp(o

j=B2+1 JU+1)—(A-1
1
=1+ O(—A) ,
So we have for u > By +1
1
Gu=1+ o(ﬁ) .
Hence
f: 5u€u—1
u=|VA]+3 ST
B - [ 1 e | sty | !
1 - ’ T | ! A-1
_ (1+O(—A)) 3 el
u=|VA]+3 wlutl)—(A—1)
1 D
- <1+O(—A)) > F(lGw)).
u=[VA|+3
where . . )
F(z) = 3T ax_ 1 2’ (A-la+A-3
— A—z T2A-1) 22 (A-Dz_4
and
A—-1

G(x):a:(x—i—l)—(A—l)'

The function F(z) is increasing for VA<z< ,/%A. Now the computation splits

into two parts.
1. From |G(u)| < G(u) and from Lemma 3.5 we obtain that

. & ~3+v/3AT |
H%JHF(LG(u)J) < HL%JJRBF(G(U)) < /ﬁ+1 Hy () du + O(Z) :

where

Hy () = F(G(u+ %))

3-A  24-1)( 1 1
TAA-D | Ar1 <2u+1_2u+3>
2(A% +2A - 3) 1
AA+)AA2 + A—4)1 - A (1+u)?
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The error term O(4) comes from Lemma 3.5 and from the fact that H{ (u) =
O(A’3/2) for VA< u< %A. From

/ da 1 \/&(14—3:)4—1
ol toP  2/a " Va(+) -

we obtain

/H 3-A4 L A-1, 2u+l
i 2A(A—1)  A+1 2u+3

A2 4+24 -3 | \/4A2+A 7(1+u)+1

+ n
2A3/2(A—|—1)\/4A2—|-A—4 \/4A2+A 4(1+u)_1

and

P
N
- +
(V][]
b
:
5:
=
(oW
<
I
o=
N
| W
|
|
g
N———
+
o
VS
b
N—

Hence

This implies that

1

igu@u O ES ﬁ (%\/__ 5) +o(L)

and

U) - —1——Zau =6 = g (5V6-3) +0(5)-

2. From |G(u)] > G(u) — 1 and from Lemma 3.5 we obtain that

By

B —g+/FAT .
3 F(LG(u)J)EZF(G(u)—l)z/A Ha(u) du+0( ).

u=|vA]+3 u=[vA]+3 VA+2

1

6474+ A+43 1 )

TIA-DA+I? ~ o ut)
2(A% +2A - 3) 1

2(4 A2 _ A(A+1
(A+1)%2(4A% +5A 7)1_ﬁ(1+u)2

where

Hj(u)
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Again, the error term O(%) comes from Lemma 3.5 and from the fact that

HY(u) = O(A™%/2) for VA <u < /3 A. We have

642+ A+3 1, 1 3
/HQ(“)d“* MA-1)A+12" T 21" T3z
A
A2 4243 VmEsam () +1
5/2 2 _ 4(A
2(A+1)%2/4A2 + 5A -7 \/4A§+5+,§l7(1+U)—1
and
—3hV3A-g 1 /1 7 1
Hy(u)du = — —f——>+o —).
/m+2 () m<2 6 (3)
Hence

ot 1 /1 7 1
Z F(LG(u)J) > —(=vV6—=)+0(=).
This implies that

B
>l G <1 = (% -3 6) +o(3)
and
11 1 (13 1 1
U(d)=5—~ Z; u(Cu = Cu-1) < W<F_ 5 6> +O(ﬁ) :
This finishes the proof of Theorem 2.6. |
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