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TWO EXCEPTIONAL CLASSES OF REAL NUMBERS

Purusottam Rath

Abstract: In a recent paper, Bugeaud and Dubickas have given an explicit characterisation of
a rather remarkable class of transcendental numbers which are exceptional from the perspective
of distribution of exponential sequences modulo 1 . Much before, Helson and Kahane, from a
completely different point-of-view had existentially exhibited another class of exceptional real
numbers which conjecturally are either rational or transcendental. Wondering whether these
two rather large class of real numbers overlap, we study their distribution functions and our
investigation gives the first indication that these two interesting class of real numbers originating
from different contexts are most likely different. We also frame a natural conjecture in this set up
which would establish the above assertion. Our results can be regarded as the first step towards
this conjecture.
Keywords: exponential sequences, distribution functions.

1. Introduction

Given any real number x , let [x] denote its integral part while {x} denote its
fractional part.

Now given a sequence of real numbers (un) where 0 6 un < 1, for any
interval I of length l(I) contained in [0, 1], let A(I,N) be the number of elements
of (un) among its first N members which are in I , i.e.

A(I,N) = |{n | n 6 N, un ∈ I}|. (1)

Then if for any such interval I , we have

lim
N→∞

A(I,N)
N

= l(I),

we say that the given sequence (un) is uniformly distributed. We extend this notion
for any arbitrary sequence of real numbers (un) by considering the sequence of
their fractional parts ({un}) and we say that the sequence (un) is uniformly distri-
buted modulo 1 if the sequence of fractional parts ({un}) is uniformly distributed
as defined above.
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We know that, for positive real numbers a and α , the sequence (anα) is
uniformly distributed modulo 1 if α is not an integer while the sequence (log n) is
dense but not uniformly distributed modulo 1. Similarly, the sequence (a logα n)
is uniformly distributed modulo 1 with α > 1, it is dense but not uniformly distri-
buted modulo 1 if 0 < α 6 1 Finally, the sequence (anα logβ n)n>1 is uniformly
distributed modulo 1 if α is not an integer and β is any positive real number, but
the sequence (a log log n)n>1 is not uniformly distributed modulo 1. We refer to
[6] for an elaborated account of these results.

As we see, the sequences whose growth is slower than the sequence (log n)
are not uniformly distributed modulo 1. On the other hand, sequences increasing
faster than (log n), but not faster than a polynomial are uniformly distributed
modulo 1.

However, almost nothing is known about the sequences whose growth is expo-
nential. Let θ > 1 and α 6= 0 be real numbers. The distribution of the sequence
(θn) or in general the sequence (αθn) is one of the most intriguing questions in
Number Theory about which the current state of knowledge is quite negligible. We
refer to the survey article [1] for a more exhaustive report on the state-of-the-art.
The algebraic nature of any real number x is encoded in its fractional part. There
are very few tools to determine whether a given real number x is algebraic or
transcendental. So a further motivation to study these exponential sequences of
the form (θn) or in general the sequences (αθn) apart from their intrinsic mystery
is to explore the possibility of actually obtaining some information about the al-
gebraic nature of θ and α by studying their distribution modulo 1, say from their
set of limit points or whether they are dense modulo 1 or not (in other words,
instead of studying the single number {x} , can we study the sequence {xn} and
decipher {x}).

The distribution of exponential sequences of the form (θn) or (αθn) modulo
1 however is quite enigmatic. As we have seen before, the rapidity of growth of
a given sequence seems to play a crucial role in its distribution. So one would be
tempted to expect, except for the degenerate cases, that the above exponential
sequences would be uniformly distributed modulo 1. Interestingly, it is not so
always. What is even more interesting is that the distribution of (θn) can be
completely different from the distribution of (αθn). The criteria of Weyl which
involves exponential sums is not quite relevant in the context of studying the
uniform distribution of these exponential sequences. So we do not have any general
tool to check whether any given exponential sequence is uniformly distributed
modulo 1 or not. Thus we do not know whether sequences as simple as en or
(3/2)n are uniformly distributed modulo 1 or not. We do not even know whether
they are dense modulo 1 in [0, 1]. But the following results which follows from a
more general work of Koksma can be used to obtain some information about the
distribution of these exponential sequences in general.

i) Let θ > 1 be a real number greater than 1; then the sequence (αθn) is
uniformly distributed modulo 1 for almost all real α .

ii) Let α be a non-zero real number ; then the sequence (αθn) is uniformly
distributed modulo 1 for almost all θ > 1 .
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Further, for almost all pairs (α, θ), θ > 1, in the sense of planar Lebesgue
measure, the sequence (αθn) is uniformly distributed modulo 1 ( see [6]). However
it is quite paradoxical that we have very very few examples of pairs (α, θ) such
that (αθn) is uniformly distributed modulo 1, most of these examples are when
θ is a natural number. The reason as we have mentioned before is that the very
few existing criteria which we have for uniform distribution modulo 1 are not
relevant in the context of such exponential sequences. Under these circumstances,
it makes sense to turn in the other direction and try to study the numbers θ > 1
or pairs (α, θ) for which the sequences (θn) or (αθn) are not well distributed
or even badly distributed. Let us refer to the real numbers θ or pairs (α, θ) for
which the sequences (θn) or (αθn) are not uniformly distributed modulo 1 as
exceptional numbers or pairs. However, before setting out in pursuance of these
exceptional numbers or pairs, it is worthwhile first to ensure that we actually have
a non-trivial supply of such numbers/pairs, at least existentially. The fascinating
results of Pollington are a confirmating pointer that these numbers/pairs which we
hope to understand are actually plentiful. In a series of papers, Pollington studied
these exceptional pairs extensively and computed their Hausdorff Dimension. In
[9] [7], he proved the following theorem.

Theorem. Given any non zero real number α and 0 < δ < 1 , the set of real
numbers θ > 1 for which

{αθn} ∈ [0, δ] n = 1, 2, · · ·
has Hausdorff dimension 1.

In the other direction, Erdős [4] had asked whether given an increasing se-
quence of positive integers (nk) such that the ratio tk = nk+1/nk > ρ > 1, is it
true that there always exists an irrational ξ for which the sequence {nkξ} is not
everywhere dense. This was settled by the following result of Pollington [8]:

Theorem. If (xk) is an increasing sequence of positive real numbers, such that
tk = xk+1/xk > ρ > 1 , then the set of real numbers ξ such that {xkξ} is not
dense in the unit interval has Hausdorff dimension 1.

Further, Pollington [9] also proved that the set of pairs (α, θ) with θ > 1 for
which {αθn} ∈ [0, δ] for all n has Hausdorff dimension 2.

In the light of the above theorems, we see that the sets of exceptional num-
bers θ and pairs (α, θ) for which the sequences (θn) or (αθn) are not even dense
modulo 1 are uncountable. Hence there exists transcendental numbers θ for which
the sequence (θn) is not uniformly distributed modulo 1. Also it is possible to
have pairs of transcendental numbers (α, θ) such that (θn) is uniformly distribu-
ted modulo 1, but (αθn) is not even dense modulo 1. Interestingly, we are yet
to find a transcendental number θ such that (θn) is not uniformly distributed
modulo 1 although by the results of Pollington, there exists uncountably many
such transcendental numbers.

In the present work, for a fixed θ , we study the distribution of the sequences
{αθn} for various real values α . It turns out that when θ = b is a natural number,
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this opens up some avenues for investigating the distribution of the sequences
{αbn} . It is because the b-ary expansion of α tends to reflect or manifest in the
distribution {αbn} . Let the b− ary expansion of α be

α = [α] +
a1

b
+
a1

b2
+ · · ·

Then the above expansion, associates to α , an infinite word w = a1a2 · · · with
letters in {0, 1, · · · b−1} . A very interesting recent result of Bugeaud and Dubickas
[3] describes, in terms of complexity of w , all irrational α > 0 with the property
that {αbn} for all n belong to a semi-open or an open interval of length 1/b . For
an infinite word w , let Pw(m) be its complexity function which is the number of
distinct finite words of length m which occur in w . An infinite word w is called
Sturmian if its complexity function satisfies pw(m) = m + 1 for every natural
number m . Bugeaud and Dubickas [3] have proved the following:

Theorem A. Let b > 2 be an integer and α be an irrational number. Then the
numbers {αbn}, n > 0 , cannot all lie in an interval of length strictly smaller than
1/b . On the other hand, the numbers {αbn}, n > 0 are all lying in a closed interval
of length I of length 1/b if and only if

α = g + k/(b− 1) + tb(w),

where g is an arbitrary integer, k is in {0, 1, · · · , b − 2} , and w is a Sturmian
word on {0, 1} . If this is the case, then α is transcendental.

In particular, since there are uncountably many Sturmian words on {0, 1} ,
by the above theorem we get an uncountable supply of pairs (α, b), where α is
irrational and s ∈ (0, 1 − 1/b), such that s < {αbn} < s + 1/b for every n > 0.
Here it is worthwhile to mention that if there exist numbers α such that all the
{αbn}, n > 0 lie in a closed interval of length I of length 1/b , then one would
expect them to be transcendental. For, it is a widely believed almost folklore
conjecture that every irrational algebraic number is normal in base b . We recall
that a real number α is normal in base b if, for any positive integer n , each
one of the bn blocks of length n on the alphabet {0, 1, · · · , b − 1} occurs in the
b-adic expansion of α with the same frequency 1/bn . Since α is normal in base
b implies {αbn} is uniformly distributed, it is to be expected that the numbers
with the property as in the above theorem, if they exist, would be transcendental.
However the conjecture on algebraic irrational numbers being normal in base b
for every b appears to belong to the realms of distant future. We even do not
know whether the digit 7 occurs infinitely often in the decimal expansion of

√
2.

We must mention the very recent outstanding work of Adamczewski and Bugeaud
in this context. In their recent work, Adamczewski and Bugeaud have proved the
following remarkable theorem which is most certainly the most significant step
towards the elusive Borel conjecture:
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Theorem. Let b > 2 be an integer. Then the complexity of the b-adic expansion
of every irrational algebraic number satisfies the property that lim infn→∞

p(n)
n =

+∞. Thus in particular, algebraic irrationals can not have sub-linear complexity.

Now, from a rather different view point, a particular version of a result in
Helson and Kahane [5] states the following:

Theorem B. There exists an uncountable set of real numbers α such that {αbn}
does not have an asymptotic distribution function. Further, this set has Hausdorff
dimension 1.

We note that in particular for all these α , {αbn} is not uniformly distributed.
Now conjecturally, all such α ’s should be rational or transcendental. Note that the
family of numbers obtained by Bugeaud and Dubickas and those obtained by Hel-
son and Kahane are exceptional from the perspective of the distribution of {αbn} .
But while the method of Bugeaud and Dubickas is constructive, that of Helson
and Kahane is existential. So we wondered about the possibility that both might
have stumbled upon the same class of exceptional real numbers. This made us
investigate the distribution functions of the sequences {αbn} for a general α . Our
investigation gives the first indication that the numbers obtained by Bugeaud and
Dubickas constructively and those obtained by Helson and Kahane existentially
are most likely different. In the next section, we detail the required generalities on
distribution functions and prove our results which suggests the above eventuality.

2. Distribution Functions

One of the few tools which appears to hold some promise in the study of distribu-
tion of these elusive sequences {ξθn} is the study of their distribution functions. In
general, a distribution function g(x) is just a real valued, non-decreasing function
defined on [0, 1] with g(0) = 0 and g(1) = 1. Let us first clearly understand the
notion of distribution function of a sequence in our context. From now onward for
any real sequence (xn), we will be looking at the sequence ({xn}), so without
loss of generality, all our sequences are assumed to be in [0, 1]. Given any such
sequence (xn) , consider the following sequence of functions

fN (x) =:
|{n | n 6 N, xn ∈ [0, x)}|

N
(2)

As we see, if the given sequence (xn) is uniformly distributed, the above sequence
of functions (fN (x)) will converge to the function I(x) = x . In general, if these
sequence of functions converge to a function g(x), i.e. if :

lim
N→∞

|{n | n 6 N, xn ∈ [0, x)}|
N

= g(x), ∀x ∈ [0, 1]

then the sequence (xn) is said to have the asymptotic distribution function g(x). In
general, however, these sequence of functions need not converge to any function,
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i.e. the sequence (xn) may not have any asymptotic distribution function. But for
any given x in [0, 1], the sequence (fN (x)) being bounded (0 6 (fN (x)) 6 1),
will have a convergent subsequence, where the subsequences will depend on the
point x . However, if there exists a fixed subsequence which works for all x , i.e. if
there exists an increasing sequence of natural numbers N1, N2, · · · such that

lim
i→∞

|{n | n 6 Ni, xn ∈ [0, x)}|
Ni

= g(x) , ∀x ∈ [0, 1]

then g(x) is called a distribution function of (xn). If the above holds with g(x) =
x . then the sequence (xn) is called almost uniformly distributed. Clearly if Ni = i
for all i , then g(x) is the asymptotic distribution function of (xn). As mentioned
before, a sequence in general, may not have an asymptotic distribution function.
A little later we will give the example of such a sequence. However, every sequence
(xn) has at least one distribution function which follows from Helly’s selection
principle. Helly’s principle asserts that any sequence of functions on [0, 1] which is
uniformly bounded converges weakly to a monotonic function g(x) (i.e. converges
point wise at points where g(x) is continuous).

We prove the following important theorem which gives the relation between
distribution functions and asymptotic distribution functions.

Theorem 1. The sequence (xn) has the asymptotic distribution function g(x) if
and only if g(x) is the only distribution function of (xn) .

Proof. It is clear that if the sequence (xn) has the asymptotic distribution func-
tion g(x), then g(x) is the only distribution function of (xn). Conversely, suppose
g(x) is the only distribution function of (xn). We claim that g(x) is the asymptotic
distribution function of (xn). If not, then the sequence of functions

fN (x) =:
|{n | n 6 N, xn ∈ [0, x)}|

N
(3)

do not converge to g(x) for all x ∈ [0, 1]. Hence there exists some y ∈ [0, 1] such
that the sequence (fN (y)) does not converge to g(y). Since (fN (y)) is bounded,
it will have a subsequence, say fN1(y), fN2(y), · · · such that

lim
i→∞

fNi(y) = γ 6= g(y)

Now instead of the sequence of functions (fN (x)), we use Helly’s selection principle
to the sequence of functions (fNi(x)) and get a distribution function say h(x) for
(xn). But since g(x) is the only distribution function of (xn), h(x) = g(x) for all
x ∈ [0, 1]. However h(y) = γ 6= g(y).

A little reflection on the above proof shows that we have proved the following
lemma:
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Lemma 1. If for some y ∈ [0, 1] , there exists a subsequence (Nk) of natural
numbers such that limk→∞ fNk(y) = β , then there exists a distribution function
g(x) of (xn) such that g(y) = β .

Using this and Theorem 1, we immediately see that the following sequence
does not have an asymptotic distribution function: For any natural number n , let
l(n) be the unique integer such that 2l(n) < n 6 2l(n)+1 . Then we define (xn) to
be equal to 1/3 if l(n) is even and equal to 1/4 if l(n) is odd.

Let g(x) be a distribution function of (xn). Let ϕ : [0, 1] → [0, 1] be any
function. Then a distribution function of the altered sequence (ϕ(xn)), in gene-
ral, may not have any relation with g(x). However, in certain cases, distribu-
tion functions of the sequences (xn) and (ϕ(xn)) are related as we see now. Let
ϕ : [0, 1] → [0, 1] be such that for every x ∈ [0, 1], ϕ−1([0, x)) is expressible
as the union of finitely many disjoint subintervals Ii(x) of [0, 1] with endpoints
αi(x) 6 βi(x). For any distribution function g(x) we put

gϕ(x) =
∑

i

(g(βi(x))− g(αi(x))).

For any sequence ∆ = {xn}∞n=1, xn ∈ [0, 1] and ϕ : [0, 1] → [0, 1] as above, if
ϕ(∆) denotes the sequence {ϕ(xn)}∞n=1 , then we have the following theorem due
to Strauch [10]:

Theorem (Strauch). Let g(x) be a distribution function of ∆ associated with
the sequence of indices N1, N2, · · · . Suppose each term xn is repeated only finitely
many times. Then ϕ(∆) has the distribution function gϕ for the same sequence
of indices N1, N2, · · · . Further, every distribution function of ϕ(∆) has this form.

Taking ϕ(x) = ϕt(x) = {tx} with t a positive integer, we have the following
theorem which will be important for us:

Theorem 2. Every distribution function g of {ξ(p/q)n} with co-prime integers
p > q > 1 satisfies gϕp(x) = gϕq (x) for x ∈ [0, 1] .

Proof. We have {q{x}} = {qx} . Hence

{q{ξ(p/q)n}} = {ξ(pn/qn−1)} = {pξ(p/q)n−1} = {p{ξ(p/q)n−1}}

Thus ϕq({ξ(p/q)n}) and ϕp({ξ(p/q)n−1}) form the same sequence and the conc-
lusion follows by the above theorem.

In the light of theorem 1, it is apparent that the more uniform is the distri-
bution of a sequence (xn) in the unit interval, the fewer will be its distribution
functions. Hence the concept of sets of uniqueness of distribution functions is of
relevance. Given a sequence (xn) in [0, 1], a subset X of [0, 1] is said to be a
set of uniqueness of the distribution functions of (xn) if, for any two distribution
functions g1(x) and g2(x) of (xn), g1(x) = g2(x) on X implies g1(x) = g2(x)
on [0, 1]. Hence the distribution functions of (xn) are determined by their values
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on X . While studying the distribution of a sequence (xn), ideally one would like
to have sets of uniqueness of smaller size/measure. It would seem that the smaller
the measure of sets of uniqueness of distribution functions, the fewer would be the
number of distribution functions and hence more uniform would be the distribu-
tion of the sequence. For instance, in the ideal scenario when the sequence (xn)
is uniformly distributed, any point in [0, 1] is a set of uniqueness. It is worthwhile
to note that the sets of uniqueness of distribution functions of a sequence in gene-
ral are not translation invariant. For instance, let us consider again the following
sequence: For any natural number n , let l(n) be the unique integer such that
2l(n) < n 6 2l(n)+1 . Then we define (xn) to be equal to 1/3 if l(n) is even and
equal to 1/4 if l(n) is odd. It is clear that X = [0, 1/3] is a set of uniqueness.
However neither [1/3, 2/3] nor [2/3, 1] is a set of uniqueness. For, any distribution
function of the given sequence takes the vales 1 on either of these sets and hence
if they were sets of uniqueness of the given sequence, the sequence will have only
one distribution function. But as we have noted before, Lemma 1 implies that
the given sequence has at least two distribution functions. We prove the following
theorem:

Theorem 3. Suppose g is a distribution function of {αbn} with b ∈ N . Then
any interval [a, a+ b−1

b ] ⊂ [0, 1] of length b−1
b is a set of uniqueness of g .

Proof. By taking ϕ(x) = {x} and ϕ(x) = {bx} in Lemma 1, we see that any
distribution function g of {αbn} with b ∈ N satisfies

g(x) =
b−1∑

i=0

g

(
x+ i

b

)
−
b−1∑

i=1

g

(
i

b

)
(4)

Suppose g(x) is known for x ∈ [a, a+ p−1
p ] . We have,

0 6 a 6 1
b
<
b− 1
b

6 a+
b− 1
b

.

For all x ∈ [0, 1], since
i

b
6 x+ i

b
6 i+ 1

b
,

g(x+i
b ) is known for 1 6 i 6 b − 2. Also the value of g( ib ) is known for all

i = 1, 2, · · · , b− 1. Let
x ∈ A1 := [a, ba].

Then, for such an x ,

a 6 x 6 x+ b− 1
b

6 a+
b− 1
b

.

Hence for x ∈ [a, ba] , both g(x) and g(x+b−1
b ) are known. Thus, for x ∈ [a, ba] ,

all the entries in (4) are known except for g(xb ). Hence using (4), g(xb ) gets known
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when x ∈ [a, ba] . But x ∈ [a, ba] implies x
b ∈ [ab , a] . Thus g(x) is now known

in the interval B1 := [ab , a + b−1
b ] . Recursively, after n steps, taking x ∈ An :=

[( 1
b )n−1a, ba] , g(x) gets known for any x in the interval Bn = [( 1

b )na, a + b−1
b ] .

Since ( 1
b )na → 0 as n → ∞ , we see that by this process g(x) gets known over

the interval [0, a + b−1
b ] . Now for all x ∈ [0, a + b−1

b ] , all the entries in (4) are
known except for g(x+b−1

b ). Hence g(x+b−1
b ) gets known for all x ∈ [0, a+ b−1

b ] .
But x ∈ [0, a + b−1

b ] implies x+b−1
b ∈ [ b−1

b , ab + b−1
b + b−1

b2 ] . Thus g(x) gets
known over the interval [0, ab + b−1

b + b−1
b2 ] . Recursively, after n steps, taking x in

the interval [0, a
bn−1 + b−1

b + b−1
b2 + · · · + b−1

bn ] , g(x) gets known over the interval
[0, abn + b−1

b + b−1
b2 + · · ·+ b−1

bn+1 ] . Since a
bn + b−1

b + b−1
b2 + · · ·+ b−1

bn+1 → 1 as n→∞ ,
g(x) gets known in [0, 1].

Arguing along similar lines and using the methodology adopted in [2], we
can prove the following the proof of which we omit:

Theorem 4. Suppose g is a distribution function of {αbn} with b ∈ N . Then
complement of any interval of the form [j/b, j/b+ 1/b] ⊂ [0, 1] where j = 0, 1, · · · ,
b− 1 , is a set of uniqueness of g .

3. Remarks and Consequences

We begin by remarking that for sequences of the form {αbn} where b is a natural
number, we have shown that any interval of length (b−1)/b is a set of uniqueness.
But we could not lower the interval size here . But in this context, result of Bugeaud
and Dubickas shows that

lim sup
n→∞

{αbn} − lim inf
n→∞

{αbn} =
1
b
.

So we feel that exhibiting an interval of length less than (b−1)/b (or proving their
non-existence) which is a set of uniqueness for the sequences {αbn} for all α > 0
will be of considerable interest (and difficulty).

Determining the existence of asymptotic distribution function of sequences
of the form {αbn} in general is rather difficult. As we have mentioned before,
result of Koksma establishes that for almost all α , {αbn} is uniformly distributed
in [0, 1] and hence has the asymptotic distribution function g(x) = x . In the
other direction, Theorem B due to Helson and Kahane established the existence of
uncountably many α such that {αbn} does not have an asymptotic distribution
function. In their theorem A, Bugeaud and Dubickas constructed an uncountable
family of α such that {αbn} lie in an interval I of length 1/b . Suppose the end
points of such an interval I were of the form j/b and j/b + 1/b . Then note
that any two distribution functions of such {αbn} will agree in the complement
of I . Then by our theorem 4, they will agree everywhere. Thus such a sequence
has only one distribution function and hence by theorem 1 will necessarily have
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an asymptotic distribution function. But the sequences exhibited by Helson and
Kahane are characterised by having no asymptotic distribution function and hence
will be different. But it is remarkable (pointed out to the author by Bugeaud) that
while it is not possible in general to describe the possible intervals of length 1/b
where the sequences {αbn} can lie, the end points are necessarily transcendental.
So our Theorem 4 is not able to establish that the real numbers described in the
theorems A and B are different. However, we note that the counterpart of a natural
conjecture mentioned in [2] in our set up will suggest the following:

Conjecture. Every measurable set X ⊂ [0, 1] with Lebesgue measure at least
(b − 1)/b is a set of uniqueness of any distribution function of {αbn} for any
α > 0 .

Our theorems 2 and 3 can be regarded as the first step towards this. Note that
this will clearly prove that the real numbers exhibited by Bugeaud and Dubickas
are different from those exhibited by Helson and Kahane. However, we suspect
proving this in generality could be rather difficult. We believe it is more realistic
to strive for a refinement of our Theorem 4 to prove that the complement of any
interval of length 1/b is a set of uniqueness of distribution functions of {αbn} .
This will be enough to establish that the two uncountable class real numbers
constructed by Bugeaud and Dubickas and those exhibited by Helson and Kahane
are necessarily different.
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