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STABILITY OF ISOMETRIES IN PPP -BANACH SPACES

Jacek Tabor, Józef Tabor & Marek ŻoÃldak

Abstract: It is known that the isometry equation is stable in Banach spaces. In this pa-
per we investigate stability of isometries in real p -Banach spaces, that is Frechet spaces with
p -homogenous norms, where p ∈ (0, 1] .

Let X, Y be p -Banach spaces and let f : X → Y be an ε -isometry, that is a function
such that |‖f(x)− f(y)‖ − ‖x− y‖| 6 ε for all x, y ∈ X . We show that if f is a surjective then
there exists an affine surjective isometry U : X → Y and a constant Cp such that

‖f(x)− U(x)‖ 6 Cp(ε + εp‖x‖(1−p)) for x ∈ X.

We also show that in general the above estimation cannot be improved.
Keywords: p -homogeneous Frechet space, approximate isometry, Hyers-Ulam stability.

1. Introduction

Let X,Y be metric spaces and ε > 0. A mapping f : X → Y is called an
ε-isometry if

|d(f(x), f(y))− d(x, y)| 6 ε for x, y ∈ X.
A mapping which is an ε-isometry with a certain ε > 0 we call an appro-

ximate isometry. The problem of stability of isometries was posed by S. Ulam in
1940 [9]:

Ulam’s Problem. Does for every ε > 0 there exist a δ > 0 such that for each
δ -isometry f : X → Y there exists an isometry U : X → Y satisfying the
inequality

d(f(x), U(x)) 6 ε for x ∈ X ?

The first step in solving this problem was done by D. H. Hyers and S. Ulam
[4] who noticed that surjectivity is an essential assumption and gave (under this
additional assumption) a positive answer in Hilbert spaces. For Banach spaces
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the problem was affirmatively solved by J. Gevirtz [3]. His result was improved
by M. Omladič and P. Šemrl [5]. More information about the general stability of
isometries can be found in [2].

The latest improvement was obtained by P. Šemrl and J. Väisälä in [8]. To
formulate it we need the notion of nearsurjectivity. By B(x, r) we denote the closed
ball centered at x with radius r . Let X,Y be metric spaces and δ > 0. We say
that f : X → Y is δ -nearsurjective if

Y ⊂
⋃

x∈X
B(f(x), δ).

The function f is called nearsurjective if it is δ -nearsurjective with a certain δ > 0.

Theorem SV [8, Theorem 3.5] Suppose that f : X → Y is a nearsurjective
ε-isometry between Banach spaces satisfying f(0) = 0 . Then there exists a bijective
linear isometry U : X → Y such that

‖f(x)− U(x)‖ 6 2ε for x ∈ X.
Hence f is 2ε-nearsurjective. The constant 2 is the best possible.

Since the original problem was posed for metric spaces, it is natural to in-
vestigate the stability of isometries in Frechet spaces. In fact our investigation is
restricted to a certain important class of Frechet spaces, namely p-normed spaces.
From now on we consider only real vector spaces.

For the convenience of the reader we recall the definition of p -normed space
[1, 6].

Definition 1.1. Let X be a vector space and p ∈ (0, 1]. A function ‖·‖ : X → R+

satisfying
(i) ‖x‖ = 0⇔ x = 0,
(ii) ‖αx‖ = |α|p‖x‖ ,

(iii) ‖x+ y‖ 6 ‖x‖+ ‖y‖ ,
is called a p-norm and the pair (X, ‖·‖) is called a p-normed space. By a p-Banach
space we understand a complete p-normed space.

Let us briefly describe the contents of the paper. In the next section we show
that the isometry equation is not stable in the Hyers-Ulam sense in p-Banach spa-
ces, with p < 1. In Sections 3 and 4 we show the best estimation of an approximate
isometry by an isometry is of the type K(1 +‖x‖1−p). More precisely, there exists
a constant Cp > 0 such that for every f : X → Y , a surjective ε-isometry between
p -Banach spaces X,Y , there exists a linear isometry U : X → Y satisfying

‖f(x)− f(y)− U(x− y)‖ 6 Lp(ε+ εp‖x− y‖1−p) for x, y ∈ X.
We will repeatedly use the following elementary inequalities:

(a+ b)p 6 ap + bp for a, b > 0, p ∈ (0, 1], (1)

ap − bp 6 2
a− b

a1−p + b1−p
for a > b > 0, p ∈ (0, 1]. (2)

By N we denote the set of positive integers and by 00 we understand 1.
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2. Lack of stability

We are going to show what kind of stability we may expect (as we will see, it is not
possible to get the classical Hyers-Ulam stability). To do so we need the following
observation [10, Proposition 2] concerning stability of the isometry equation in
Banach spaces.

Proposition 2.1. Let X,Y be Banach spaces and let U, V : X → Y , U(0) =
V (0) = 0 , be isometries. Assume additionally that V is a linear bijection and that

lim
x:‖x‖→∞

‖U(x)− V (x)‖
‖x‖ = 0. (3)

Then U = V and consequently U is a linear bijective isometry.

As it is mentioned by the author of [10], the proof of the above proposition is
in fact an easy modification of a part of the proof of Theorem SV. Before proceeding
further we would also like to mention that it is not known if the above result holds
for p -normed spaces (the idea of the proof does not seem to be adaptable to
p -normed spaces).

Now we may state a refinement of Theorem SV.

Theorem 2.1. Let f : X → Y be a nearsurjective ε-isometry between Banach
spaces satisfying f(0) = 0 . Then there exists a unique isometry U : X → Y ,
U(0) = 0 , such that

K := sup
x∈X
‖f(x)− U(x)‖ <∞. (4)

Moreover, U is a linear bijection and K 6 2ε .

Proof. By Theorem SV there exists a linear bijective isometry V such that

‖f(x)− V (x)‖ 6 2ε for x ∈ X.

Now, if U is as in the theorem, this and (4) imply that

‖U(x)− V (x)‖ 6 (K + 2ε) for x ∈ X.

Thus by Proposition 2.1 U = V .

We will need the following result

Lemma 2.1. Let X be a Banach space and p ∈ (0, 1] . Let f : X → X be defined
by

f(x) := x+
1
‖x‖px for x 6= 0, f(0) = 0.

Then
|‖f(x)− f(y)‖p − ‖x− y‖p| 6 12 for x, y ∈ X.

Proof. Without loss of generality we may assume that ‖x‖ > ‖y‖ , x 6= y .
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Let us first discuss the case y = 0. Then

|‖f(x)− f(y)‖p − ‖x− y‖p| = |‖f(x)‖p − ‖x‖p|
by (2)
6 2

|‖f(x)‖ − ‖x‖|
‖f(x)‖1−p + ‖x‖1−p

6 2
‖f(x)− x‖
‖x‖1−p = 2

‖ x
‖x‖p ‖
‖x‖1−p = 2.

Assume now that x, y 6= 0. Then we have

|‖f(x)− f(y)‖p − ‖x− y‖p|
by (2)
6 2

|‖f(x)− f(y)‖ − ‖x− y‖|
|‖f(x)− f(y)‖1−p + ‖x− y‖1−p|

6 2
‖(f(x)− x)− (f(y)− y)‖

‖x− y‖1−p =
2

‖x‖p‖y‖p ·
‖‖y‖px− ‖x‖py‖
‖x− y‖1−p

=
2

‖x‖p‖y‖p ·
‖‖y‖p(x− y) + (‖y‖p − ‖x‖p)y‖

‖x− y‖1−p

6 2‖x− y‖p
‖x‖p +

2(‖x‖p − ‖y‖p)‖y‖1−p
‖x− y‖1−p · ‖x‖p

6 2‖x− y‖p
‖x‖p +

2(‖x‖ − ‖y‖)
‖x− y‖1−p · ‖x‖p 6 2‖x− y‖p

‖x‖p +
4‖x− y‖

‖x− y‖1−p · ‖x‖p

= 6
‖x− y‖p
‖x‖p 6 6

(‖x‖+ ‖y‖)p
‖x‖p 6 6

(‖x‖+ ‖x‖)p
‖x‖p 6 12.

Now we are ready to show that in general there is no stability of isometries
in p-normed spaces.

Example 2.1. Let (X, ‖ · ‖) be a nontrivial Banach space. Let p ∈ (0, 1] and let
‖ · ‖p := ‖ · ‖p . Then X is a complete p -normed space with p-norm ‖ · ‖p .

Let F : X → X be defined by

F (x) := x+
x

‖x‖p for x 6= 0, F (0) = 0.

By Lemma 2.1 we obtain that

|‖F (x)− F (y)‖p − ‖x− y‖p| 6 12 for x, y ∈ X,

which means that F is an approximate isometry in (X, ‖ · ‖p).
Let us check that F is a bijection. First we observe that F (Rx) ⊂ Rx for

every x ∈ X . Moreover,

F (rx) = (r + sgn(r)|r|1−p 1
‖x‖p ) · x for r ∈ R, x ∈ X \ {0}.
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Since for x ∈ X \ {0} the function Fx : R 3 r → (r + sgn(r) · |r|1−p/‖x‖p) is an
increasing continuous function and Fx(−∞) = −∞ , Fx(∞) =∞ , we obtain that
Fx is a bijection. Consequently F is also a bijection.

Suppose that there exists an isometry U : (X, ‖·‖p)→ (X, ‖·‖p) and K > 0,
r ∈ [0, 1− p) such that

‖F (x)− U(x)‖p 6 K(1 + ‖x‖rp) for x ∈ X. (5)

Let U0(x) := U(x) − U(0). Then U0 is an isometry, U0(0) = 0 and by (5) we
obtain

‖F (x)− U0(x)‖p 6 K0(1 + ‖x‖rp) for x ∈ X, (6)

where K0 := K + ‖U(0)‖ . Then

‖x− U0(x)‖p 6 ‖x− F (x)‖p + ‖F (x)− U0(x)‖p 6 ‖x‖1−pp +K0(1 + ‖x‖rp).

Consequently

‖x− U0(x)‖ 6 (‖x‖p(1−p) +K0 +K0‖x‖pr))1/p.

As U0 : (X, ‖ · ‖) → (X, ‖ · ‖) is an isometry, the assumptions of Proposition 2.1
are satisfied for V = id, and therefore U0 = id. Then we get

‖F (x)− U0(x)‖ = ‖F (x)− x‖ = ‖x‖1−p,

i.e.
‖F (x)− U0(x)‖p = ‖x‖1−pp .

We obtain a contradiction with (6) and the fact that r < (1− p).

In the next example we briefly discuss the situation in Lp spaces, since they
are a usual model for p -normed spaces (Example 2.1 is slightly artificial). We are
only able to prove that there is no stability in the Hyers-Ulam sense if we restrict
to the case when the approximating isometry is assumed to be linear.

Example 2.2. Let (Ω, ν) be a measure space, ν(Ω) = 1, and let p ∈ (0, 1) be
fixed. We are going to construct an approximate isometry in the space Lp(Ω) with
the p -norm ‖ · ‖p defined by ‖f‖p =

∫
Ω |f(x)|pdν(x).

We define φ : R→ R by

φ(r) := r + sgn(r)|r|1−p.

By Lemma 2.1 we obtain that

| |φ(r)− φ(s)|p − |r − s|p | 6 12 for r, s ∈ R. (7)

One can easily see that φ is a continuous odd increasing bijection such that

r 6 φ(r) 6 2r + 1 for r ∈ R+. (8)
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This yields in particular that φ−1 is an odd increasing continuous bijection and

0 6 φ−1(r) 6 r for r ∈ R+. (9)

We define a function Φ : Lp(Ω)→ Lp(Ω) by the formula

Φ(x)(ω) := φ(x(ω)) for x ∈ Lp(Ω), ω ∈ Ω.

It follows from (8) that Φ is well-defined, i.e. that Φ(x) ∈ Lp(Ω) for x ∈ Lp(Ω).
Let us verify that Φ is an approximate isometry. For arbitrary x1, x2 ∈ Lp(Ω)

we have

|‖x1 − x2‖p − ‖Φ(x1)− Φ(x2)‖p|

=
∣∣∣∣
∫

Ω
|x1(ω)− x2(ω)|p − |φ(x1(ω))− φ(x2(ω))|pdν(ω)

∣∣∣∣

6
∫

Ω
| |x1(ω)− x2(ω)|p − |φ(x1(ω))− φ(x2(ω))|p |dν(ω)

by (7)
6
∫

Ω
12dν(ω) = 12.

The fact that Φ is a bijection follows from (9) and the fact that φ is a bijection.
Suppose that there exists a linear isometry U such that

sup
x∈Lp(Ω)

‖Φ(x)− U(x)‖p <∞.

Then by the linearity of U we trivially obtain that

U(x) = lim
n→∞

Φ(nx)
n

= x.

However, sup
x∈Lp(Ω)

‖Φ(x)− x‖p =∞ , which yields a contradiction.

3. Jensen equation

As is the case for the stability of isometries in Banach spaces, the basic role is
played by the fact that approximate isometries satisfy approximate Jensen equ-
ation.

Lemma 3.1. Let p ∈ (0, 1) , ε > 0 and let X,Y be p-normed spaces. Let f : X →
Y be a surjective ε-isometry. Then there exists a constant Cp > 0 (depending
only on p) such that

‖f
(
x+ y

2

)
− f(x) + f(y)

2
‖ 6 2‖x− y‖ · 2−pn + Cp · 2(1−p)nε

for x, y ∈ X,n ∈ N .

Proof. The proof in the case when n > 2 is a routine p -norm modification of
the classical argument (see for example [2, Lemma 15.3] or [5]) and therefore we
skip it.

One can easily verify that the estimation for n = 1 follows from the estima-
tion for n = 2 (we simply enlarge the constant Cp two times).
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We will need the following simple observation

Lemma 3.2. Let p ∈ (0, 1) and w ∈ R+ be fixed and let fw : N→ R be defined
by

fw(k) := w · 2−pk + 2(1−p)k for k ∈ N.
Then

inf
k∈N

fw(k) 6 4w1−p +
2
p
.

Proof. If w = 0 then the assertion of the lemma holds trivially. Assume that
w > 0.

Let Fw : R → R be defined by Fw(x) := w · 2−px + 2(1−p)x . Let xw :=
log2( pw1−p ). One can easily check that Fw is decreasing on the interval (−∞, xw)
and increasing on (xw,∞). Consequently, we have

inf
x∈R

Fw(x) = F (xw) =
w1−p

pp(1− p)1−p . (10)

If xw < 0 we put kw = 1, else kw = bxwc+ 1, where bxc denotes the entire
part of x . If xw < 0, then w 6 (1− p)/p which yields

fw(kw) = fw(1) = w2−p + 2(1−p) 6 2
p
.

If xw > 0, then xw 6 kw 6 xw + 1. Applying monotonicity of Fw on the interval
(xw,+∞) and (10) we get

fw(kw) = w · 2−kwp + 2kw(1−p) 6 w · 2−pxw + 2 · 2(1−p)xw 6 2 · w1−p

pp(1− p)1−p .

However, the infimum of the function (0, 1) 3 p → pp(1 − p)1−p is attained at
p = 1/2 and is equal to 1/2, and therefore fw(kw) 6 4w1−p .

Now we are ready to prove the main result of this section, which shows that
approximate isometries are approximate Jensen functions.

Theorem 3.1. Let p ∈ (0, 1) , ε > 0 . Then there exists a constant Kp such that
for every p -normed spaces X,Y and a surjective ε-isometry f : X → Y we have

‖f(
x+ y

2
)− f(x) + f(y)

2
‖ 6 Kp(ε+ εp‖x− y‖1−p) for x, y ∈ X.

Proof. Directly from Lemma 3.1 we get

‖f
(
x+ y

2

)
− f(x) + f(y)

2
‖ 6 2

‖x− y‖
2pk

+ 2Cp · 2(1−p)kε
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for x, y ∈ X, k ∈ N . Now by Lemma 3.2 we obtain

inf
k∈N

(
2
‖x− y‖

2pk
+ 2Cp · 2(1−p)kε

)
= 2Cpε · inf

k∈N

(‖x− y‖
Cp · ε 2−pk + 2(1−p)k

)

6 2Cpε ·
(

4
‖x− y‖1−p

(Cp)1−p · ε1−p +
2
p

)
6 Kp(εp‖x− y‖1−p + ε),

with Kp = max{8(Cp)p,
4Cp
p } .

4. Stability

As we have seen, the investigation of stability of isometries have led us naturally
to the Jensen equation. Thus we first discuss the stability of the Jensen equation.

Proposition 4.1. Let X,Y be p-Banach spaces, ε > 0 and p ∈ (0, 1) and let
f : X → Y be such that

‖f(
x+ y

2
)− f(x) + f(y)

2
‖ 6 K(ε+ εp‖x− y‖1−p) for x, y ∈ X. (11)

Then the function a : X → Y defined by

a(x) := lim
n→∞

f(2nx)
2n

, (12)

is a well-defined additive function and

‖f(x)− f(y)− a(x− y)‖ 6 Kε

1− 2−p
+Kεp

2p−p
2

1− 2−p2 ‖x− y‖1−p

for x, y ∈ X .

As the proof follows the classical Hyers method we omit it.
Now we are ready to proceed to the proof of our main result on the stability

of isometries in p-normed spaces.

Theorem 4.1. Let ε > 0 , p ∈ (0, 1) be arbitrary. Then there exists a constant
Cp > 0 such that for every p -Banach spaces X,Y and every surjective ε-isometry
f : X → Y there exists a linear isometry U : X → Y satisfying

‖f(x)− f(y)− U(x− y)‖ 6 Cp(ε+ εp · ‖x− y‖1−p) for x, y ∈ X. (13)

Proof. By Theorem 3.1 and Proposition 4.1 we obtain that the function

U(x) = lim
n→∞

f(2nx)
2n

for x ∈ X,
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is a well-defined additive function such that

‖f(x)− f(y)− U(x− y)‖ 6 Cp(ε+ εp · ‖x− y‖1−p) for x ∈ X, (14)

with a certain constant Cp depending only on p .
We have

‖U(x)− U(y)‖ = lim
n→∞

1
np
‖U(nx− ny)‖by (14)

= lim
n→∞

1
np
‖f(nx)− f(ny)‖

Since f is an ε-isometry |‖f(nx)− f(ny)‖ − ‖nx− ny‖| 6 ε , which implies that

lim
n→∞

1
np
‖f(nx)− f(ny)‖ = lim

n→∞
1
np
‖nx− ny‖ = ‖x− y‖.

Thus U is an isometry. As a continuous additive function U is linear.
To complete the proof it remains to prove that U is surjective. Consider an

arbitrary w ∈ Y . Since f is surjective we can find a sequence (xn) ⊂ X such that
f(nxn)− f(0) = nw .

As f is an ε-isometry

| ‖f(nxn)− f(0)‖ − ‖nxn‖ | 6 ε.

Whence
‖nxn‖ 6 ‖f(nxn)− f(0)‖+ ε 6 np‖w‖+ ε. (15)

By the additivity of U we obtain

lim
n→∞

‖w − U(xn)‖ = lim
n→∞

1
np
‖nw − U(nxn)‖

= lim
n→∞

1
np
‖f(nxn)− f(0)− U(nxn)‖

by (13)
6 lim

n→∞
1
np
Cp(ε+ εp · ‖nxn‖1−p)

by (15)
6 lim

n→∞
1
np
Cp(ε+ εp · (np‖w‖+ ε)1−p) = 0.

We conclude that w = limn→∞ U(xn). But U is an isometry and therefore U(X)
is complete, since X is. Thus U(X) is closed, and therefore w ∈ U(X).

As an immediate corollary we get

Corollary 4.1. Let X,Y be p -Banach spaces such that there exists a surjective
ε-isometry F between them. Then there exists a surjective linear isometry U :
X → Y such that

‖F (x)− U(x)‖ = o(‖x‖) as ‖x‖ → ∞.

This implies in particular that X and Y are linearly isometric.
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Remark 4.1. In this remark we would like to explain why the knowledge of
approximate isometries in the case of p -normed spaces (for p ∈ (0, 1)) is less
precise that in the case of Banach spaces.

Let X,Y be Banach space and let F : X → Y be surjective ε-isometry.
Then, as we have mentioned in the introduction, there exists an affine isometry U
such that

‖F (x)− U(x)‖ 6 2ε.

On the other hand, if F is an arbitrary surjective function satisfying the above ine-
quality for a certain affine isometry U , then automatically F is a Kε -approximate
isometry, with K = 4.

However, the situation for p -normed spaces is different. If X,Y are p -Banach
spaces and F : X → Y is a surjective ε-isometry, then by our main result, there
exist Cp > 0 and a linear isometry U such that

‖F (x)− F (y)− U(x− y)‖ 6 Cp(ε+ εp · ‖x− y‖1−p).

But, as one can easily notice, in general the assumption that F is a surjective
function which satisfies the above inequality, where U is a linear isometry, does
not guarantee that F is a Kε -isometry for a certain K > 0 (see the following
example).

Example 4.1. Let p ∈ (0, 1) and let X be a p -normed space such that for some
e, f ∈ X , ‖e‖ = ‖f‖ = 1, the following condition holds

‖αe+ βf‖ = ‖αe‖+ ‖βf‖ for α, β ∈ R.

This holds in particular for every at least two dimensional p -normed space Lp(Ω)
defined on a measure space (Ω,Σ, ν), ν(Ω) = 1 (then there exists A ∈ Σ with
ν(A) ∈ (0, 1) and we put e = ν(A)−1/pχA , f = ν(Ω \A)−1/pχΩ\A ).

We take an arbitrary r ∈ (0, 1) with rp < 1− p and put

F (x) = x+ ‖x‖re for x ∈ X.

One can easily check that

‖F (x)− F (y)− (x− y)‖ 6 ‖x− y‖rp 6 1 + ‖x− y‖1−p.

For α ∈ R we have

|‖F (αf)− F (0)‖ − ‖αf − 0‖| = |‖αf + ‖αf‖re‖ − ‖αf‖|
= ‖‖αf‖re‖ = ‖αf‖pr = |α|p2r →∞ as α→∞,

hence F is not a Kε -isometry.
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Problem 4.1. At the end of the paper we would like to pose two problems worth,
in our opinion, investigation:

– is the isometry equation unstable (in the Hyers-Ulam sense) in all p -Banach
spaces (we construct examples only in special spaces)?

– is Theorem SV valid for p -Banach spaces?
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